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Abstract—The emergence of large-scale dynamic sets in real

applications creates stringent requirements for approximate set

representation structures: 1) the capacity of the set representation

structures should support flexibly extending or reducing to cope

with dynamically changing of set size; 2) the set representation

structures should support reliable delete operation. Existing

techniques for approximate set representation, e.g., the cuckoo

filter, the Bloom filter and its variants cannot meet both the

requirements of a dynamic set. To solve the problem, in this

paper we propose the dynamic cuckoo filter (DCF) to support

reliable delete operation and elastic capacity for dynamic set

representation and membership testing. Two factors contribute

to the efficiency of the DCF design. First, the data structure of a

DCF is extendable, making the representation of a dynamic set

space efficient. Second, a DCF utilizes a monopolistic fingerprint

for representing an item and guarantees reliable delete operation.

Experiment results show that compared to the existing state-of-

the-art designs, the proposed dynamic cuckoo filter achieves 75%

reduction in memory cost, 50% improvement in construction

speed, and 80% improvement in speed of membership query.

We implement a prototype file backup system and conduct com-

prehensive experiments with large-scale real world dataset. The

results demonstrate the efficiency of our DCF design compared

to existing schemes.

Index Terms—Dynamic set representation; set membership

testing; cuckoo filter

I. INTRODUCTION

Set representation and membership testing are two core
problems of many computer applications. Set representation
means organizing the information of the elements of a set
using some data structure, which makes the information of
the set elements operable by corresponding methods. Set
membership testing means checking and determining whether
an element with a given attribute value belongs to a given set
with a given set representation structure.

A naive set membership testing data structure is hash coding
[2]. In conventional hash coding, a hash area is organized into
an array of cells. An iterative pseudorandom computational
process h(·), also called a hash function, is used to generate
hash addresses of empty cells from the given set of elements
S = {x1, x2, . . . , xn

}. The raw data of the elements are then
stored into the empty cells. If we need to test whether or
not an item y is an element of S, we first obtain h(y), the
hash address of y, and then check y against the raw data

stored in the h(y)th cell. If matched, we determine that y
is an element of S. Otherwise, y does not belong to S. The
traditional hash coding scheme does not have false positives
due to the raw data matching. Such a scheme, however, is
costly in both space for storing the raw data and computation
for membership testing based on raw data matching.

It is not difficult to see that if we allow an error with a
low probability in set membership testing, it is not necessary
to store the complete raw data in the hash space. Instead,
Boolean labels or fingerprints of raw data can be utilized to
replace the raw data to save the space. The schemes may bring
false positives because different items may happen to collide
in the same hash addresses or have the same fingerprints.
Such an approximate set membership testing technique is used
in many real-world application systems, e.g. Web caches [9],
P2P applications [16], routers [17], and file backup systems
[10], etc. Approximate set representation structures have at-
tracted much attention in the research community. Most of
the existing work focuses on the tradeoff between cost and
error rate. Commonly, a smaller number of bits used by the
labels or fingerprints leads to a higher false positive rate. In
order to balance efficiency and accuracy, several hash coding
techniques have been introduced into set representation data
structures [3] [8].

A standard Bloom filter (SBF) [3] is the most popular
approximate set representation structure. An SBF is essentially
an array of m bits, initially all set to “0”. It maps every item
of the set S = {x1, x2, . . . , xn

} into the bit address space
[0,m� 1] using a number of k uniform and independent hash
functions h1(·), . . . , hk

(·). For each item x belonging to S,
the bits with the hash addresses h

i

(x) are all set to “1” for
1  i  k. When we decide whether the item y belongs
to S or not, we first compute h

i

(y) for 1  i  k. If all the
corresponding h

i

(y)th bits are “1”, y belongs to S with a high
probability; otherwise, y is definitely not a member of S. An
SBF do not support delete operation because multiple items
in S may share any of the hash addresses h

i

(x) (1 i  k).
Deleting an item x by flipping all the bits with hash addresses
h
i

(x) (1  i  k) from “1” to “0” may lead to the problem
of false negative.

In practice, real applications commonly involve a highly
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Fig. 1: Multiple address problem in DBF. (The number of
hash functions is set to seven. The number of CBFs varies
from one to 10. Each CBF has 40,960 bits and can hold 1024
items. Totally 10,240 items are inserted in the experiment.)

dynamic set with members joining and leaving dynamically
and with an unpredictable size of the set [19]. For example,
in popular stream applications [18], an unbounded sequence
of data tuples come with the data flow. This requires a set
representation data structure to have the ability to cope with
sets with a changing cardinality. For another example, in a
Web cache proxy [4], the cached set of Web pages is frequently
updated according to the cache replacement strategies. This re-
quires a set representation structure to support delete operation.
The above features of dynamic sets in real applications bring
more stringent requirements for approximate set representation
structures: 1) The capacities of structures should support flex-
ibly extending or reducing. 2) The structures should support
reliable delete operation, i.e., the deletion of any element of
the set will not affect the accuracy of the membership testing
of other elements in the set.

Counting Bloom filter (CBF) [9] replaces each bit of an SBF
with a counter of s bits to support item deletion. However, the
space cost of a CBF is s times larger than the SBF. Inserting
or deleting an item x corresponds to increasing or decreasing
the value of the h

i

(x)th counters by one for 1  i  k.
Fan et al [8] recently proposed the cuckoo filter (CF) design
to support the delete operation. In their design, each item x

i

monopolizes a fingerprint ⇠
xi to represent itself and stored

in the data structure. Deleting an item x
i

is performed by
removing the fingerprint of x

i

from the structure. The CF
can achieve a 1.5 ⇠ 2 times query throughput with the same
memory size compared to an SBF. However, the CF can not
support the representation of sets with elastic sizes. We will
review the CF design in more detail in Section II.B.

