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In this paper we propose a new minimum total communication distance
(TCD) algorithm and an optimal TCD algorithm for broadcast in a 3-dimen-
sional mesh (3-D mesh). The former generates a minimum TCD from a given
source node, and the latter guarantees a minimum TCD among all the
possible source nodes. These algorithms are based on a divide-and-conquer
approach where a 3-D mesh is partitioned into eight submeshes of equal size.
The source node sends the broadcast message to a special node called an eye
in each submesh. The above procedure is then recursively applied in each
submesh. The proposed approach can be generalized to a d-dimensional mesh
or torus. In addition, the proposed approach can potentially be used to solve
optimization problems in other collective communication operations. � 2000
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1. INTRODUCTION

In a multicomputer system, a collection of processors (also called nodes) work
together to solve large applications. Mesh-connected topology is one of the most
thoroughly investigated network topologies for multicomputer systems. It is impor-
tant due to its simple structure and its good performance in practice and is becom-
ing popular for reliable and high-speed communication switching. Mesh-connected
topologies, also called k-ary d-dimensional meshes, have a d-dimensional grid struc-
ture with k nodes in each dimension such that every node is connected to two other
nodes in each dimension by a direct communication. Mesh-connected topologies
include n-dimensional meshes, tori, and hypercubes. These topologies have desirable
properties of regularity, balanced behavior, and a large number of alternative paths.
Machines that use 2-dimensional (2-D) meshes includes the MIT J-machine [2],
the Symult 2010 [14], and the Intel Touchstone Delta [7]. The Cray T3E [5]
system uses a 3-D (3-dimensional) torus.
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In order to minimize communication latency it is important to design an efficient
implementation of collective communication operations [11, 12] which include
multicast and broadcast. Multicast is an important system-level communication
service [3, 8] in which the same message is delivered from a source to an arbitrary
number of destination nodes. Broadcast [4] is a special case of multicast in which
the same message is delivered to all the nodes. Broadcast is essential in many
applications such as distributed agreement [6], clock synchronization [13], and
compute-aggregate-broadcast type of algorithms [10].

A major source of communication delay for broadcast in a network is the com-
munication time spent on sending messages from one node to all the other nodes.
This communication time is influenced by many factors. One important factor is
the traffic generated during the broadcast process. We measure such traffic by a
total communication distance (TCD) which is the summation of all the distances a
broadcast message traverses during the broadcast process. Obviously, the overall
network traffic contention, as well as the communication delay, depends on the
TCD. Therefore, minimizing the TCD is important in designing an efficient broad-
cast. A minimum TCD algorithm for broadcast from a given source node is the
one that generates a minimum TCD among all the possible TCDs from the
same source node. An optimal TCD algorithm is the one that generates a minimum
TCD among TCDs for all the possible source nodes, not just for a given source
node.

Given a 3-D mesh, say an n_n_n mesh with n=2k, where k is a nonnegative
integer, we only consider broadcast algorithms that can complete a broadcast in
log n3=3k time steps in a wormhole-routed system. The wormhole switching techni-
que is becoming the trend in building multicomputer systems due to its inherent
advantages such as low-latency communication and reduced communication
hardware overhead. Under the wormhole switching [2], forwarding a message
from one node to any other node is considered as one time step which is irrelevant
to the distance between these two nodes, provided there is no traffic contention. We
assume that the system under consideration uses the one-port model, i.e., at each
time step a node may do one of the following: send a message to one node, receive
a message from one node, or be idle. Note that without the minimum TCD require-
ment, time-step optimal broadcasting can be easily achieved through recursive
doubling; that is, the number of nodes that receive a copy of the message doubles
after each step. The challenge in designing a minimum TCD of a time-step optimal
broadcast algorithm (for a given source node) is to generate a routing path that
guarantees a minimum TCD without traffic contention at any time step.

In general, traffic contention includes step contention and depth contention.
Step contention occurs when two copies of a message in the same time step contend
for a common channel (link). Another contention is called depth contention which
is defined as two copies of a message in different time steps contend for a common
channel. This situation occurs if the broadcast message is long or one of the copies
is delayed and transmitted at a later step. Note that in a time-step optimal broad-
cast algorithm, the source node sends 3k copies at different steps. Since there are
only six adjacent links, depth contention is unavoidable for k>2. Therefore, the
issue of depth contention�freedom will not be further discussed. Notice that when
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each node in a 3-D mesh is synchronized and the broadcast message is relatively
short, step contention�freedom implies depth contention�freedom.

The divide-and-conquer approach is applied to achieve a minimum TCD broad-
casting where a given 3-D mesh is partitioned into eight submeshes of equal size.
We identify a set of eight special nodes called eyes in a given 3-D mesh. The source
node sends the broadcast message to an eye in each submesh. The optimization
problem is then solved recursively at each submesh (each submesh has its own eight
eyes). Specifically, we propose a minimum TCD broadcast algorithm for a given
source node and an optimal TCD broadcast algorithm. If we start a broadcast from
a given source node and follow the minimum TCD algorithm, a minimum TCD
from the source is obtained, which is the minimum one among all the possible
TCDs from this given source node. If we start a broadcast from an eye of a mesh
and follow the optimal TCD algorithm, an optimal TCD is obtained, which is the
minimum one among TCDs for all the possible source nodes.

In summary, our approach is surprisingly simple. For any given source node, the
time-step optimal broadcast that achieves a minimum TCD always forwards the
broadcast message to several fixed locations (eyes) in a predefined order. This pro-
cess is independent of the location of the source. When a given source node is an
eye itself, the corresponding broadcast generates an optimal TCD.

There are several related works, but they focus on either broadcasting under the
all-port model which supports simultaneous send and receive to and from all
neighbors [17, 18] or different communication patterns such as complete exchange
[16] or all-to-all personalized exchange [15]. Most of these works focus on mini-
mizing time-step, since it is no longer a trivial problem, without considering
minimizing total communication distance. The only previous work that considers
minimizing total communication distance is the one by Wojciechowska [19];
however, the source of broadcasting is restricted to a corner of a 2-D mesh.

The remainder of the paper is organized as follows. Section 2 introduces
necessary notations and preliminaries, where the concept of eyes in a 2-D mesh is
reviewed. Both the minimum TCD broadcast algorithm and the optimal TCD
broadcast algorithm in a 2-D mesh are also reviewed. Section 3 provides our major
results on TCDs for 3-D meshes, where the eyes of a 3-D mesh are defined and a
minimum TCD broadcast algorithm and an optimal TCD broadcast algorithm in
a 3-D mesh are proposed. A closed form expression for the optimal TCD in a 3-D
mesh is provided. In Section 4, we conclude this paper and discuss possible future
work. The proof of a major result (Theorem 3) is included in the Appendix of the
paper.

2. PRELIMINARIES

In this section, we briefly review the major result in [1], which is about minimiz-
ing the TCD of a time-step optimal broadcast in 2-D meshes. For a given n_n
mesh with n=2k, we assume that the distance between any two adjacent nodes is
one. The location of a node in a mesh is denoted by a pair of coordinates (x, y),
where x, y=0, 1, 2, ..., n&1. A node N at (x, y) is denoted by N(x, y). The origin
of the coordinate system is the upper-left corner of the mesh, as shown in Fig. 1.
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FIG. 1. (a) Broadcast in a 2_2 mesh. (b) Broadcast in a 4_4 mesh. (c) Broadcast in an 8_8 mesh.

Denote D2
k(x, y) or D2

k(S) as the TCD of a broadcast algorithm originated from
a source node S(x, y) in a 2k_2k mesh and MD2

k(x, y) or MD2
k(S) as the minimum

TCD originated from a source node S(x, y) among all the possible broadcast algo-
rithms. Obviously, MD2

k(x, y)=min[D2
k(x, y)]. Denote OD2

k as the optimal TCD
in a 2k_2k mesh. Clearly, OD2

k=min[MD2
k(x, y)]. Denote FD as the communica-

tion distance in the first step of a broadcast, SD as the total communication dis-
tance in the second step, and RD as the total communication distance in the
remaining steps. Obviously, for a given source node S(x, y) in a mesh, D2

k(x, y)=
FD+SD+RD is the basic formula to calculate the TCD for a particular broadcast
algorithm.

For example, Figs. 1a, 1b, and 1c show the processes of broadcast starting from
node S(0, 0) in a 2_2 mesh, a 4_4 mesh, and an 8_8 mesh, respectively. Arrows
1 and 2 represent the first and second steps of broadcast, respectively. In Fig. 1a,
the TCD is D2

1(0, 0)=FD+SD=1+(1+1)=3. Obviously, the same result will
be obtained wherever the broadcast starts in this mesh. This means that
OD2

1=MD2
1(x, y)=D2

1(x, y)=3, where x, y=0 or 1. In Fig. 1b, FD=2, SD=2+
2=4, and RD=3+3+3+3=12. Therefore, the TCD is D2

2(0, 0)=FD+SD+
RD=2+4+12=18. D2

2(0, 0)=18 turns out to be the minimum TCD by compar-
ing it with results of all the other arrangements; that is, MD2

2(0, 0)=18. The mini-
mum TCDs for other nodes in the 4_4 mesh can be easily obtained in the same
way, MD2

2(1, 0)=1+(2+2)+(3+3+3+3)=17, MD2
2(0, 1)=2+(1+1)+(3+

3+3+3)=16, and MD2
2(1, 1)=1+(1+1)+(3+3+3+3)=15. Obviously, when

the source node is at (1, 1), OD2
2=MD2

2(1, 1)=15. In Fig. 1c, FD=7, SD=
6+3=9, and RD=M 2

2(0, 0)+3_MD2
2(1, 1)=18+3_15=63. Therefore, the

TCD is D2
3(0, 0)=FD+SD+RD=7+9+63=79. This is actually the best solu-

tion for a corner node, i.e., MD2
3(0, 0)=79. It is not difficult to determine that the

optimal TCD for an 8_8 mesh is 69 when the source node is at (2, 2); i.e.,
OD2

3=MD2
3(2, 2)=69.

