
Max Progressive Network Update 

Yang Chen and Jie Wu

Temple University, USA



SDN Network Update
• Network update

• Can adapt to frequent traffic changes for high network utilization. 
• Challenges

• Rule updates from the controller to the individual switches traverse an 
asynchronous network and may arrive out-of-order. 

• Objectives
• Optimality, consistency, and swiftness

• Basic update methods
• Ordering update protocols
• Two-phase update protocols

• In our paper
• We use switch buffer to assist the update in order to migrate flows consistently.



Motivation

• Consistency
• Loop-free
• Drop-free
• Congestion-free

A B

D C

f1 f2

f3

A B

D Cf1

f2

f3



A B

D C

f1 f2

f3

A B

D Cf1

f2

f3

A B

D C

f1 f2

f3
buffer

Switch	buffer	(for	swiftness)



Problem Formulation
• Problem

• Given the initial and final network states, we need to find a feasible solution to
consistently migrate flows.

(Finding the optimal update schedule is NP-hard with the constraint of link capacity.)1

• Objective
• Find the quickest update schedule with the help of switch buffer: balance between 

updating time and buffer size

• Definitions:
1. Dependency graph
2. In degree and out degree of a flow node
3. Necessary condition for deadlocks: cycles among flows and link resources

1: “Dynamic Scheduling of Network Updates”, SIGCOMM14



Max Progressive Updating Method (MAPUM) 

• If the dependency graph is a DAG, then there are no deadlocks; 
otherwise, limit flows to break all elementary cycles.

D. B. Johnson, “Finding all the elementary circuits of a directed graph,” SIAM 2006 Journal on Computing. 

A B

D C

f1 f2

f3

A B

D Cf1

f2

f3

Link’s capacity: 1; Flow demand: f1=0.7; f2 =0.8; f3=1 Dependency graph



buffer f1

3 elementary circuits

Release
buffer



Max Progressive Updating Method (MAPUM) 
• First use Dionysus (SIGCOMM14) to update flows until no

more flows can be migrated any more.
• Remove potential deadlocks through rate-limiting flows

𝑝riority =
𝑑𝑒𝑔𝑟𝑒𝑒(𝑜𝑢𝑡)
𝑑𝑒𝑔𝑟𝑒𝑒(𝑖𝑛)

∗ max 𝑑𝑒𝑙𝑎𝑦 𝑐𝑦𝑐𝑙𝑒;

(EMAPUM: 𝑝riority = <=>?==(@AB)
<=>?==(CD)

∗ max𝑑𝑒𝑙𝑎𝑦 𝑐𝑦𝑐𝑙𝑒; ∗ 𝑏)

• Select the highest priority flows to be buffered until all
elementary cycles are resolved. (b is flow demand.)

• Release the buffer and migrate the buffered flows to the final
states.

Deadlocks in the dependency graph
(shown as three colored cycles)



Evaluation
• We compare our MAPUM and EMAPUM with three schemes

1. RS (random selection); 
2. DELS (delay-consideration); 
3. DEGS (degree-consideration). 

• Measurement (assume one hop takes one time step)
1. Updating time: from the first migration until all flows are migrated
2. Buffer size: ∑ 𝑡G ∗ 𝑏GG∈I
(F: buffered flow set; 𝑡G : time of f to be buffered; 𝑏G : bandwidth of f)
3. The number of rate-limiting flows



Evaluation Results

5000 5500 6000 6500 7000 7500 8000
The number of flows

0

500

1000

1500

2000

2500

3000

U
pd

at
in

g 
tim

e

MAPUM
DELS
DEGS
RS
EMAPUM

5000 5500 6000 6500 7000 7500 8000
The number of flows

0

200

400

600

800

1000

Bu
ffe

r s
iz

e

MAPUM
DELS
DEGS
RS
EMAPUM

60 65 70 75 80 85 90
Percentage of used link capacity(%)

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Th
e 

ra
tio

 o
f r

at
e-

lim
iti

ng
 fl

ow
s(

%
) MAPUM

DELS
DEGS
RS
EMAPUM

• Compared with RS, MAPUM and EMAPUM can reduce the updating time by 41% and 53%, respectively.

• In terms of buffer size usage, MAPUM and EMAPUM save over 37% and 42% buffer compared to RS.

• For ratio between rate-limiting and total flows, MAPUM and EMPUM are only 72% and 67% compared to RS.