To cope with the issue of set extension, Guo et al. [11]
propose the dynamic Bloom filter (DBF). A DBF consists of
a linked list of s homogeneous CBFs. Whenever the current
DBF structure is full, it extends the capacity by appending
a new building block of CBF. Inserting an element x is
performed by increasing the h

i

(x)th counter by one for
1  i  k in the current active CBF (which is not full) at
the end of the link. Querying an item y needs to probe every
CBF until one is found with all the h

i

(y)th bits (1  i  k)
being nonzero digits.

The DBF does not support reliable deletion [11]. This is
because the DBF is not able to distinguish which CBF stores
the bit information of the item x when the h

i

(x)th (1  i  k)
counters are found nonzero in multiple CBFs. Such multiple
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Fig. 2: Cuckoo hash table and cuckoo filter

address is a common case when the number of CBFs increases
in the DBF. Thus, the DBF gives up the delete operation due to
the multiple address problem [11], leaving the redundant bits
information remained in the DBF. This will result in much
more serious false positives of the DBF. Figure 1 analyzes the
multiple address problem of the DBF in greater detail using
experiments. The result in Fig.1(a) shows that the increment
of the number of items inserted in the DBF leads to the growth
of multiple address rate (the probability of the occurrence of
multiple address when deleting). The growth of the multiple
address rate deteriorates the false positives of the DBF (Fig.
1(b)). Therefore, the DBF does not support reliable delete
operation for dynamic sets.

In this work, we propose the dynamic cuckoo filter (DCF),
which successfully meets both of the two requirements for
approximate dynamic set representation and membership test-
ing for large-scale data collections. First, the DCF utilizes
a monopolistic fingerprint for representing an item and thus
enables reliable delete operation. Second, the DCF exploits
a novel extendable and compressible structure to make the
data structure space efficient for a dynamic set. We conduct
comprehensive experiments using real world dataset as well
as implement a prototype file backup system to evaluate the
performance of our DCF design. The results show that the
proposed DCF reduces the required memory space of the
DBF by 75% as well as improve the speeds of inserting and
membership testing by 50% and 80%, respectively. The imple-
mentation of the prototype system demonstrates the superiority
of our DCF design in applying to data deduplication in file
backup systems.

The rest of this paper is organized as follows. Section
II introduces the background and the related work. Section
III presents the DCF design and its operations. Section IV
analyzes the false positive rate and examine how the delete
operation affects the false positive rate of a DCF. Section
V discusses the optimization of the configuration of this
design. Section VI evaluates the performance of the DCF using
experiment and prototype system implementation. Section VII
concludes this work.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the background and the
related work of this research. We mainly introduce the recently
proposed CF and the DBF design which are the most similar
work most related to our design.
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A. Cuckoo Hash Table
A cuckoo hash table [14] [15] consists of an array of l

buckets. Each bucket is a basic storage unit for storing an
item. Each item has two candidate buckets whose addresses
are computed by two independent hash functions h1(·) and
h2(·). Inserting an item x is performed following the steps
as below: 1) The cuckoo hash table computes the candidate
buckets addresses h1(x) and h2(x); 2) If either the h1(x)th

or the h2(x)th bucket is empty, store x into any of the empty
buckets. 3) If both the buckets are occupied, the cuckoo hash
table randomly selects an occupied bucket and kicks out the
item stored in the selected bucket. The item that is kicked out,
also called the victim, relocates itself to its alternative bucket;
4) If the alternative bucket is empty, then store x in the empty
alternative bucket and the insert process terminates. Otherwise,
repeat step 3 until all the items find their own placements or
the number of relocations reaches a specified upper bound.

Figure 2(a) illustrates an example of inserting an item x into
a cuckoo hash table with eight buckets. After hashing mapping,
x can be placed in the 2nd or the 6th bucket and neither of the
two buckets is empty. Therefore the algorithm randomly picks
a bucket, e.g., the 6th bucket, kicks out the existing item q
and inserts x into the 6th bucket. The victim item q relocates
itself to the alternative 4th bucket by kicking out the existing
item g. After the item g is inserted into the empty alternative
1st bucket, all the items find their own buckets and the insert
operation terminates. To control the cost of relocations, the
cuckoo hash table specifies an upper bound of the number
of relocations, denoted as MNK. When reaching the upper
bound, the cuckoo hash table is regarded as a full cuckoo
hash table. To reduce the cost for possible frequent relocations,
Dietzfelbinger et al. [5] extended the cuckoo hash table by
allowing multiple items stored in a single bucket.

B. Cuckoo Filter
By replacing the original element x with a fingerprint of

the element (denoted as ⇠
x

) in the cuckoo hash table, Fan
et al. recently proposed a new approximate set membership
testing data structure, called cuckoo filter (CF) [8]. Because
the fingerprint ⇠

x

takes a much smaller number of bits than
x itself, a CF is much more space efficient than a traditional
cuckoo hash table. Formally, a CF consists of a bucket array
with the length of l. Each bucket has a number of b storage
units, called entries. Each entry has a fixed size of f bits, which
is in agreement with the size of the fingerprints generated by
the hash functions. Thus the fingerprint information of an item
can be stored in a single entry.