2.1. Eyes of a 2-D mesh

Definition 1 [1]. There are four eyes in a 2k_2k mesh, labeled as E 2
k(i),

i=1, 2, 3, 4. These eyes are recursively defined as follows: All four nodes in a 2_2
mesh are eyes, E 2

1(i), i=1, 2, 3, 4, as shown in Fig. 2a. A 2k_2k mesh is partitioned
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FIG. 2. The recursive definition of eyes of (a) a 2_2 mesh, (b) a 4_4 mesh, (c) an 8_8 mesh, and
(d) a 2k_2k mesh.

into four 2k&1_2k&1 submeshes, each of which has four eyes, E(i)2
k&1 ( j),

i, j=1, 2, 3, 4. Eyes, E 2
k(i), are selected from sixteen E(i)2

k&1 ( j)s. Specifically, E 2
k(i),

i=1, 2, 3, 4, belong to the upper-left, upper-right, lower-left, and lower-right sub-
mesh, respectively, and they are the four E(i)2

k&1 ( j)s that are the closest to the
center of the 2k_2k mesh among the sixteen E(i)2

k&1 ( j)s, as shown in Fig. 2d.
For example, the inner four nodes of a 4_4 mesh as shown in Fig. 2b are eyes,

E 2
2(i), i=1, 2, 3, 4. Fig. 2c shows four eyes of an 8_8 mesh, E 2

3(i), i=1, 2, 3, 4. We
denote i=1, 2, 3, 4 as the indices of the upper-left, upper-right, lower-left, and
lower-right submeshes and eyes, respectively. We also use E 2

k to represent E 2
k(i) to

simplify our notation when there is no need to distinguish these four eyes.
Define the square, formed by four eyes E 2

k(i) of a 2k_2k mesh as its four corners,
as the eye-square of the 2k_2k mesh. Denote ak as the length of the side of this eye-
square. Denote (xk(i), yk(i)) as the coordinates of E 2

k(i), i=1, 2, 3, 4, respectively.
ak is calculated by

ak= 1
3 [2k&(&1)k], k�1. (1)

For example, a1=1, a2=1, a3=3, a4=5, and a5=11, etc. Using Eq. (1), we can
easily determine locations of four eyes of a given 2k_2k mesh. Specifically,

xk(1, 3)= 1
6 [2k+1+(&1)k]& 1

2 , yk(1, 2)=xk(1),

xk(2, 4)= 1
6 [2k+2&(&1)k]& 1

2 , yk(3, 4)=xk(2).

For example, the coordinates of four eyes of a 2_2 mesh are (0, 0), (1, 0), (0, 1),
and (1, 1). The coordinates of four eyes of a 4_4 mesh are (1, 1), (2, 1), (1, 2), and
(2, 2). The coordinates of four eyes of an 8_8 mesh are (2, 2), (5, 2), (2, 5), and
(5, 5).
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2.2. Minimum TCD Broadcast Algorithm in a 2-D Mesh

Algorithm 1 (Minimum TCD broadcast algorithm for a given source node S in
a 2k_2k mesh).

1. Divide the given 2k_2k mesh into four 2k&1_2k&1 submeshes. Rotate the
mesh, if necessary, until source node S is in the upper-left submesh, as shown in
Fig. 2d.

2. The source node sends the message to the upper-right eye E 2
k(2) in the first

step.

3. In the second step, E 2
k(2) sends the message to the lower-right eye E 2

k(4),
as shown in Fig. 2d, and the source node sends the message to either the lower-left
eye E 2

k(3) or E(3)2
k&1 (1) depending on which one is closer to the source node. That

is, if the source node is in the right-half region of the submesh, it sends the message
to E 2

k(3), as shown in Fig. 2d; if it is in the left-half region of the submesh, it sends
the message to E(3)2

k&1 (1).

4. In the remaining steps, the four submeshes deliver the message within their
own submeshes of the next level following the above procedure. In this way the
message is delivered down to the submesh's level by level until reaching the unit
meshes, 2_2 meshes, and all these unit meshes complete the broadcast within
themselves in two steps, as shown in Fig. 1a.

Algorithm 1 [1] is a minimum TCD broadcast algorithm in a 2-D mesh and the
following two major results are also shown in [1]:

1. If the source node is an eye of the mesh, the TCD obtained by applying
Algorithm 1 is the minimum among results obtained by applying Algorithm 1 to all
the possible source nodes.

2. The TCD obtained by applying Algorithm 1 is the minimum TCD for a
given source node.

In an n_n mesh (n=2k), the optimal TCD is defined as OD2
k=min[MD2

k(x, y)],
where 1�x, y�n&1. The optimal TCD broadcast algorithm for a 2k_2k mesh is
just a special case of Algorithm 1, in which the broadcast originates from an eye of
a mesh. Based on the above two major results, the TCD obtained by applying
Algorithm 1 to an eye of the mesh is the optimal TCD; i.e., OD2

k=MD2
k(Ek)=

min[MD2
k(x, y)]. In the remainder of the paper, we use MD2

k(E 2
k) to represent the

optimal TCD. The recursive formula for MD2
k(E 2

k) is

MD2
k(E 2

k)=3ak+4MD2
k&1(E

2
k&1), (2)

where MD2
1(E

2
1)=3. The optimal TCD of a 2k_2k mesh can be calculated by

MD2
k(E 2

k)= 1
5 [3_22k+1&(&1)k]&2k, k�1. (3)

For example, MD2
1(E 2

1)=3, MD2
2(E 2

2)=15, MD2
3(E 2

3)=69, MD2
4(E 2

4)=291, and
MD2

5(E
2
5)=1197.
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3. MINIMIZING TCD OF A TIME-STEP OPTIMAL BROADCAST
IN A 3-D MESH

In this section, we discuss time-step optimal broadcasting with minimum TCD in
a 3-D mesh by extending the results for a 2-D mesh to a 3-D mesh. A 2k_2k_2k

mesh is also called a 3-dimensional 2k mesh, or simply a 3-D 2k mesh. The eyes of
a 3-D 2k mesh are defined in the following section.

3.1. Eyes of a 3-D mesh

For a given 3-D 2k mesh, we assume that the distance between any two adjacent
nodes is one. The location of a node in a 3-D mesh is denoted by a set of coor-
dinates (x, y, z), where x, y, z=0, 1, 2, ..., 2k&1. Without loss of generality, the
origin of the x& y&z coordinate system is assumed to be a corner node of the
mesh, as shown in Fig. 3. A node N at (x, y, z) is denoted by N(x, y, z).

Definition 2. There are 23=8 eyes in a 3-D 2k mesh, labeled as E 3
k(i), where

i=1, 2, ..., 8 are called the indices of eight eyes. These eyes are recursively defined
as follows: All eight nodes of a 3-D 21 mesh (i.e., 2_2_2 mesh) are eyes, E 3

1(i), as
shown in Fig. 3a. A 3-D 2k mesh is partitioned into eight 3-D 2k&1 submeshes, each
is labeled as the ith submesh where the eye E 3

k(i) locates, and i=1, 2, ..., 8 are also
called the indices of eight submeshes. Each submesh has eight eyes, E(i)3

k&1 ( j),
i, j=1, 2, ..., 8. Eyes E 3

k(i) are selected from a total of 8_8=64 E( j)3
k&1 (i)s.

Specifically, eyes E 3
k(i) are the eight E( j)3

k&1 (i)s that are the closest to the center
of the 3-D 2k mesh, as shown in Fig. 3c.

For example, a 3-D 22 mesh (i.e., 4_4_4 mesh) consists of 23=8 3-D 21 sub-
meshes (i.e., 2_2_2 submeshes), each of which has eight eyes, E( j)3

1 (i)s, i, j=
1, 2, ..., 8. Among these 8_8=64 E( j)3

1 (i)s, the inner most eight eyes, which are the

FIG. 3. The recursive definition of eyes of (a) a 2_2_2 mesh, (b) a 4_4_4 mesh, and (c) a
2k_2k_2k mesh.
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closest to the center of the 3-D 22 mesh, are the eyes of the 3-D 22 mesh, E 3
2(i), as

shown in Fig. 3b. We also use E 3
k to represent E 3

k(i)s to simplify our notation when
there is no need to distinguish these eight eyes.

Definition 3. Define the cube, formed by eight eyes E 3
k(i) of a 3-D 2k mesh as

its eight corners, as the eye-cube in the 3-D 2k mesh. Denote a3
k as the length of the

side of this eye-cube. Denote (xk(i), yk(i), zk(i)), i=1, 2, ..., 8, as the coordinates of
eight E 3

k(i), respectively.

