Max Progressive Network Update

Yang Chen and Jie Wu

Temple University, USA

SDN Network Update

Network update

• Can adapt to frequent traffic changes for high network utilization.

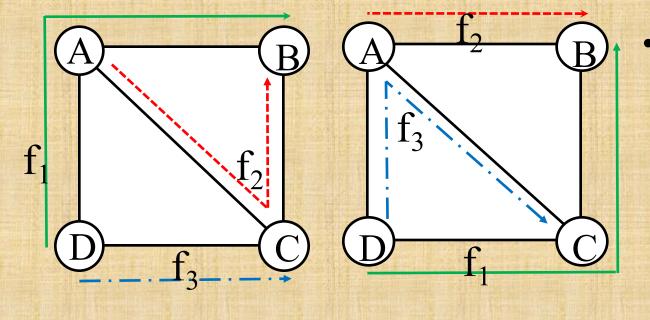
Challenges

• Rule updates from the controller to the individual switches traverse an asynchronous network and may arrive out-of-order.

• Objectives

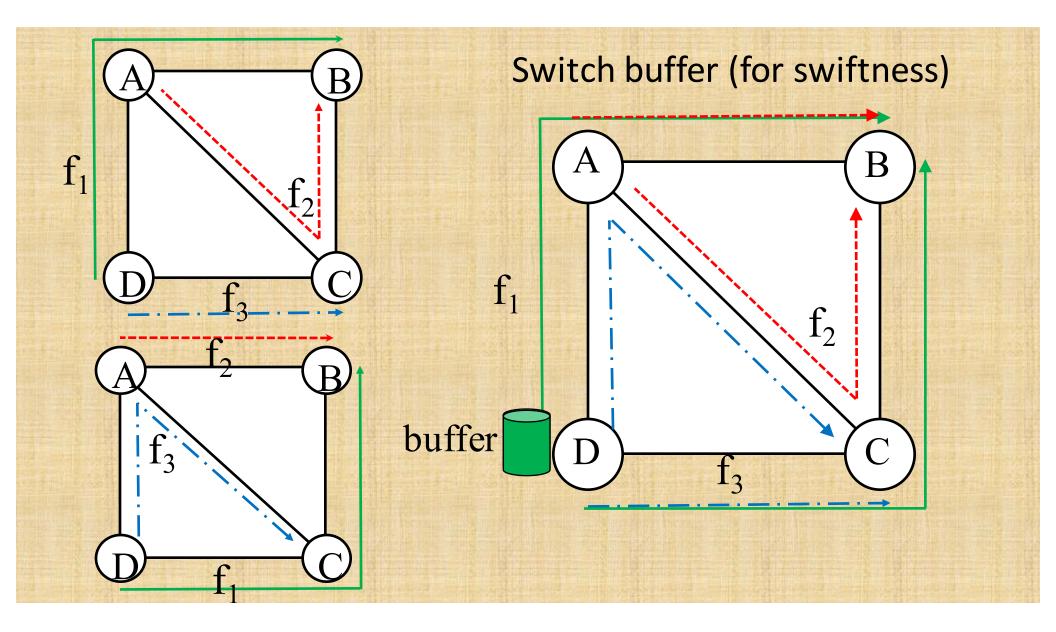
- Optimality, consistency, and swiftness
- Basic update methods
 - Ordering update protocols
 - Two-phase update protocols
- In our paper
 - We use switch buffer to assist the update in order to migrate flows consistently.

Motivation



Consistency

- Loop-free
- Drop-free
- Congestion-free



Problem Formulation

• Problem

• Given the initial and final network states, we need to find a feasible solution to consistently migrate flows.

(Finding the optimal update schedule is NP-hard with the constraint of link capacity.)¹

• Objective

• Find the quickest update schedule with the help of switch buffer: balance between updating time and buffer size

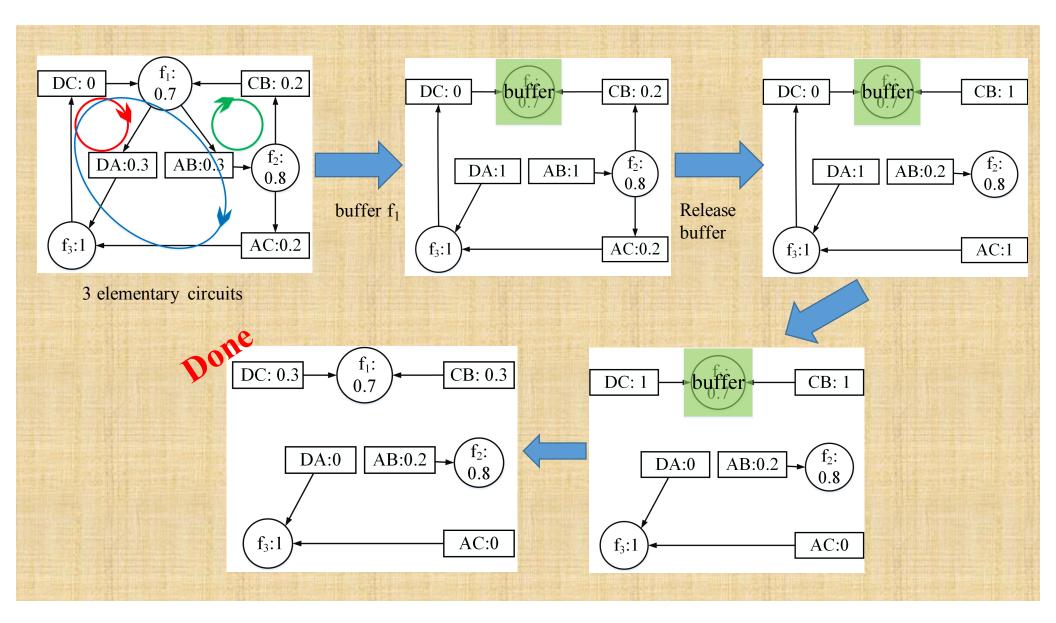
• Definitions:

- 1. Dependency graph
- 2. In degree and out degree of a flow node
- 3. Necessary condition for deadlocks: cycles among flows and link resources

¹: "Dynamic Scheduling of Network Updates", SIGCOMM14

Max Progressive Updating Method (MAPUM) $f_1 \xrightarrow{f_2}_{f_3} \xrightarrow{f_2}_{f_3} \xrightarrow{f_2}_{f_3} \xrightarrow{f_2}_{f_1} \xrightarrow{f_2}_{f_3} \xrightarrow{f_2}_{f_3} \xrightarrow{f_2}_{f_3} \xrightarrow{f_2}_{f_3} \xrightarrow{f_2}_{f_3} \xrightarrow{f_2}_{f_3} \xrightarrow{f_3}_{f_2} \xrightarrow{f_3}_{f_3} \xrightarrow{f_3}_{f_$

- If the dependency graph is a DAG, then there are no deadlocks; otherwise, limit flows to break all elementary cycles.
 - D. B. Johnson, "Finding all the elementary circuits of a directed graph," SIAM 2006 Journal on Computing.



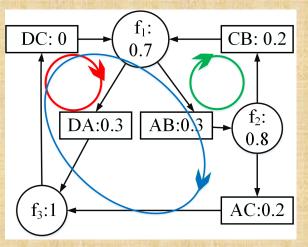
Max Progressive Updating Method (MAPUM)

- First use Dionysus (SIGCOMM14) to update flows until no more flows can be migrated any more.
- Remove potential deadlocks through rate-limiting flows

 $priority = \frac{degree(out)}{degree(in)} * \max delay(cycle_k)$

(EMAPUM: priority = $\frac{degree(out)}{degree(in)} * \max delay(cycle_k) * b$)

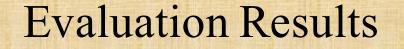
- Select the highest priority flows to be buffered until all elementary cycles are resolved. (*b* is flow demand.)
- Release the buffer and migrate the buffered flows to the final states.

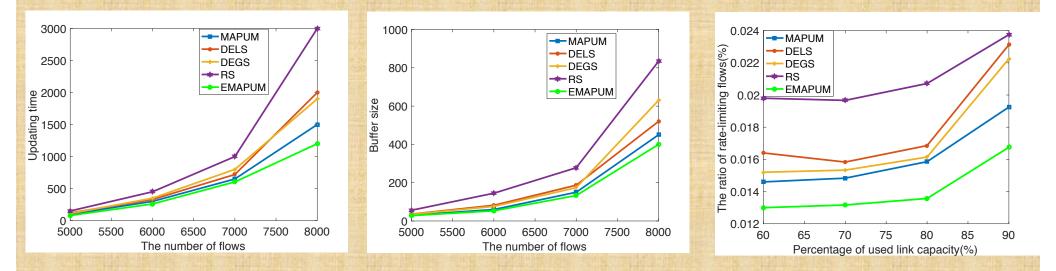


Deadlocks in the dependency graph (shown as three colored cycles)

Evaluation

- We compare our MAPUM and EMAPUM with three schemes
 - 1. RS (random selection);
 - 2. DELS (delay-consideration);
 - 3. DEGS (degree-consideration).
- Measurement (assume one hop takes one time step)
 - 1. Updating time: from the first migration until all flows are migrated
 - 2. Buffer size: $\sum_{f \in F} t_f * b_f$
 - (F: buffered flow set; t_f : time of f to be buffered; b_f : bandwidth of f)
 - 3. The number of rate-limiting flows





- Compared with RS, MAPUM and EMAPUM can reduce the updating time by 41% and 53%, respectively.
- In terms of buffer size usage, MAPUM and EMAPUM save over 37% and 42% buffer compared to RS.
- For ratio between rate-limiting and total flows, MAPUM and EMPUM are only 72% and 67% compared to RS.