Furthermore, storing fingerprints instead of raw data raises
challenge during relocation. Without the raw data information
of an element stored in a CF, it is difficult for a victim element
to find the hashing address of the alternative hosting bucket
for relocation. To address the problem, the CF leverages a
novel hash method called partial-key cuckoo hashing, which
computes the address of the alternative bucket by performing
an XOR operation based on the address of the current bucket
and the fingerprint to be kicked out. Specifically, the addresses

of the two candidate buckets to store the fingerprint of x are
computed by Eq. (1).

h1(x) = hash(x),

h2(x) = h1(x)� hash(⇠
x

).
(1)

where ⇠
x

is the fingerprint of x.
Based on such a design, the insert operation of a CF differs

from that of the cuckoo hash table in the calculation of the
hashing address of the alternative buckets for possible victim
elements. Querying an item y in set S, first needs to compute
the fingerprint of y, denoted as ⇠

y

, and the addresses of the
candidate buckets for hosting ⇠

y

, denoted as h1(y) and h2(y).
The CF then checks ⇠

y

against the fingerprints stored in the
h1(y)th and h2(y)th buckets. If matched, y is regarded a
member of S; otherwise, y does not belong to S. The delete
operation simply removes the matched fingerprint.

Figure 2(b) shows an example of a CF with eight buckets
(l = 8), each with four entries (b = 4). When inserting an item
x, the CF first calculates the addresses of the candidate buckets
and tries to find a spare entry. At the obtained addresses, if
there is a bucket with a spare entry, the fingerprint ⇠

x

of the
item x will be stored in the entry. If both of the buckets are
full (e.g., the 2nd and the 6th buckets), the CF randomly kicks
out a fingerprint in a randomly chosen bucket (e.g., fingerprint
⇠
q

in the 6th bucket). Then the victim ⇠
q

continues to relocate
itself to the alternative 4th bucket by kicking out the fingerprint
⇠
g

. After the victim ⇠
g

successfully relocates itself to the 1st

bucket, all the fingerprints find their own places and the insert
operation terminates.

The upper bound of false positive rate can be computed by
the equation [8],

fpCF = 1� (1� 1

2f
)2b ⇡ 2b

2f
. (2)

Compared with an SBF, the greatest advantage of a CF
is the support of delete operation. A CF achieves deletion
by removing the monopolistic fingerprint for an item x

i

. It
is clear that removing the fingerprint of an item x

i

will not
influence the membership testing of any other elements x

j

(j 6=
i) in the CF. Although a CF, in some degree, satisfies the
deletion requirement of the representing dynamic sets, it lacks
the ability to flexibly extend its capacity on demand.

C. Dynamic Bloom Filter
The most similar work with our design is the dynamic

Bloom filter [11]. A DBF consists of a linked list of s
homogeneous CBFs and extends its capacity by appending
new building blocks of CBFs. The capacity of a CBF c denotes
the number of inserted items when the false positive rate of the
CBF reaches the limit of the allowed false positive rate ✏CBF.
Formally, given the number of inserted items n

r

, the CBF is
called an active CBF when n

r

< c. When there are no active
CBFs in the current DBF, the DBF creates a new CBF and
appends the new one to the linked list. Inserting a new item x
into a DBF first needs to find an active CBF, and then inserts
x into the active CBF by increasing all the h

i

(x)th counters
of the CBF by one for 1  i  k. Checking an item y needs

3



TABLE I: Notations in DCF

Notations Description

CF
k

the kth CF in DCF
S a set of items to be represented
x
i

the ith item in set S
⇠
xi the fingerprint of the item x

i

s the number of CFs in DCF
l the number of buckets in each CF
b the number of entries in each bucket

µ
xi , ⌫xi two bucket addresses of the item x

i

B
k

(µ
xi), Bk

(⌫
xi) two candidate buckets of x

i

in CF
k

✏CF false positive rate of each CF
✏DCF false positive rate of DCF
c the capacity of each CF

to probe every CBFs until finding a CBF with all the h
i

(y)th

bits (1  i  k) are nonzero digits.

When deleting an item x, the DBF first needs to determine
whether or not the item x exists in the DBF. If only one CBF
is found matched, the delete operation will be performed by
decreasing all the h

i

(x)th counters by one for 1  i  k
in the matched CBF. If more than one CBFs are found with
matched result, the DBF is not able to decide which CBF
contains the item x. The problem is called multiple address
[11]. In the presence of the multiple address, the DBF gives
up the delete operation to avoid possible false deletion of an
item. However, this keeps the redundant information remained
in the DBF and leads to the rising of false positive rate. Such a
problem becomes even acute when the set cardinality changes
frequently and makes the DBF not available for large-scale
real world applications.

It is clear that existing work cannot satisfy both the two
requirements for dynamic set. In this work, we propose a
novel dynamic cuckoo filter design which supports an elastic
capacity as well as a reliable delete operation.