Obviously, the length of the side of the eye-cube in the 3-D 2k mesh is equal to
the length of the side of the eye-square of the 2k_2k mesh, which is calculated by
Eq. (1). Therefore, the length of the side of the eye-cube can be calculated by

a3
k= 1

3 [2k&(&1)k], k�1. (4)

Using Eq. (4), we can easily determine the locations of eight eyes of a given 3-D 2k

mesh. Specifically,

xk(1, 3, 5, 7)= 1
6 [2k+1+(&1)k]& 1

2 , yk(1, 2, 3, 4)=xk(1), zk(1, 2, 5, 6)=xk(1),

xk(2, 4, 6, 8)= 1
6 [2k+2&(&1)k]& 1

2 , yk(5, 6, 7, 8)=xk(2), zk(3, 4, 7, 8)=xk(2).

For example, the coordinates of eight eyes of a 2_2_2 mesh are (0, 0, 0), (1, 0, 0),
(0, 0, 1), (1, 0, 1), (0, 1, 0), (1, 1, 0), (0, 1, 1), and (1, 1, 1) (see Fig. 3a). The coor-
dinates of eight eyes of a 4_4_4 mesh are (1, 1, 1), (2, 1, 1), (1, 1, 2), (2, 1, 2),
(1, 2, 1), (2, 2, 1), (1, 2, 2), and (2, 2, 2) (see Fig. 3b). The coordinates of eight eyes
of an 8_8_8 mesh are (2, 2, 2), (5, 2, 2), (2, 2, 5), (5, 2, 5), (2, 5, 2), (5, 5, 2),
(2, 5, 5), and (5, 5, 5).

Because the eyes of a 3-D 2k mesh are recursively defined, the x& y&z coor-
dinate system, a fixed coordinate system, is inconvenient for the proposed broad-
cast algorithm (Algorithm 2). Therefore, we use a set of relative coordinate systems.
In a 3-D 2k mesh, the uk&vk&wk coordinate system is used, as shown in Fig. 4a.
Without loss of generality, the origin of the uk&vk&wk coordinate system is
assumed to be the eye E 3

k(1) of the 3-D 2k mesh, and the uk , vk , and wk axes satisfy
the right-hand screw rule, as shown in Fig. 4a. A node N at (uk , vk , wk) is denoted
by N(uk , vk , wk), where uk , vk , and wk are integers. Each of the eight 3-D 2k&1 sub-
meshes has its own coordinate system, uk&1(i)&vk&1(i)&wk&1(i), i=1, 2, ..., 8,
with E 3

k(i) as its origin (see Fig. 4a).

Definition 4. Denote D3
k(uk , vk , wk) or D3

k(S) as the TCD of a broadcast algo-
rithm originated from a source node S(uk , vk , wk) in a 3-D 2k mesh and MD3

k(uk ,
vk , wk) or MD3

k(S) as the minimum TCD originated from a source node S(uk , vk ,
wk) among all the possible broadcast algorithms. Obviously, MD3

k(uk , vk , wk)=
min[D3

k(uk , vk , wk)]. Denote OD3
k as the optimal TCD for a 3-D 2k mesh.

Obviously, OD3
k=min[MD3

k(uk , vk , wk)].

In the subsequent discussion, superscript 3, representing 3-dimensional space, will
be omitted in the notation of a3

k , E 3
k , D3

k , MD3
k , and OD3

k , etc., unless there is a
need to distinguish them from the ones in a 2-D mesh.
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FIG. 4. (a) The uk&vk&wk coordinate system of a 3-D 2k mesh. (b) Four cubic regions in the 1st
submesh of a 3-D 2k mesh.

Definition 5. Denote FD as the communication distance in the first step of a
broadcast, SD as the total communication distance in the second step, TD as the
total communication distance in the third step, and RD as the total communication
distance in the remaining steps.

For a given source node S(uk , vk , wk) in a 3-D mesh, different algorithms would
lead to different sets of FD, SD, TD, and RD. However,

Dk(x, y)=FD+SD+TD+RD (5)

can be used to calculate the TCD for a particular broadcast algorithm in a 3-D
mesh. Note that each submesh has exactly three adjacent submeshes, one along
each direction in the uk&vk&wk coordinate system. Without loss of generality, we
assume that the first, second, and third step of a broadcast sends the message to a
node in an adjacent submesh along the uk , vk , and wk direction, respectively.

Figure 3a shows an example of a broadcast starting from node S(0, 0, 0) in a
2_2_2 mesh (3-D unit mesh). Arrows 1, 2, and 3 represent the first, second, and
third steps of a broadcast, respectively. The broadcast takes three steps to complete
the broadcast with each step responsible for one dimension and the number of the
nodes to be delivered doubles after each step. The TCD of this case is calculated by
D1(0, 0, 0)=FD+SD+TD=20+21+22=7. Obviously, we will obtain the same
result starting from any node in this 2_2_2 mesh. This means that OD1=
MD1(u,v, w)=D1(0, 0, 0)=7.

The following example shows a way to obtain an optimal TCD among all the
possible source nodes in a 4_4_4 mesh. We calculate the minimum TCD for each
node in a 4_4_4 mesh and place results in matrices, as shown in Fig. 5. There are
four matrices in Fig. 5, each of which corresponds to a 4_4 mesh in a 2-D plane,
as shown in Fig. 3b. Specifically, Figs. 5a�5d show the results of a 4_4 mesh in
y=0, y=1, y=2, and y=3 planes, respectively. Within these matrices, the number
at a particular position represents the minimum TCD if the broadcast starts from
this position (node). Clearly, OD2=MD2(x, y, z)=63 (in the x& y&z coordinate
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FIG. 5. The minimum TCDs for each node in a 4_4_4 mesh (a) in y=0 plane, (b) in y=1 plane,
(c) in y=2 plane, and (d) y=3 plane of Fig. 3b.

system), where (x, y, z) represents (1, 1, 1), (2, 1, 1), (1, 1, 2), (2, 1, 2), (1, 2, 1),
(2, 2, 1), (1, 2, 2), and (2, 2, 2), respectively (each number with an underline in
matrices). Note that these eight locations belong to eight different submeshes. In
addition, these locations are exactly the locations of eyes of the mesh! We will show
that seven of these eyes should be the destination nodes in the first three steps of
a broadcast in order to achieve a minimum or an optimal broadcast.

3.2. Minimum TCD Broadcast Algorithm for a Given Source Node in a 3-D Mesh

In this section, we propose a minimum TCD broadcast algorithm (Algorithm 2)
in a 3-D mesh and the general expression of the TCD obtained from this algorithm.
We also show later in Theorem 3 that the TCD obtained from this algorithm is the
minimum TCD for a given source node in a 3-D mesh. If the source node is an eye,
the TCD obtained is the optimal TCD.

Algorithm 2 (Minimum TCD broadcast algorithm for a given source node S in
a 3-D 2k mesh).

1. Divide the given 3-D 2k mesh into eight 3-D 2k&1 submeshes. Rotate the
mesh, if necessary, until source node S is in the 1st submesh (where Ek(1) is
located), as shown in Fig. 6a.

2. In the first step, source node S sends the message to eye Ek(2).

3. In the second step,

v Source node S sends the message to either eye Ek(3) or E(3)k&1 (5) (an
eye in the 3rd submesh), depending on which one is closer to the source node. In
other words, if source node S is in region (I) or (II) of the 1st submesh (see
Fig. 4b), it sends the message to Ek(3), as shown in Fig. 6a; if it is in region (III)
or (IV) of the 1st submesh (see Fig. 4b), it sends the message to E(3)k&1 (5), as
shown in Fig. 6b.

v Ek(2) sends the message to eye Ek(4), as shown in Fig. 6a.

4. In the third step,

v Source node S sends the message to one of the eyes E(5)k&1 (1),
E(5)k&1 (2), E(5)k&1 (3), and E(5)k&1 (4)=Ek(5) depending on which one is closer
to the source node. In other words, if source node S is in region (IV), (II), (III),
or (I) of the 1st submesh (see Fig. 4b), it sends the message to E(5)k&1 (1),
E(5)k&1 (2), E(5)k&1 (3), or E(5)k&1 (4)=Ek(5), respectively.
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v Ek(2) sends the message to eye Ek(6).

v If it is Ek(3) that receives the message from source node S in the second
step, Ek(3) sends the message to Ek(7) in this step. If it is E(3)k&1 (5) that receives
the message from source node S in the second step, E(3)k&1 (5) sends the message
to E(7)k&1 (1) in this step.

v Ek(4) sends the message to eye Ek(8), as shown in Fig. 6a.

5. In the remaining steps, the eight submeshes deliver the message within
their own submeshes of the next level following the above procedure (each submesh
has its own eight eyes). In this way the message is delivered down to submeshes
level by level until reaching the unit meshes, 2_2_2 meshes, and all these unit
meshes complete the broadcast within themselves in three steps, as shown in
Fig. 3a.

Based on the definition of eyes, each node in a given mesh is an eye of exactly
one submesh (including the given mesh). Each eye will be visited exactly once in
Algorithm 2.

Source node S in Algorithm 2 can be any node in the mesh. One special case of
Algorithm 2 is that source node S is an eye of the mesh, say, Ek(1). In this case,
source node S(0, 0, 0)=Ek(1) sends the message to Ek(2) in the first step of
Algorithm 2, with FD=ak . In the second step of Algorithm 2, source node S does
not need to compare Ek(3) and E(3)k&1 (5) to determine which one is closer to it,
it just sends the message to Ek(3). In this step, SD=ak+ak=2ak . In the third step
of Algorithm 2, source node S does not need to choose a destination node from
E(5)k&1 (1), E(5)k&1 (2), E(5)k&1 (3), and E(5)k&1 (4)=Ek(5), it just sends the
message to Ek(5). Meanwhile, Ek(3) sends the message to Ek(7). In this step,
TD=ak+ak+ak+ak=4ak . In the remaining steps, the eight submeshes deliver
the message within their own submeshes following the above procedure with
RD=8Dk&1(Ek&1). Therefore, according to Eq. (5), Dk(Ek), the TCD obtained

FIG. 6. The first three steps of Algorithm 2 when (a) S is in the right-half of the submesh, (b) S is
in the left-half of the submesh.
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from Algoritm 2 with source node S=Ek(1) can be calculated by the following
recursive formula:

Dk(Ek)=7ak+8Dk&1(Ek&1). (6)

We will show later in Theorem 4 that this Dk(Ek) corresponds to the minimum
TCD, MDk(Ek), and the optimal TCD, ODk , in a 3-D mesh.

The general expression of Dk(S) is very complex because Dk(S) varies with the
location of source node S(uk , vk , wk) in the 1st submesh. Based on Algorithm 2, we
can divide the 1st submesh into nine different cubic regions as shown in Fig. 7,
which lead to nine different expressions for Dk(S). These cubic regions are marked
from (i) to (ix) (see Fig. 7) and they are delimited as follows:

(i) (&ak �2<uk�0) 7 (&ak�2<vk�0)

(ii) (&ak �2<uk�0) 7 (0<vk�ak&1 �2)

(iii) (&ak �2<uk�0) 7 (ak&1 �2<vk�2k&1&1&ak �2)

(iv) (0<uk�ak&1 �2) 7 (&ak �2<vk�0)

(v) (0<uk�ak&1 �2) 7 (0<vk�ak&1 �2)

(vi) (0<uk�ak&1 �2) 7 (ak&1 �2<vk�2k&1&1&ak �2)

(vii) (ak&1 �2<uk�2k&1&1&ak �2) 7 (&ak �2<vk�0)

(viii) (ak&1 �2<uk�2k&1&1&ak �2) 7 (0<vk�ak&1�2)

(ix) (ak&1 �2<uk�2k&1&1&ak �2)

7 (ak&1 �2<vk�2k&1&1&ak �2)

with &ak �2<wk�2k&1&1&ak �2 for all the nine cubic regions.
For example, when S(uk , vk , wk) is in cubic region (iii) of Fig. 7, source node S

sends the message to Ek(2) in the first step; source node S sends the message to
Ek(3) and Ek(2) sends the message to Ek(4) in the second step; source node S sends
the message to E(5)k&1 (2), Ek(2) sends the message to Ek(6), Ek(3) sends the
message to Ek(7), and Ek(4) sends the message to Ek(8) in the third step, as shown
in Fig. 6a. But when S(uk , vk , wk) is in cubic region (viii) of Fig. 7, source node S
sends the message to Ek(2) in the first step; source node S sends the message to
E(3)k&1 (5) and Ek(2) sends the message to Ek(4) in the second step; source node
S sends the message to E(5)k&1 (3), Ek(2) sends the message to Ek(6), E(3)k&1 (5)
sends the message to E(7)k&1 (1), Ek(4) sends the message to Ek(8) in the third
step, as shown in Fig. 6b. Obviously, these two cases correspond to two different
expressions for Dk(S). Overall, for all these nine cubic regions, we have the
following theorem.
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FIG. 7. Nine cubic regions in the 1st submesh of a 3-D 2k mesh.

Theorem 1. Apply Algorithm 2 to any source node S(uk , vk , wk); the TCD
obtained can be expressed as follows:

&(uk+vk)+2 |wk |+wk+[7ak+Dk&1(S)+7Dk&1(Ek&1)] (i)

&uk+3vk+2 |wk |+wk+[7ak+Dk&1(S)+7Dk&1(Ek&1)] (ii)

&uk+2vk+|vk&ak&1|+2 |wk |+wk

+[7ak+Dk&1(S)+7Dk&1(Ek&1)] (iii)

3uk&vk+2 |wk |+wk+[7ak+Dk&1(S)+7Dk&1(Ek&1)] (iv)

3uk+3vk+2 |wk |+wk+[7ak+Dk&1(S)+7Dk&1(Ek&1)] (v)

Dk(S)=
3uk+2vk+|vk&ak&1|+2 |wk |+wk

+[7ak+Dk&1(S)+7Dk&1(Ek&1)] (vi)

uk+2 |uk&ak&1|&vk+2 |wk |+wk

+[7ak+Dk&1(S)+7Dk&1(Ek&1)] (vii)

uk+2 |uk&ak&1|+3vk+2 |wk |+wk

+[7ak+Dk&1(S)+7Dk&1(Ek&1)] (viii)

uk+2 |uk&ak&1|+2vk+|vk&ak&1|+2 |wk |+wk

+[7ak+Dk&1(S)+7Dk&1(Ek&1)] (ix)

The proof of Theorem 1 is in Appendix A. Obviously, these Dk(S)s are too com-
plex. To simplify them, we introduce a mapping function, denoted as fk(uk , vk , wk)
or simply fk(S). With this function, we can use one general expression to represent
these Dk(S)s.
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Definition 6. Define function

fk(uk , vk , wk)

={
2 |uk |+uk+2 |vk |+vk+2 |wk |+wk

2 |uk |+uk+2 |vk |+|vk&ak&1|+2 |wk |+wk

|uk |+2 |uk&ak&1|+2 |vk |+vk+2 |wk |+wk

|uk |+2 |uk&ak&1|+2 |vk |+|vk&ak&1|+2 |wk |+wk

(I)
(II)
(III)
(IV)

(7)

in a 3-D 2k mesh where (I), (II), (III), and (IV) represent the lower-right, upper-
right, lower-left, and upper-left cubic region of the 1st submesh, respectively, as
shown in Fig. 4b, and they are delimited as follows:

(I) (&ak�2<uk�ak&1 �2) 7 (&ak �2<vk�ak&1 �2)

(II) (&ak�2<uk�ak&1 �2) 7 (ak&1 �2<vk�2k&1&1&ak �2)

(III) (ak&1�2<uk�2k&1&1&ak�2) 7 (&ak �2<vk�ak&1 �2)

(IV) (ak&1�2<uk�2k&1&1&ak�2) 7 (ak&1�2<vk�2k&1&1&ak �2)

with &ak �2<wk�2k&1&1&ak �2 for all the four cubic regions.

By comparing Eq. (7) with the nine Dk(S)s discussed above, we have the follow-
ing lemma.

Lemma 1. The Dk(S) obtained from Algorithm 2 for a given source node
S(uk , vk , wk) in a 3-D 2k mesh can be calculated by a general formula:

Dk(S)= fk(uk , vk , wk)+[7ak+Dk&1(S)+7Dk&1(Ek&1)]. (8)

There are two important properties of function fk(uk , vk , wk):

1. Function fk(uk , vk , wk) is always greater than or equal to zero, i.e.,

fk(uk , vk , wk)�0. (9)

This is because terms 2 |uk |+uk , 2 |vk |+vk , and 2 |wk |+wk in Eq. (7) are always
nonnegative.

2. The only condition for fk(uk , vk , wk)=0 is when S(uk , vk , vk)=Ek . In this
case, Eq. (8) becomes Dk(Ek)=7ak+8Dk&1(Ek&1), which is exactly the same as
Eq. (6).

The use of function fk(uk , vk , wk) not only simplifies the expression of Dk(S) but
also establishes the relationship between Dk(S) and Dk(Ek) (this is important
because we have an exact formula for Dk(Ek), see Eq. (13) in the next section). By
comparing Eqs. (6) and (8), we can see that

Dk(S)&Dk(Ek)= fk(S)+Dk&1(S)&Dk&1(Ek&1). (10)
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By repeatedly substituting Dk&1(S) and Dk&1(Ek&1) into Eq. (10) by using Eqs. (6)
and (8), respectively, we have the following lemma.

Lemma 2. The Dk(S) obtained from Algorithm 2 for a given source node
S(uk , vk , wk) in a 3-D 2k mesh can be calculated in terms of fk(uk , vk , wk) (or simply
fk(S)) and Dk(Ek):

Dk(S)= :
k

i=2

fi (S)+Dk(Ek). (11)

Lemma 2 immediately leads to the following theorem.

Theorem 2. If the source node is an eye of the mesh, the TCD obtained by
Algorithm 2 is the minimum one among results obtained by applying Algorithm 2 to
all the possible source nodes.

Proof. According to Eq. (9), each f i (S) in Eq. (11) is greater than or equal to
zero. Therefore,

Dk(S)�Dk(Ek),

where the equal sign is taken only when S(uk , vk , wk)=Ek . Thus, Theorem 2 is
true. K

The following theorem shows that Algorithm 2 is the best possible broadcast
algorithm.

Theorem 3. The TCD obtained from Algorithm 2 is the minimum TCD for a
given source node in a 3-D mesh.

The proof of Theorem 3 is lengthy and is placed in the Appendix B.

3.3. Optimal TCD Broadcast Algorithm for a 3-D Mesh

In the previous section, we discussed the minimum TCD broadcast algorithm in
a 3-D mesh, which generates a minimum TCD for a given source node (i.e.,
generates an optimal TCD for that particular source node). In this section, we
propose an optimal TCD broadcast algorithm (Algorithm 3) for a 3-D mesh which
guarantees that the TCD generated by this algorithm is the optimal one among all
the possible minimum TCDs in the mesh.