Algorithm 1 Insert (x)

1: ⇠

x

= fingerprint(x);
2: i1 = hash(x);
3: i2 = i1

L
hash(⇠

x

);
4: if curCF is full then

5: curCF  allocate new building block;
6: i = randomly pick i1 or i2;
7: for n = 0; n < MNK; n++ do

8: randomly pick an entry e from bucket curCF.B(i);
9: swap ⇠

x

and fingerprint in e;
10: i = i

L
hash(⇠

x

);
11: if curCF.B(i) has an empty entry then

12: insert ⇠
x

into curCF.B(i);
13: return true;
14: victim the last item kicked out;
15: nextCF  curCF ; //Initialized as current CF
16: for victim exists do

17: nextCF  the next building block of nextCF ;
18: insert victim into nextCF ;
19: return true.
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Fig. 3: An example of DCF

III. DYNAMIC CUCKOO FILTER

A. Overview
A DCF leverages CF as building block and consists of

a number of s linked homogeneous CFs {CF1, . . . , CF
s

}.
Initially, a DCF consists of a single CF, CF1, and extends
its capacity by appending new CFs. Each CF

k

is an array
of l buckets {B

k

(0), . . . , B
k

(l � 1)} and each bucket B
k

(µ)
has a number of b entries. The DCF leverages fingerprints
to represent items. A fingerprint ⇠

xi (1  i  n) is a hash
code with a fixed size of f bits generated from the item
x
i

. The fingerprint ⇠
xi is stored in one of the entries in

the candidate bucket for x
i

. Each item x
i

has two candidate
bucket addresses, µ

xi and ⌫
xi , generated according to Eq.

(1) (i.e., µ
xi = h1(xi

); ⌫
xi = µ

xi � h1(⇠xi)). Each CF
k

is
associated with a counter to record the number of items stored
inside. A CF is called active when the value of its counter is
under a predefined capacity. Table 1 summarizes the notations
for the definition of a DCF.

B. Operations of DCF
Insert. Initially, a DCF consists of a single cuckoo filter,

and the insert operation has no difference from that of a CF.
We design two extension strategies with the consideration of
different application efficiency requirements of space and time,
i.e., active extension and passive extension.

For applications preferring fast insert speed, the DCF
provides the active extension strategy. In active extension,
the DCF appends new empty CF aggressively whenever an
insert failure occurs. An original CF is considered full when
the insert failure occurs, i.e., the number of relocations for
inserting an item reaches a specified maximum value, denoted
as MNK. The last kicked out victim will be evicted and stored
in the newly appended CF. It is clear that such an active
extension strategy provides lower inserting delay at the cost
of more space. The parameter MNK has a great influence on
the tradeoff between the space utilization and the insert time.
We will analyze the influence of the parameter in Section V.

A passive extension strategy is provided for applications
with stricter requirement of space efficiency. Specifically, the
passive extension strategy assigns each CF a uniform capacity
c which guarantees an acceptable memory efficiency. This
strategy allows the DCF to keep inserting items into the CF
until its counter reaches the capacity c (the number relocations
is allowed to exceed the value of MNK). Thus a failure handle
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algorithm is essential in the passive extension to handle the
kicked out victim when the insert failure occurs.

Algorithm 1 specifies the insert operation in detail. The
algorithm keeps two pointers, curCF and nextCF . The
curCF points to the current CF and if the curCF is full,
then new CF building block will be allocated and assigned
to curCF . The fingerprint will be inserted into curCF first,
it is the same as the insert operation of CF. If the number
of relocation reaches the specified maximum value, denote
as MNK (MNK = 1 corresponds to active extension), the
algorithm will record the last fingerprint kicked out, denote
as victim. In order to avoid insert failure, the victim will be
keep inserted into the nextCF iteratively.

Figure 3 shows an example of inserting element x into
a DCF that currently has three building blocks. In the ex-
ample, the first building block is already full. The pointer
curCF points to the second building block, where the next
insert operation will be performed. The fingerprint ⇠

x

is first
generated by hash function and the two candidate buckets
(the 2nd bucket and the 6th bucket) are computed using Eq
(1). Assuming we leverage the passive extension here. The
fingerprint will be inserted into the building block pointed by
curCF, i.e., the second building block. The insert process is the
same with CF: after finding that the two candidate buckets are
full, the fingerprint ⇠

q

in the 6th bucket is randomly chosen.
The fingerprint ⇠

q

relocates itself and takes up the entry of
⇠
g

. After ⇠
g

relocates itself into the empty entry in the 1st

bucket, the insert process ends. If insert failure occurs (i.e., the
number of relocations in the second building block reaches the
predefined upper bound MNK), the fingerprint kicked out will
be inserted into the following building blocks (the 3rd bucket
in Fig. 3) one by one until fingerprint is successfully inserted.
New building blocks will be generated and appended to DCF
if there are no following building blocks.

Membership Query. Membership testing with a DCF needs
to probe every CF in the DCF, i.e., 2bs entries, in the worst
case. Algorithm 2 presents the operation of the membership
query in detail. The algorithm looks through all the s CFs and
performs query evaluation in every CF. If a matched fingerprint
is identified, the algorithm returns the positive result. If none
of the CFs have a matched fingerprint, the DCF determines
that the item x is not a member of the set. The time complexity
of the membership query operation of a DCF and a CF are
O(bs) and O(b), respectively.

Delete. The deletion of an item x needs to first perform
a membership query operation. If a corresponding fingerprint
⇠
x

is found, then the matched fingerprints will be removed

Algorithm 2 Membership Query (x)

1: ⇠

x

= fingerprint(x);
2: i1 = hash(x);
3: i2 = i1

L
hash(⇠

x

);
4: for k = 1 to s do

5: if CF

k

.B(i1) or CF

k

.B(i2) has ⇠

x

then

6: return true;
7: return false.