Algorithm 3 (Optimal TCD broadcast algorithm for a 3-D 2k mesh).
Start a broadcast from an eye, say Ek(1), of a 3-D mesh and follow Algorithm 2

except for the second and third steps. In the second step, source node Ek(1) sends
the message to eye Ek(3) directly. In the third step, source node Ek(1) sends the
message to eye Ek(5) directly and Ek(3) sends the message to Ek(7).

Theorem 4. The TCD obtained from Algorithm 3 is the optimal TCD, i.e.,
ODk=MDk(Ek)=min[MDk(S)].

Proof. Theorem 4 can be directly derived from Theorems 1 and 2. K
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In fact, the optimal TCD broadcast algorithm for a 3-D 2k mesh is just a special
case of Algorithm 2 in which the broadcast originates from an eye of the mesh. This
special case is discussed in the previous subsection. Therefore, Eq. (6) can be used
as the recursive formula of the optimal TCD of a 3-D mesh, i.e.,

ODk=MDk(Ek)=7ak+8MDk&1(Ek&1), (12)

where MD1(E1)=3. The exact expression of ODk is given by the following theorem.

Theorem 5. The optimal TCD of a 3-D 2k mesh can be calculated by

ODk=MDk(Ek)= 7
27[23k+2&(&1)k&3_2k], k�1. (13)

For example, OD1=MD1(E1)=7, OD2=MD2(E2)=63, OD3=MD3(E3)=525,
and OD4=MD4(E4)=4235, etc. The proof of Theorem 5 can be found in [1].

4. MINIMIZING TCD OF A TIME-STEP OPTIMAL BROADCAST
IN A d-D MESH

In this section, we outline possible extensions of the results for 2-D meshes to

d-dimensional (d-D) meshes. A 2k_2k_ } } } _2k

d

mesh is also called a d-D 2k mesh
or simply a d-D 2k mesh. The definition of an eye in a d-D 2k mesh is defined as
follows:

Definition 7. There are 2d eyes in a d-D 2k mesh, labeled as E d
k(i),

0�i�2d&1. These eyes are recursively defined as follows: All 2d nodes of a d-D
21 mesh are eyes, E d

1(i). A d-D 2k mesh is partitioned into 2d d-D 2k&1 submeshes,
each of which has 2d eyes, E d

k&1(i). Eyes E d
k(i) are selected from 22d E d

k&1(i)s.
Specifically, eyes E d

k(i) are the 2d E d
k&1(i)s that are the closest to the center of the

d-D 2k mesh.

For example, a d-D 22 mesh consists of 2d d-D 21 submeshes, each of which has
2d E d

1(i)s, 0�i�2d&1. Among these 22d E d
1(i)s, the inner 2d ones, which are the

closest to the center of the d-D 22 mesh, are the eyes of the d-D 22 mesh, E d
2(i). We

use E d
k to represent E d

k(i) to simplify our notation. Here we restrict our attention
only to the cases where the source node is an eye of a d-D 2k mesh.

Definition 8. Denote MDd
k(Ek) as the minimum TCD for a d-D 2k mesh to

complete a broadcast from an eye.

The optimal TCD broadcast takes three steps to complete the broadcast in a 3-D
mesh with each step responsible for one dimension and the number of the nodes to
be delivered doubles in each step. Using the same way for a d-D unit mesh, we can
deduce that it takes d steps to complete a broadcast in a d-D unit mesh. The
optimal TCD is

MDd
1(E1)= :

d&1

i=0

2 i=2d&1. (14)

981TIME-STEP OPTIMAL BROADCASTING



We can extend our optimal TCD algorithm for a 2-D mesh to a d-D mesh. In
a d-D 2k mesh, it needs totally log nd=dk steps to complete a broadcast. We divide
these dk steps into k phases, each of which consists of d steps. In the first phase,
the first d steps are for the broadcast among all the 2d eyes of d-D 2k meshes. In
the second phase, the next d steps are for the broadcast among all the 22d eyes of
2d d-D 2k&1 submeshes. In the last phase (the kth phase), the last d steps are for
the broadcast among all the 2kd eyes of 2(k&1) d d-D 21 submeshes (unit meshes). If
we start a broadcast from an eye of a d-D mesh and follow the above extended
algorithm, we will obtain an optimal TCD. Also, by extending our minimum TCD
algorithm for a 2-D mesh to a d-D mesh, we can obtain the minimum TCD for a
given source node.

The recursive formula for optimal TCD of a d-D 2k mesh is

MDd
k(Ek)= :

d&1

i=0

2iak+2dMDd
k&1(Ek&1)=(2d&1) ak+2dMDd

k&1(Ek&1), (15)

where k�2 and MDd
1(E1) is given by Eq. (14).

Theorem 6. The optimal TCD of a d-D 2k mesh can be calculated by

MDd
k(Ek)=

2d&1
3(2d+1)(2d&1&1)

[3_2d(k+1)&1&(&1)k (2d&1&1)&2k(2d+1)],

(16)

where k, d�1.

The proof of Theorem 6 is shown in Appendix C.

5. CONCLUSION

In this paper we have studied the problem of minimizing total communication
distance (TCD) of a time-step optimal broadcast in a 3-D mesh. We have identified
a set of special nodes called eyes in a given 3-D mesh. The divide-and-conquer
approach is applied to achieve a minimum TCD broadcasting where a given 3-D
mesh is partitioned into eight submeshes of equal size. The source node sends the
broadcast message to an eye in each submesh. The optimization problem is then
solved recursively in each submesh. Specifically, we have proposed a minimum
TCD broadcast algorithm for a given source node in a 3-D mesh and an optimal
TCD broadcast algorithm for a 3-D mesh. Both algorithms are based on the idea
of eyes. If we start a broadcast from a given source node and follow the minimum
TCD algorithm, a minimum TCD from the source is obtained, which is the mini-
mum one among all the possible TCDs for this given source node. If we start a
broadcast from an eye of a mesh and follow the optimal TCD algorithm, an
optimal TCD is obtained, which is the minimum one among TCDs for all the
possible source nodes.

Our results can be easily extended to a 3-D torus. A torus is a special mesh in
which the nodes at the periphery are connected by wraparound connections. This
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means that each node in the torus is identical, i.e., each node in a torus is an eye
in the corresponding mesh. Therefore, no matter where a broadcast in the torus is
initiated, we can use the proposed optimal TCD algorithm for a 3-D mesh and
obtain an optimal TCD in a 3-D torus. Another possible future work is to extend
our model to a general d-dimensional mesh.

APPENDIX A

Proof of Theorem 1

The theorem can be proved by deriving expressions of Dk(S) for all nine cubic
regions of Fig. 7. Because the derivations for all nine cubic regions are similar, we
just show detailed derivations for two regions.

First, we derive the expression of Dk(S) when S(uk , vk , wk) is in cubic region (iii)
of Fig. 7, where &ak�2<uk�0, ak&1 �2<vk�2k&1&1&ak�2, and 0<wk�
2k&1&1&ak �2. Figure 6a shows the first three steps of the broadcast. Figure 8 also
shows the first three steps of the broadcast of this case but in a 2-D plane, in which
Fig. 8a shows the projection of Fig. 6a along the +wk direction and Fig. 8b shows
the projection of Fig. 6a along the +uk direction. In Fig. 8, only the nodes involved
in the first three steps of the broadcast are drawn. Again, arrows 1, 2, and 3 repre-
sent the first, second, and third steps of the broadcast, respectively. In the first step,
source node S sends the message to Ek(2) with FD=ak+uk+vk+wk . In the
second step, source node S sends the message to Ek(3) with TCD=ak&uk+vk+
wk . Meanwhile, Ek(2) sends the message to Ek(4) with TCD=ak . Therefore, SD=
2ak&uk+vk+wk . In the third step, source node S sends the message to
E(5)k&1 (2) with TCD=ak&uk+|vk&ak&1|+wk . Meanwhile, Ek(2) sends the
message to Ek(6) with TCD=ak , Ek(3) sends the message to Ek(7) with TCD=ak ,
Ek(4) sends the message to Ek(8) with TCD=ak . Therefore, TD=4ak&uk+|vk&
ak&1|+wk . After the first three steps, each eye (seven in all except the one in the
1st submesh) has a copy of the broadcast message. This means that the TCD of the

FIG. 8. The first three steps of Dk(S) when S(uk , vk , wk) is in cubic region (iii) of the 1st submesh.
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FIG. 9. The first three steps of Dk(S) when S(uk , vk , wk) is in cubic region (viii) of the 1st submesh.

remaining steps of the broadcast can be written as RD=Dk&1(S)+7Dk&1(Ek&1).
Therefore, by using Eq. (5), we have the expression of Dk(S) obtained from
Algorithm 2 with source node S located in cubic region (iii) of the 1st submesh
(specifically, in cubic region (iii) where wk�0),

Dk(S)=&uk+2vk+|vk&ak&1|+3wk+Dk&1(S)+7ak+7Dk&1(Ek&1).

Second, we derive the expression of Dk(S) when S(uk , vk , wk) is in cubic region
(viii) of Fig. 7, where ak&1 �2<uk�2k&1&1&ak�2, 0<vk�ak&1 �2, and &ak�2<
wk�0. Figure 6b shows the first three steps of the broadcast. Figure 9 also shows
the first three steps of the broadcast of this case but in a 2-D plane in which Fig. 9a
shows the projection of Fig. 6b along the +wk direction and Fig. 9b shows the pro-
jection of Fig. 6b along the +uk direction. In Fig. 9, only the nodes involved in the
first three steps of the broadcast are drawn. Again, arrows 1, 2, and 3 represent the
first, second, and third steps of the broadcast, respectively. In the first step, source
node S sends the message to Ek(2) with FD=ak+uk+vk&wk . In the second step,
source node S sends the message to E(3)k&1 (5) with TCD=ak+|uk&
ak&1|+vk&wk . Meanwhile, Ek(2) sends the message to Ek(4) with TCD=ak .
Therefore, SD=2ak+|uk&ak&1|+vk&wk . In the third step, source node S sends
the message to E(5)k&1 (3) with TCD=ak+|uk&ak&1|+vk+wk . Meanwhile,
Ek(2) sends the message to Ek(6) with TCD=ak , E(3)k&1 (5) sends the message to
E(7)k&1 (1) with TCD=ak , Ek(4) sends the message to Ek(8) with TCD=ak .
Therefore, TD=4ak+|uk&ak&1|+vk+wk . After the first three steps, each eye
(seven in all except the one in the 1st submesh) has a copy of the broadcast
message. This means that the TCD of the remaining steps of the broadcast can be
written as RD=Dk&1(S)+7Dk&1(Ek&1). Therefore, by using Eq. (5), we have the
expression of Dk(S) obtained from Algorithm 2 with source node S located in cubic
region (viii) of the 1st submesh (specifically, in cubic region (viii) where wk�0),

Dk(S)=uk+2 |uk&ak&1|+3vk&wk+Dk&1(S)+7ak+7Dk&1(Ek&1).
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By treating the other seven cases in the same way, the expression of Dk(S) can
be derived for each case. Therefore, Theorem 1 is true. K

APPENDIX B

Proof of Theorem 3

We prove this theorem by mathematical induction on l in a 3-D 2l mesh. Assume
that the source node is represented by S. Theorem 3 can be proved by showing

Dl (S)$&Dl (S)�0 (17)

for any integer l, where Dl (S) is the TCD obtained from Algorithm 2 and Dl (S)$
is the TCD obtained from an arbitrary broadcast algorithm.

v l=1: For l=1, it is a 2_2_2 mesh (3-D unit mesh). Algorithm 2 is the
only possible approach, and hence, D1(S)$=D1(S)=7 (see Section 3). Therefore,
Theorem 3 is true for l=1.

v l=k&1: Assume that Theorem 3 is true up to level l=k&1, i.e.,
Dl (S)$&Dl (S)�0, 1�l�k&1, and Dk&1(S)=MDk&1(S). We will show that
Theorem 3 is also true for level l=k.

v l=k: For l=k, we need to prove

Dk(S)$&Dk(S)�0. (18)

In order to prove Eq. (18), we need to determine Dk(S)$ and Dk(S) first. For
Dk(S)$, assuming that source node S(uk , vk , wk) is in the 1st submesh, the seven
destination nodes of the first three steps of the broadcast are in the seven other dif-
ferent submeshes. Because Dk(S)$ is for an arbitrarily selected broadcast algorithm
other than Algorithm 2, these seven destination nodes of the first three steps can be

FIG. 10. (a) Calculation of Dk(S)$ in a 3-D 2k mesh. (b) fk&2(N2) in a 3-D 2k mesh.
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FIG. 11. The first step of broadcast of Dk(S)$ in a 3-D 2k mesh.

at any locations in the corresponding submeshes. We denote these seven destination
nodes of the first three steps as Ni (uk&1(i), vk&1(i), wk&1(i)), i=2, 3, 4, ..., 8, respec-
tively, as shown in Figs. 10a, 11, 12, and 13. Note that the coordinates of these
seven destination nodes are with respect to their own coordinate systems, not with
respect to the coordinate system of the 3-D 2k mesh. The coordinate system of each
3-D 2k&1 submesh is set up according to the convention in Fig. 4a.

Figure 10a shows the first three steps of Dk(S)$ in a 3-D 2k mesh in a three-
dimensional space. Figures 11, 12, and 13 show the first, second, and third steps of
Dk(S)$ of a 3-D 2k mesh in 2-D planes, respectively, in which Figs. 11a, 12a, and
13a show the projections of Fig. 10a along the +wk direction and Figs. 11b, 12b,
and 13b show the projections of Fig. 10a along the +uk direction. In these figures,
only the nodes involved in the corresponding steps of the broadcast are drawn.

FIG. 12. The second step of broadcast of Dk(S)$ in a 3-D 2k mesh.
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FIG. 13. The third step of broadcast of Dk(S)$ in a 3-D 2k mesh.

As shown in Figs. 10a and 11, the first step of the broadcast of Dk(S)$ is from
source node S(uk , vk , wk) to N2(uk&1(2), vk&1(2), wk&1(2)) with

FD=ak+uk&uk&1(2)+|vk+vk&1(2)|+|wk+wk&1(2)|. (19)

The second step of broadcast of Dk(S)$ is from S(uk , vk , wk) to N3(uk&1(3),
vk&1(3), wk&1(3)) with TCD=|uk+uk&1(3)|+ak+vk&vk&1(3)+|wk+wk&1(3)|,
and from N2(uk&1(2), vk&1(2), wk&1(2)) to N4(uk&1(4), vk&1(4),wk&1(4)) with
TCD = |uk & 1(2) & wk & 1(4) | + ak & vk & 1(2) & vk & 1(4) + |wk&1(2)&uk&1(4)|, as
shown in Figs. 10a and 12. Therefore,

SD=|uk+uk&1(3)|+ak+vk&vk&1(3)+|wk+wk&1(3)|

+|uk&1(2)&wk&1(4)|+ak&vk&1(2)&vk&1(4)+|wk&1(2)&uk&1(4)|. (20)

The third step of broadcast of Dk(S)$ is from S(uk , vk , wk) to N5(uk&1(5),
vk&1(5), wk&1(5)) with TCD=|uk+uk&1(5)|+|vk+vk&1(5)|+ak+wk&wk&1(5),
from N2(uk&1(2), vk&1(2), wk&1(2)) to N6(uk&1(6), vk&1(6),wk&1(6)) with
TCD=|uk&1(2)&wk&1(6)|+|vk&1(2)&vk&1(6)|+ak+wk&1(2)&uk&1(6), from
N3(uk&1(3), vk&1(3), wk&1(3)) to N7(uk&1(7), vk&1(7), wk&1(7)) with TCD=
|uk&1(3)&wk&1(7)|+|vk&1(3)&vk&1(7)|+ak&wk&1(3)&uk&1(7), and from
N4(uk&1(4), vk&1(4), wk&1(4)) to N8(uk&1(8), vk&1(8), wk&1(8)) with TCD=
|wk&1(4)&uk&1(8)|+|vk&1(4)&vk&1(8)|+ak&uk&1(4)&wk&1(8), as shown in
Figs. 10a and 13. Therefore,

TD=|uk+uk&1(5)|+|vk+vk&1(5)|+ak+wk&wk&1(5)

+|uk&1(2)&wk&1(6)|+|vk&1(2)&vk&1(6)|+ak+wk&1(2)&uk&1(6)

+|uk&1(3)&wk&1(7)|+|vk&1(3)&vk&1(7)|+ak&wk&1(3)&uk&1(7)

+|wk&1(4)&uk&1(8)|+|vk&1(4)&vk&1(8)|+ak&uk&1(4)&wk&1(8). (21)
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Because Theorem 3 is assumed to be true up to level l=k&1, RD, the TCD of
remaining steps, can be determined by

RD= :
8

i=1

MDk&1(Ni), (22)

where N1=S(uk , vk , wk). According to Lemma 2 and Theorems 3 and 4, we have

MDk(S)= :
k

i=2

fi (S)+MDk(Ek), (23)

where the expression for MDk(Ek) is given by Eq. (13). Therefore, MDk&1(Ni) can
be obtained by using Eq. (23), i.e.,

MDk&1(Ni)=MDk&1(Ek&1)+ :
k&1

j=2

fj (Ni), (24)

where i=1, 2, ..., 8. By substituting Eqs. (19), (20), (21), (22), and (24) into Eq. (5),
the basic formula to calculate the TCD for a particular broadcast algorithm, i.e.,
Dk(S)$=FD+SD+TD+RD, we have

Dk(S)$= :
8

i=1

:
k&1

j=2

f j (N i)+8MDk&1(Ek&1)+7ak+uk+vk+wk

&uk&1(2)&uk&1(4)&uk&1(6)&uk&1(7)&vk&1(2)&vk&1(3)

&vk&1(4)+wk&1(2)&wk&1(3)&wk&1(5)&wk&1(8)

+|uk+uk&1(3)|+|uk+uk&1(5)|+|vk+vk&1(2)|+|vk+vk&1(5)|

+|wk+wk&1(2)|+|wk+wk&1(3)|

+|uk&1(2)&wk&1(4)|+|wk&1(2)&uk&1(4)|

+|uk&1(2)&wk&1(6)|+|vk&1(2)&vk&1(6)|+|uk&1(3)&wk&1(7)|

+|vk&1(3)&vk&1(7)|+|wk&1(4)&uk&1(8)|+|vk&1(4)&vk&1(8)|. (25)

Dk(S), the TCD obtained from Algorithm 2, can be easily determined by using
Eqs. (11) and (6), and hence,

Dk(S)=7ak+8MDk&1(Ek&1)+ :
k

j=2

fj (S). (26)