Algorithm 3 Delete (x)

1: ⇠

x

= fingerprint(x);
2: i1 = hash(x);
3: i2 = i1

L
hash(⇠

x

);
4: for k = 1 to s do

5: if CF

k

.MembershipQuery(x) success then

6: remove a copy of ⇠
x

;
7: return true;
8: return false.

Algorithm 4 Compact ( )

1: for k = 1 to s do

2: if CF

k

is not full then

3: add CF

k

to CFQ;
4: sort CFQ by ascending order;
5: for i = 2 to m do // m is the number of CF s in CFQ

6: curCF  CFQ.element[i� 1];
7: for j = 1 to l do

8: if bucket curCF.B(j) is not empty then

9: for k = m to i do

10: CFQ.element[k].B(j) fingerprints of
curCF.B(j);

11: if curCF is empty then

12: remove curCF from DCF ;
13: break;
14: return true.

from the DCF. Algorithm 3 shows the details of the delete
operation. The time complexity of the delete operation is the
same as those of the membership query operation, i.e., O(bs)
for a DCF and O(b) for a CF.

Compact. DCF provides a compact operation to release the
vacant space and achieve better space efficiency when the size
of the dynamic set decreases. With items of a dynamic set been
deleted, the space utilization of a DCF may decrease with time.
To achieve better space efficiency, the compact operation of
the DCF iteratively moves the fingerprints from sparse CFs
to their counterpart buckets in other denser CFs. In order to
release a CF with the least fingerprint movements, we leverage
a greedy strategy, which moves the items out of the currently
sparsest CF. Figure 3 illustrates an example where CF1 is a
full building block while CF2 is the sparest one. By moving ⇠

t

and ⇠
n

in CF3 to the corresponding bucket addresses, 3rd and
5th bucket, in CF2, the sparsest building block CF3 becomes
empty and then can be released. Algorithm 4 presents the
compact operation in detail. The DCF maintains a CF queue
called CFQ to store the CFs whose counters are less than the
capacity c. The CFs in the queue is sorted in an ascending
order of the number of items stored. Each time, the sparsest
CF at the head of the queue is picked out and the fingerprints
inside it are moved to the CF at the tail of the queue. If the
CF at the tail of the queue cannot host all the fingerprints
moved from another CF, those fingerprints will continually be
moved to the second last CF in the queue by such analogy
until the first CF becomes empty or all the CFs in the queue
are traversed.

5
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IV. ANALYSIS OF DCF
A. False Positive Rate

According to the membership query operation of a DCF,
the membership testing of an item x that does not belong to
S, needs to check a number of s CFs. The false positive rate
is defined as the probability that at least one CF among all the
CFs reports a false positive for x. Assuming the false positive
rate of each CF is ✏CF, the probability that no false positives
happen in all the s CFs is (1 � ✏CF)s. Therefore, the upper
bound of a DCF’s false positive rate can be quantified by,

✏DCF = 1� (1� ✏CF)
s. (3)

By replacing ✏CF with Eq. (2) and further leveraging the
Taylor formula, we can obtain the following approximation,

✏DCF = 1� (1� ✏CF)
s = 1� (1� 1

2f
)2bs ⇡ 2bs

2f
. (4)

We plot Fig. 4 according to Eq. (4), it shows that the false
positive rate of the DCF is correlated with both the number of
CFs in DCF and the fingerprint size. Specifically, increasing
the value of f will greatly reduce the false positive rate ✏DCF.
At the same time, given the bucket size b and the fingerprint
size f , the growth of the parameter s leads to the increase of
the false positive rate ✏DCF.

B. Reliable Deletion
In the following, we discuss the reliability of the delete

operation of the DCF design. Obviously, in order to guarantee
a safe deletion, only previously inserted items can be removed.
Thus, we only consider the delete operation with two abnormal
but inevitable situations in practice, including multiple value
and duplicates.

Multiple Value: Different from the multiple address problem
of the DBF, diverse items have very low probability to be
inserted with the same fingerprint in the same bucket address
in the DCF design. To differentiate, we call this multiple
value. Considering the case that the items x and y share
the same bucket address and happen to collide in the same
fingerprint (⇠

x

= ⇠
y

). According to Eq. (1), the addresses of
the alternative buckets of items x and y are the same as well.
If deleting x removes one copy of the fingerprint, the item y
can still be found. In this case, it seems that the false positive
rate increases since querying x still succeed. However, we

should notice that determining the existence of item x after
the deletion of x is essentially equivalent to a false positive,
whose probability is computed by Eq. (4). Even if the DCF
encounters multiple value, removing one matched fingerprints
does not lead to redundant information left thanks to the
monopolistic fingerprint. This guarantees that no false negative
is introduced. Therefore we can conclude that compared with
the DBF, our DCF design supports reliable delete operation.

Duplicates: Duplicated items commonly occur in real world
systems. Assuming the item x has been inserted twice, there
must be two copies of the fingerprint ⇠

x

inserted in the
DCF. Obviously, deleting item x thoroughly requires removing
fingerprint ⇠

x

twice. If inserting duplicated items is not al-
lowed, the DCF can filter the duplicate by performing a query
operation before insertion. This guarantees that items can be
removed thoroughly by removing fingerprint once. At the same
time, it might introduce slight false negatives. Considering
the case that we mentioned in multiple value, items x and
y share the same bucket address and happen to collide in
the same fingerprint (⇠

x

= ⇠
y

). When x and y both need
to be inserted into the DCF, only one copy of the fingerprint
is inserted to avoid duplicates. After inserting a single copy, a
possible false negative may occur. For example, item y will no
longer be found if we delete item x. We examine the ratio of
items missed during insert operation (the fraction of items that
should be inserted but filtered as duplicates by mistake) under
different false positive rates. Figure 5 shows the ratio changes
slowly when the false positive rate varies. Considering storing
enormous duplicates will result in the decreasing of the space
efficiency due to the nonuniform distribution of fingerprints,
to trade off extremely slight false negative for a higher space
efficiency is preferable for certain applications. According to
the above analysis, we recommend not to filter the fingerprints
when handling data sets without rare duplicates while filtering
duplicates is considerable for data sets with large fraction of
duplicates to achieve better space efficiency.

V. OPTIMIZATION OF DCF

In this section, we discuss the optimization of the DCF. We
mainly analyze two important aspects, including the setting of
MNK (i.e., the maximum number of relocations) and how to
optimize the space cost.
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A. Maximum Number of Relocations
Here we theoretically analyze the influence of the settings

of the parameter MNK on the DCF in detail. Given a CF
with l buckets each with b entries, the utilization of the CF
is proportional to the number of inserted items while the
average insert time has positive correlation to the total number
of relocations of all the inserted items. Therefore, we turn
to analyzing the influence of MNK on the expected number
of inserted items as well as the expected total number of
relocations during the insert operation.

The expected number of inserted items. When the number
of inserted items is n, the probability that a certain bucket is
full can be computed by,

⇢(n) =
P

n

b

⇥ P

(l�1)b
n�b

P

lb

n

, n 2 [0, lb]. (5)

where Pn

b

denotes b-permutations of n.
By leveraging Eq. (5), the probability that a number of ⌧

relocations happen when successfully inserting the nth item
can be computed by,
P (T = ⌧ |N = n) = ⇢

⌧ (n� 1)[1� ⇢(n� 1)], ⌧ 2 [0,+1). (6)

Accordingly, the probability that less than MNK relocations
happen when successfully inserting the nth item can be
computed by Eq. (7),

P (T < MNK|N = n) =
MNK�1X

⌧=0

P (T = ⌧ |N = n)

= 1� ⇢

MNK(n� 1).

(7)

The probability of successfully inserting the nth item with a
failure of inserting the (n+1)th item is quantified by Eq. (8),
which quantifies the probability that the DCF only successfully
inserts n items.

⇥(N = n) = {
nY

j=1

P (T < MNK|N = j)}

⇥ P (T > MNK|N = n+ 1)

= {
nY

j=1

[1� ⇢

MNK(j � 1)]}⇥ ⇢

MNK(n).

(8)

Thus, the expected number of inserted items in a CF is as
bellow,

E[N ] =
lbX

i=0

i⇥⇥(N = i)

=
lbX

i=0

{i⇥
iY

j=1

[1� ⇢

MNK(j � 1)]⇥ ⇢

MNK(i)}.
(9)

According to Eq. (9), the expected number of items which
could be stored in a CF is related to the variable MNK, i.e.,
the maximum number of relocations. By setting the number
of bucket l to eight and the number of entries b to four, we
plot the ratio of space wasted in Fig. 6. Figure 6 shows that
a fraction of 95% of the entries can be filled with fingerprints
when the value of MNK is set to five. The utilization changes
slowly when MNK reaches three. It also shows that the space
efficiency increases with the growth of MNK. If we pay more
attention to the space utilization of a CF, we can set MNK
relatively large in practice.

The expected total number of relocations. According to
Eq. (6), the expected number of relocations of inserting the
nth item is computed by,

E[R](⌧, c) =
MNK�1X

⌧=0

⌧ ⇥ P (T = ⌧ |N = n)

=
MNK�1X

⌧=0

⌧ ⇥ ⇢⌧ (n� 1)[1� ⇢(n� 1)].

(10)

By leveraging the number of inserted items E[N ] obtained
from Eq. (9), the total number of expected relocations of
inserting a number of n items can be derived from Eq. (11),

SUM
E

=

E[N ]X

c=1

E[R] =

E[N ]X

c=1

MNK�1X

⌧=0

⌧ ⇥ ⇢

⌧ (c� 1)[1� ⇢(c� 1)]. (11)

By setting the number of bucket l to eight and the number of
entries b to four, we plot the line of the number of relocations
in Fig. 6. Figure 6 shows that the expected total number of
relocations increases with the growth of the value of MNK.

In this subsection, we reveal the influence of the parameter
MNK through theoretical analysis and provide a general
reference for practical implementation. In the example shown
in Fig. 6, we can achieve a balanced setting of MNK. There
exists a knee point in the ratio of the space wasted curve, i.e.,
when MNK is around three in the example in Fig. 6. After
reaching the knee point, the ratio of wasted space deceases
slowly while the growth of the number of relocations still
increases normally. Therefore, we suggest the setting of MNK
equal to the knee point to achieve a tradeoff between space
and time costs during the construction of the DCF.

B. Space Optimization
We analyze the space cost of the DCF by adjusting the

table length and the number of building blocks. In real
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application systems, the largest size of set N can be several
orders of magnitude larger than the average cardinality [7].
Therefore, it is important for the DCF to optimize the space
efficiency according to the history records. In real systems,
the attributes, such as the maximum number of items N that
can be processed and the distribution of the size of a dynamic
data set can be easily obtained through historical system logs.