Note that during the derivation of Eq. (26), we use Dk&1(Ek&1)=MDk&1(Ek&1)
because Theorem 3 is true at level l=k&1.
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With Eqs. (25) and (26), we are ready to prove Eq. (18). Subtracting Eq. (25) by
Eq. (26), we have

Dk(S)$&Dk(S)= :
8

i=0

2i , (27)

where

20=|uk&1(2)&wk&1(4)|+|wk&1(2)&uk&1(4)|

+|uk&1(2)&wk&1(6)|+|vk&1(2)&vk&1(6)|

+|uk&1(3)&wk&1(7)|+|vk&1(3)&vk&1(7)|

+|wk&1(4)&uk&1(8)|+|vk&1(4)&vk&1(8)|

21=uk+vk+wk& fk(S)+|uk+uk&1(3)|+|uk+uk&1(5)|

+|vk+vk&1(2)|+|vk+vk&1(5)|+|wk+wk&1(2)|+|wk+wk&1(3)| (28)

22= :
k&1

j=2

fj (N2)&uk&1(2)&vk&1(2)+wk&1(2) (29)

23= :
k&1

j=2

fj (N3)&vk&1(3)&wk&1(3) (30)

24= :
k&1

j=2

fj (N4)&uk&1(4)&vk&1(4)

25= :
k&1

j=2

fj (N5)&wk&1(5) (31)

26= :
k&1

j=2

fj (N6)&uk&1(6)

27= :
k&1

j=2

fj (N7)&uk&1(7)

28= :
k&1

j=2

fj (N8)&wk&1(8).

In the following steps, we show that 20 and 2i , i=2, 3, ..., 8, are always non-
negative. 21 is either positive or negative depending on the location of source node
S and the locations of N2 , N3 , and N5 . When 21 is nonnegative, Eq. (27) is
automatically nonnegative, and hence, Eq. (18) is true. When 21 is negative, we can
show that 21+22+23+25 is still nonnegative which guarantees that Eq. (27) is
nonnegative. Therefore, Eq. (18) is always true. First of all, we need to derive an
important inequality to be used in the following proof. According to Eq. (7), func-
tion fk&1(Ni), N i=(uk&1(i), vk&1(i), wk&1(i)), i=1, 2, ..., 8, can be written as:
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2 |uk&1(i)|+uk&1(i)+2 |vk&1(i)|

+vk&1(i)+2 |wk&1(i)|+wk&1(i) (I)

2 |uk&1(i)|+uk&1(i)+2 |vk&1(i)|

+|vk&1(i)&ak&2 |+2 |wk&1(i)|+wk&1(i) (II)
fk&1(Ni)=

|uk&1(i)|+2 |uk&1(i)&ak&2 |+2 |vk&1(i)|

+vk&1(i)+2 |wk&1(i)|+wk&1(i) (III)

|uk&1(i)|+2 |uk&1(i)&ak&2 |+2 |vk&1(i)|

+|vk&1(i)&ak&2 |+2 |wk&1(i)|+wk&1(i), (IV)

where (I), (II), (III), and (IV) belong to the ith submesh of a 3-D 2k mesh.
Obviously, the following inequality is always true,

fk&1(Ni)�|uk&1(i)|+|vk&1(i)|+|wk&1(i)|. (32)

Now we discuss each 2i one by one. Note that 21 is the last one to be discussed
because it uses the results of other 2is.

20 : It is obvious that 20�0.

22 : According to Eq. (32), function fk&1(N2(uk&1(2), vk&1(2), wk&1(2))) can
be written as:

fk&1(N2)�|uk&1(2)|+|vk&1(2)|+|wk&1(2)|.

Therefore, 22 can be rewritten as

22� :
k&2

j=2

fj (N2)+( |uk&1(2)|&uk&1(2))

+(|vk&1(2)|&vk&1(2))+(|wk&1(2)|+wk&1(2))

by substituting fk&1(N2) into the 22 expression. Because |uk&1(2)|&uk&1(2)�0,
|vk&1(2)|&vk&1(2)�0, |wk&1(2)|+wk&1(2)�0, and �k&2

j=2 f j (N2)�0 (according
to Eq. (9)), we immediately have 22�0.

23 : According to Eq. (32), function fk&1(N3(uk&1(3), vk&1(3), wk&1(3))) can
be written as:

fk&1(N3)�|uk&1(3)|+|vk&1(3)|+|wk&1(3)|.

Therefore, 23 can be rewritten as

23� :
k&2

j=2

fj (N3)+|uk&1(3)|+(|vk&1(3)|&vk&1(3))+(|wk&1(3)|&wk&1(3))
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by substituting fk&1(N3) into the 23 expression. Because |uk&1(3)|�0, |vk&1(3)|&
vk&1(3)�0, |wk&1(3)|&wk&1(3)�0, and �k&2

j=2 fj (N3)�0, we immediately have
23�0.

24 : According to Eq. (32), function fk&1(N4(uk&1(4), vk&1(4), wk&1(4))) can
be written as:

fk&1(N4)�|uk&1(4)|+|vk&1(4)|+|wk&1(4)|.

Therefore, 24 can be rewritten as

24� :
k&2

j=2

fj (N4)+(|uk&1(4)|&uk&1(4))+(|vk&1(4)|&vk&1(4))+|wk&1(4)|

by substituting fk&1(N4) into the 24 expression. Because |uk&1(4)|&uk&1(4)�0,
|vk&1(4)|&vk&1(4)�0, |wk&1(4)|�0, and �k&2

j=2 fj (N4)�0, we immediately have
24�0.

25 : According to Eq. (32), function fk&1(N5(uk&1(5), vk&1(5), wk&1(5))) can
be written as:

fk&1(N5)�|uk&1(5)|+|vk&1(5)|+|wk&1(5)|.

Therefore, 25 can be rewritten as

25� :
k&2

j=2

fj (N5)+|uk&1(5)|+|vk&1(5)|+(|wk&1(5)|&wk&1(5))

by substituting fk&1(N5) into the 25 expression. Because |uk&1(5)|�0, |vk&1(5)|�
0, |wk&1(5)|&wk&1(5)�0, and �k&2

j=2 f j (N5)�0, we immediately have 25�0.

26 : According to Eq. (32), function fk&1(N6(uk&1(6), vk&1(6), wk&1(6))) can
be written as:

fk&1(N6)�|uk&1(6)|+|vk&1(6)|+|wk&1(6)|.

Therefore, 26 can be rewritten as

26� :
k&2

j=2

fj (N6)+(|uk&1(6)|&uk&1(6))+|vk&1(6)|+|wk&1(6)|

by substituting fk&1(N6) into the 26 expression. Because |uk&1(6)|&uk&1(6)�0,
|vk&1(6)|�0, |wk&1(6)|�0, and �k&2

j=2 fj (N6)�0, we immediately have 26�0.

27 : According to Eq. (32), function fk&1(N7(uk&1(7), vk&1(7), wk&1(7))) can
be written as:

fk&1(N7)�|uk&1(7)|+|vk&1(7)|+|wk&1(7)|.
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Therefore, 27 can be rewritten as

27� :
k&2

j=2

fj (N7)+(|uk&1(7)|&uk&1(7))+|vk&1(7)|+|wk&1(7)|

by substituting fk&1(N7) into the 27 expression. Because |uk&1(7)|&uk&1(7)�0,
|vk&1(7)|�0, |wk&1(7)|�0, and �k&2

j=2 fj (N7)�0, we immediately have 27�0.

28 : According to Eq. (32), function fk&1(N8(uk&1(8), vk&1(8), wk&1(8))) can
be written as:

fk&1(N8)�|uk&1(8)|+|vk&1(8)|+|wk&1(8)|.

Therefore, 28 can be rewritten as

28� :
k&2

j=2

fj (N8)+|uk&1(8)|+|vk&1(8)|+(|wk&1(8)|&wk&1(8))

by substituting fk&1(N8) into the 28 expression. Because |uk&1(8)|�0, |vk&1(8)|�
0, |wk&1(8)|&wk&1(8)�0, and �k&2

j=2 f j (N8)�0, we immediately have 28�0.

21 : 21 in Eq. (27) is rather complex because it can be either positive or
negative depending on the location of S and the locations of N2 , N3 , and N5 . In
the following, we show that

21+22+23+25�0 (33)

even when 21 is negative.

When uk , vk , wk�0, according to Eq. (7), fk(S) becomes

fk(S)=|uk |+ |vk |+ |wk |.

Therefore, 21 (see Eq. (28)) becomes

21= &2 |uk |&2 |vk |&2 |wk |+|uk+uk&1(3)|+|uk+uk&1(5)|

+|vk+vk&1(2)|+|vk+vk&1(5)|+|wk+wk&1(2)|+|wk+wk&1(3)|. (34)

In Eq. (34), there are three negative terms &2 |uk |, &2 |vk |, and &2 |wk |. If
uk&1(3), uk&1(5), vk&1(2), vk&1(5), wk&1(2), wk&1(3) in Eq. (34) are all negative,
Eq. (34) becomes

21=&2 |uk |&2 |vk |&2 |wk |+|uk |+|uk&1(3)|+|uk |+|uk&1(5)|

+|vk |+|vk&1(2)|+|vk |+|vk&1(5)|+|wk |+|wk&1(2)|+|wk |+|wk&1(3)|.