Assuming the DCF has s building block CFs. According to
Eq. (3), given the false positive rate of DCF ✏DCF, the false
positive rate for each CF is computed by ✏CF = 1 � (1 �
✏DCF)

1
s . Assuming a DCF can accommodate at most N items,

the capacity of each CF can be calculated by c = dN

s

e. With a
given distribution of the size of the dynamic set, e.g. uniform,
normal, or Zipf distribution, let p

j

represent the probability
that the set S has a number of j items (1  j  N andP

N

j=1 pj = 1). In order to compute the expected number of
bits used, we need to know the probability of a number of
i CFs are used (1  i  s). We simply use the notation r

i

to represent the probability that a number of i (1  i  s)
CFs are used. It is clear that r

i

can be computed by r
i

=P
c⇥i

j=c⇥(i�1)+1 pj . Assuming each CF uses a number of m
bits, the expected number of bits used by the DCF can be
computed by

P
s

i=1 i⇥m⇥ r
i

. According to the structure of
the CF, the total number of bits used is m = dN

s

e ⇥ f

↵

where
f represents the size of a fingerprint and ↵ represents the load
factor (or utilization) of the CF. Thus, the expected number of
bits used is

P
s

i=1(ri⇥ i⇥(N
s

)⇥ f

↵

). After substituting f with
f = log2(

2b
✏CF

), which is derived from Eq. (2). The optimization
problem can be modeled as a linear programming problem,

MIN
s

sX

i=1

r

i

⇥ i⇥ (
N

s

)⇥
log2( 2b

✏CF
)

↵

s.t. ✏CF = 1� (1� ✏DCF)
1
s
, s > 0.

(12)

With the above linear programming, we aim at obtaining
a certain value of s to achieve the minimal expected number
of bits used by the DCF. Once the value of s is determined,
the capacity c, false positive rate ✏CF and the fingerprint size
f can also be obtained from the equation. Therefore, we can
obtain all the parameters required from the linear programming
equation to build a space optimized DCF. We can solve the
linear programming problem using the simplex method [6].

Figure 7 shows the expected memory size of the DCF under
five distributions of the dynamic set cardinalities where the
false positive rate ✏DCF is set to 9.8 ⇥ 10�3 while the upper
bound of the set cardinality N is 1,330. The result shows how

the expected memory size changes with the number of CFs (s
varying from one to 64).

The baseline implies the space allocated by the CF. It re-
mains unchanged because the space of the CF is pre-allocated
for all possible items. With current parameters, the optimal
memory size is achieved when s if equal to an inflection
point under all the five distributions. We set the value of s
to the inflection point under different distributions and plot
the ratio of the optimized memory sizes of the DCF to those
of the CF in Fig. 8. We can see from the figure that the
DCF reduces the optimal expected memory size of the CF
by 25% under uniform, normal and random Zipf distributions.
The DCF reduces optimal expected memory size of the CF
by 15% and 40% under maximum Zipf and minimum Zipf
distributions, respectively. Figure 9 shows how the ratio of
the DCF’s optimal expected memory size changes with the
DBF’s optimal expected memory size. The DCF reduces the
memory size of the DBF by 75%.

VI. PERFORMANCE

In this section, we evaluate the performance of our DCF
design. We have implemented the DCF toolkit and compare
the performance of the DCF with that of the previous DBF de-
sign. We further implement a prototype file backup system and
examine the performance of the DCF for data deduplication
using large-scale real world datasets.

A. Experiment Setup
We choose SHA1 to generate hash values. In the DCF

implementation, we use the highest 32 bits and the lowest
32 bits to represent the fingerprint and one of the bucket
address, respectively. In the DBF, the corresponding two parts
of the hash value represent the value of h1(x) and h2(x),
respectively. The DBF further computes the other k � 2 hash
values by Eq. (13) [12]. Thus the implementations of the DCF
and the DBF consume nearly the same computation cost in
hashing.

h

i+2(x) = h

i

(x) + ih

i+1(x) + i

2
.

(13)

In the experiment, we set the false positive rates of both
the DCF and the DBF to a fixed value of 1.17 ⇥ 10�2. We
conduct two experiments. The first experiment compares the
performance of the operations for the DCF and the DBF. We
examine item insert, membership query and the reliability of
element delete. In the experiment, we configure both the DCF
and the DBF with the space optimized parameter settings when
varying the size of a dynamic set from zero to 64,512. We
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observe that the optimal space cost for the DCF and the DBF
is obtained when the value of s is around six. Therefore, in
the first experiment we fix the parameter s at six for both the
DCF and the DBF. The table length of each building block(CF)
varies from 0 to 212 and is calculated automatically by DCF.
The second experiment evaluate the influence of the parameter
s. We fix the set cardinality at 46,080 and vary the value of s
to examine how it affects the operation performance of item
insert, membership query and the reliability of item delete of
both the DCF and the DBF. The table length of each building
block varies from 211 to 27 accordingly.

B. Experiment Results
Figure 10 shows that the DCF reduces the item insert time

of the DBF by 35%, while improving the insert speed of the
DBF by 50%. Figure 11 shows that the time consumed for
item insert for both the DCF and the DBF changes slightly
with the increase of s because the insert operation in the DCF
and the DBF are operated in a certain CF or CBF. Figure 11
shows that the DCF nearly always outperforms the DBF by
50% in terms of insert speed.

Figure 12 shows that the DCF reduces the query time of the
DBF by 45%, while improving the query speed of the DBF by
80% in average. Figure 13 shows that the membership query
time of both the DCF and the DBF grow linearly with the
increase of s. The increase of the membership query time with
s is expected, since the membership query operation needs to
probe every CF until a matched result is found.

We still consider the unreliable deletion of DBF as a
baseline. Figure 14 shows that the DCF reduces the delete
time of the DBF by 20%, while improving the delete speed of
the DBF by 25% in average. Figure 15 compares the delete
time of the DCF and the DBF under different settings of s.
The result shows that a higher value of s results in a slower
delete speed.

In the experiments, we find that the compact algorithm is
highly sensitive to the number of deleted items. The algorithm
can achieve a compact rate extremely close to the theoretical
upper bound shown in Fig. 16. For example, in the experiment
we test 46,080 items in a DCF with s = 6. Theoretically,
when a fraction of 1/6 items have been deleted, the compact
algorithm can achieve an empty CF and release the space,
thus obtaining a compact rate of 1/6. In the experiment, we
set the fraction of deleted items to 0.1666, which is slightly
smaller than 1/6, and 0.1667, which is a little larger than 1/6.
We find that the achieved compact rate is zero in the former

setting, while it is 1/6 in the latter. We observe the same high
sensitivity when varying the fraction of deleted items and the
value of s.

Figure 17 shows that the compact time has no distinct
relation with the value of s while it yields a linear relation to
the empty rate. Moreover, the time consumed by the compact
operation is quite short compared to the query time. The
highest compact time takes only 1.12% of the membership
query time for 46,080 items with the same configuration.

From the above results, it is clear that the value of s plays
an important role in the computation and memory efficiency
of the DCF. A higher value of s leads to a higher compaction
rate with the lower speeds of membership query and element
delete. Considering both space and time costs, we suggest the
optimal value of s should be obtained by solving the linear
program presented by Eq. (12).

C. Implementation in File Backup System

We apply the DCF in the file backup system for data
deduplication [10]. The system eliminates duplicated data
chunks during file backup to save unnecessary storage space
and provide cost-effective Internet scale service. Previous
research shows that indexing chunks of the data requires a
large amount of space (e.g. indexing every 1PB data raises
8TB index size). It is clear that storing such a huge size of
index in DRAM is prohibitively costly. Moreover, eliminating
duplicated chucks by checking against the chuck index stored
in HDD suffers the disk I/O bottleneck [20]. Instead of relying
on the on-disk chuck index, our basic idea is to represent the
set of all the stored chucks using DCF and store the succinct
data structure in DRAM for chunk deduplication. When a new
version of a file is uploaded, the system checks against the
DCF to filter the unchanged chunks of the file. Therefore the

Chunk Sequence

SSD

Chunk
Physical
Storage

Chunk
Index

Version 2

Version 1

HDD

DRAM

Chunk Cache

Chunk Digest

Fig. 18: Prototype system of data deduplication
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system can avoid storing duplicated chunks and save a large
amount of backend storage and unnecessary disk I/O .

Figure 18 presents a typical architecture of the prototype
file backup system. In the system, a file uploaded by a user
is divided into chunks based on the content [13]. The system
computes a fingerprint for each chunk using a hash function.
The Chunk Digest, which resides in the DRAM, represents
the set of fingerprints for all the chunks stored in the back-
end physical storage system. By checking against the Chunk
Digest, the system can identify duplicated chunks without
accessing the Chunk Cache in SDD (the Chunk Cache caches
the recently frequently requested chunks) and the Chunk Index
in HDD. We deploy the prototype system on a machine
equipped with an octa-core 2.4GHz Xeon CPU, 32GB RAM
and 1TB HDD. In the experiment, we use the 100GB dataset
which includes 180 versions of the source codes of Linux
kernel [1]. We implement both our DCF and the previous DBF
designs to support the Chunk Digest in the system. We evaluate
the consumption of disk space by comparing our DCF design
with that with the DBF. We also evaluate the disk I/O of the
file backup system with and without our DCF design, which
is implemented as Chunk Digest.

In the experiment, we input the Linux source codes into the
file backup system from version 1 to version 180. During the
backup process, we conduct four times of eliminating outdated
backup chunks in version 20, 80, 100 and 170. We randomly
select 50% of the stored chunks in previous 20 versions as
outdated chunks. After eliminating outdated chunks, compact
operation will be activated to release the vacant space of DCF.

Figure 19 compares the memory consumption of the sys-
tems with our DCF design and the DBF. The result shows that
the system can save 75% memory space by using our DCF
design compared to the DBF scheme. The minor decrease in
version 20, 80, 100 and 170 shows that the compact operation
dynamically adjust the space according to the cardinality of
chunk data set.

Figure 20 compares the disk I/O for checking cache and
chunk index of the system with the DCF as Chunk Digest.
We use the disk I/O without Chunk Digest as baseline. The
result shows that by leveraging the DCF to support the Chunk
Digest in a file backup system, the disk I/O is greatly reduces
by 62.5%. The disk I/O becomes zero in version 20, 80, 100
and 170 is because the compaction after eliminating outdated
chunks does not involves disk I/O. Other fluctuations in Fig.
20 implies the version at that point has a significant update
compared with previous one.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose the DCF design for approximate
representation and membership testing for a dynamic set.
To the best of our knowledge, the DCF is the first data
structure to support both reliable element deletion and flexible
structure extending/reducing for approximate dynamic set rep-
resentation. We show that the DCF greatly reduces the space
cost of the existing schemes as well as provide the reliable
delete operation. Experiment results show that this DCF design
greatly outperforms the state-of-the-art designs. In the future,
we will focus on parallel processing implementation.
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