The three negative terms are cancelled out. Therefore, 21�0. The worst case of
Eq. (34) occurs when all the terms, uk&1(3), uk&1(5), vk&1(2), vk&1(5), wk&1(2),
and wk&1(3), in Eq. (34) are positive. In this case, Eq. (34) becomes
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21=&2 |uk |&2 |vk |&2 |wk |+|uk |&|uk&1(3)|+|uk |&|uk&1(5)|

+|vk |&|vk&1(2)|+|vk |&|vk&1(5)|+|wk |

&|wk&1(2)|+|wk |&|wk&1(3)|,

i.e.,

21=&|vk&1(2)|&|wk&1(2)|&|uk&1(3)|&|wk&1(3)|&|uk&1(5)|&|vk&1(5)|.

(35)

21 is negative now. However, all these six negative terms in Eq. (35) can be can-
celled out in 21+22+23+25 . Because both vk&1(2) and wk&1(2) are positive,
according to Eq. (7), fk&1(N2) satisfies

fk&1(N2)�|uk&1(2)|+2 |vk&1(2)|+3 |wk&1(2)|. (36)

Substituting Eq. (36) into Eq. (29), 22 can be rewritten as

22� :
k&2

j=2

fj (N2)+|vk&1(2)|+4 |wk&1(2)|. (37)

Therefore, terms |vk&1(2)| and |wk&1(2)| in Eq. (37) can cancel out two negative
terms, &|vk&1(2)| and &|wk&1(2)|, in Eq. (35). The four other negative terms in
Eq. (35) can be cancelled out in a similar way. Because both uk&1(3) and wk&1(3)
are positive, according to Eq. (7), fk&1(N3) satisfies

fk&1(N3)�|uk&1(3)|+|vk&1(3)|+3 |wk&1(3)|.

Substituting this inequality into Eq. (30), 23 can be rewritten as

23� :
k&2

j=2

fj (N3)+|uk&1(3)|+2 |wk&1(3)|.

Therefore, terms |uk&1(3)| and |wk&1(3)| in this inequality can cancel out two
negative terms, &|uk&1(3)| and &|wk&1(3)|, in Eq. (35). Because both uk&1(5) and
vk&1(5) are positive, according to Eq. (7), fk&1(N5) satisfies

fk&1(N5)�|uk&1(5)|+2 |vk&1(5)|+|wk&1(5)|.

Substituting this inequality into Eq. (31), 25 can be rewritten as

25� :
k&2

j=2

fj (N5)+|uk&1(5)|+2 |vk&1(5)|.

Therefore, terms |uk&1(5)| and |vk&1(5)| in the above inequality can cancel out two
negative terms, &|uk&1(5)| and &|vk&1(5)|, in Eq. (35). Therefore, all six negative
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terms in Eq. (35) are cancelled out by 22+23+25 . This means Eq. (33) is true
when uk , vk , wk�0.

When uk , vk , wk>0, according to Eq. (7), the maximum value of fk(S) (which
corresponds to the worst case of 21) becomes

fk(S)=3 |uk |+3 |vk |+3 |wk |.

Therefore, 21 (see Eq. (28)) becomes

21= &2 |uk |&2 |vk |&2 |wk |+|uk+uk&1(3)|+|uk+uk&1(5)|

+|vk+vk&1(2)|+|vk+vk&1(5)|+|wk+wk&1(2)|+|wk+wk&1(3)|. (38)

In Eq. (38), there are also three negative terms &2 |uk |, &2 |vk |, and &2 |wk |.
When uk&1(3), uk&1(5), vk&1(2), vk&1(5), wk&1(2), wk&1(3) in Eq. (38) are all
positive, Eq. (38) becomes

21=&2 |uk |&2 |vk |&2 |wk |+|uk |+|uk&1(3)|+|uk |+|uk&1(5)|

+|vk |+|vk&1(2)|+|vk |+|vk&1(5)|+|wk |+|wk&1(2)|+|wk |+|wk&1(3)|.

The three negative terms are cancelled out. Therefore, 21�0. The worst case of
Eq. (38) occurs when all the terms, uk&1(3), uk&1(5), vk&1(2), vk&1(5), wk&1(2),
and wk&1(3), in Eq. (38) are negative. In this case, Eq. (38) becomes

21=&2 |uk |&2 |vk |&2 |wk |+|uk |&|uk&1(3)|+|uk |&|uk&1(5)|

+|vk |& |vk&1(2)|+|vk |&|vk&1(5)|+|wk |&|wk&1(2)|+|wk |&|wk&1(3)|,

i.e.,

21=&|vk&1(2)|&|wk&1(2)|&|uk&1(3)|&|wk&1(3)|&|uk&1(5)|&|vk&1(5)|.

(39)

21 is negative now. We can still use six positive terms, |vk&1(2)|, |wk&1(2)|,
|uk&1(3)|, |wk&1(3)|, |uk&1(5)|, and |vk&1(5)|, from 22+23+25 to cancel out all
these six negative terms in Eq. (39). Because both vk&1(2) and wk&1(2) are
negative, according to Eq. (7), fk&1(N2) satisfies

fk&1(N2)�|uk&1(2)|+|vk&1(2)|+|wk&1(2)|. (40)

Substituting Eq. (40) into Eq. (29), 22 can be rewritten as

22� :
k&2

j=2

fj (N2)+2 |uk&1(2)|+2 |vk&1(2)|. (41)
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Now only one term |vk&1(2)| can be used to cancel out &|vk&1(2)| in Eq. (39). We
still need term |wk&1(2)| to cancel out &|wk&1(2)| in Eq. (39). Actually, |wk&1(2)|
can be found in fk&2(N2) in Eq. (41). Because

fk&2(N2)�|uk&2(2)|+|vk&2(2)|+|wk&2(2)|,

and |uk&2(2)|=|wk&1(2)|, as shown in Fig. 10b, we have fk&2(N2)�|wk&1(2)|.
Substituting this result into Eq. (41), we have

22� :
k&3

j=2

fj (N2)+2 |uk&1(2)|+2 |vk&1(2)|+|wk&1(2)|. (42)

Therefore, terms |vk&1(2)| and |wk&1(2)| in Eq. (42) can cancel out the two
negative terms, &|vk&1(2)| and &|wk&1(2)|, in Eq. (39). The four other negative
terms in Eq. (39) can be cancelled out in a similar way. Because both uk&1(3) and
wk&1(3) are positive, according to Eq. (7), fk&1(N3) satisfies

fk&1(N3)�|uk&1(3)|+|vk&1(3)|+|wk&1(3)|.

Substituting this inequality into Eq. (30), 23 can be rewritten as

23� :
k&2

j=2

fj (N3)+|uk&1(3)|+|vk&1(3)|+2 |wk&1(3)|.

Therefore, terms |uk&1(3)| and |wk&1(3)|, in this inequality can cancel out two
negative terms, &|uk&1(3)| and &|wk&1(3)|, in Eq. (39). Because both uk&1(5) and
vk&1(5) are positive, according to Eq. (7), fk&1(N5) satisfies

fk&1(N5)�|uk&1(5)|+|vk&1(5)|+|wk&1(5)|.

Substituting this inequality into Eq. (31), 25 can be rewritten as

25� :
k&2

j=2

fj (N5)+|uk&1(5)|+|vk&1(5)|+2 |wk&1(5)|.

Therefore, terms |uk&1(5)| and |vk&1(5)|, in the above inequality can cancel out
two negative terms, &|uk&1(5)| and &|vk&1(5)|, in Eq. (39). Hence, all six negative
terms in Eq. (39) are cancelled out by 22+23+25 . This means Eq. (33) is true.

In summary, we have shown that 20 , and 2i , i=2, 3, 4, ..., 8 are always non-
negative. 21 is either positive or negative. When 21 is nonnegative, Eq. (27) is
automatically nonnegative, and hence, Eq. (18) is true. When 21 is negative,
21+22+23+25 is still nonnegative which guarantees that Eq. (27) is non-
negative, and hence, Eq. (18) is correct. Therefore, Eq. (18) is always true, which
means that Eq. (17) is always true for l=k. Therefore, Eq. (17) is true for all l, i.e.,
Theorem 3 is true. K

995TIME-STEP OPTIMAL BROADCASTING



APPENDIX C

Proof of Theorem 6

Proof. Equation (15) can be written as

MDd
k(Ek)=(2d&1)[ak+(2d)1 ak&1+(2d)2 ak&2+(2d)3 ak&3+ } } } +(2d)k&2 a2]

+(2d)k&1 MDd
1(E1), (43)

through substitution. Using Eq. (1), the first term of Eq. (43) can be written as

ak+(2d)1 ak&1+(2d)2 ak&2+(2d)3 ak&3+ } } } +(2d)k&2 a2

=
1
3

[[(2d)0 2k&0+(2d)1 2k&1+(2d)2 2k&2+(2d)3 2k&3+ } } } +(2d)k&2 22]

&[(2d)0 (&1)k&0+(2d)1 (&1)k&1+(2d)2 (&1)k&2

+(2d)3 (&1)k&3+ } } } +(2d)k&2 (&1)2]]

=
1
3

[2k[(2d&1)0+(2d&1)1+(2d&1)2+(2d&1)3+ } } } +(2d&1)k&2]

&(&1)k [(&2d)0+(&2d)1+(&2d)2+(&2d)3+ } } } +(&2d)k&2]]

=
1
3 _2k_

1&(2d&1)k&1

1&2d&1 &(&1)k_
1+(&1)k (2d)k&1

1+2d & . (44)

Therefore, by substituting Eq. (44) and MDd
1(E1)=2d&1 into Eq. (43), we get

Eq. (16). K
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