Cyber Security Defense:

From Moving Target Defense to Cyber Deception

Jie Wu

Temple University

Outline

- 1. Offense vs. Defense
- 2. Cyber Deception in Offense
- 3. Deep Fake
- 4. Cyber Deception in Defense
- 5. Moving Target Defense
- 6. Challenges of Cyber Deception
- 7. Conclusions

1. Offense vs. Defense

- The Art of War
 - All warfare is based on deception
- Offense vs. Defense
 - Attack is the secret of defense
 - Defense is the planning of an attack
- Cyber Deception
 - Both attacker and defender

2. Cyber Deception in Offense

New York Times (12/28/2020)
Designed to Deceive

Website Generated.Photos

"unique, worry-free" fake person for \$2.99

3. Deep Fake

Defend against facial forgery

Face reenactment

Face swapping

Face2Face, CVPR 2016

Architecture of deepfake defense systems

Deep Fake Detection

- Limitation of current defense systems
 - Cannot defend against unseen attack methods
 - Features of different attack methods can be independent

Feature overlap among existing facial forgery techniques [1] (tested on MesoNet)

[1] J. Brockschmidt, J. Shang, and J. Wu., "On the Generality of Facial Forgery Detection", Proc of REUNS 2019 (Best Paper)

Deep Fake Detection (Cont'd)

- Detection using side-channel information [2]
 - The screen light reflected off human faces

[2] J. Shang and J. Wu, "Protecting Real-time Video Chat against Fake Facial Videos Generated by Face Reenactment", Proc of ICDCS 2020

2. Cyber Deception in Defense

- Cyber deception
 - Planned actions to mislead/confuse (i.e. trap) attackers
- Goals
 - Complement detection, enhance prevention, and mitigate successful attacks
- Unit and layer
 - Parameter, file, account, profile, ...
 - Network, system, application, data, ...
- Life cycle of cyber deception
 - Collect knowledge of attacker
 - Implement deception schemes

Types of Deception

- Perturbation
 - Perturb sensitive data with noises
- Mixing
 - Prevent linkability (mixing zone)
- Obfuscation
 - Decoy targets and/or reveal useless info
- Honey-X
 - Disguise honeypots as real systems
- Moving target defense (MTD)
 - Change attack surfaces to increase uncertainty and complexity for attackers

Honeypots and Honey-X

- Honeypots
 - Bears: honey eaters
 - Traps

Honey-X

- Honeynet: two ore more honeypots on a network
- Honeyfile, honeyword, ...

5. Moving Target Defense

- Hierarchical military command chains
- Network hierarchy
 - SDN controllers: load balance and fault tolerance

Self-Organizing Solutions

Local decision

 P2P and simple interaction (mostly local and without sequential propagation)

Global functionality

Adaptive, robust, and scalable

Principles

- P₁: Local interactions with global properties (scalability)
 - P₂: Minimization of maintained state (usability)
 - P₃: Adaptive to changes (self-healing)
 - P₄: Implicit coordination (efficiency)

Agility

MTD Applications

Connected Dominating Set (CDS)

Local decision:

backbone nodes

based on node priority (ID, degree, ...)

Global properties:

Connectivity
Coverage

Application: Resiliency and Rotation

- Redundancy: K-connected & K-dominated
 - Non-backbone node: K node-disjointed paths for any neighbor pairs (for multiple CDS)

- Moving target defense: CDS rotation
- Self Healing: How can we deal with the complexity of building a structure along with a change of topology [3]?

[3] J. Wu, "Uncovering the Useful Structures of Complex Networks in Socially-Rich and Dynamic Environments", *Proc. of IEEE ICDCS*, 2017

4. Challenges of Cyber Deceptions

- Limited Applications
 - Projected market to be \$1B by 2020
- Effectiveness
 - How to measure?
- Game Theory and Learning
 - Ability of both attackers & defender

Limited Applications in Defense

- Still limited in cyber deception, why?
 - Oifferences: cyber deception vs. deceptions in warfare
 - Domain: cyber vs. physical, social, ...
 - Time: different scales, logical clock vs. physical clock (i.e., real time)
 - Space: virtual space vs. physical space
 - Speed: speed of light vs. physical space laws (e.g., movement of a tank)
 - Do not understand the attackers well: known vs. unknown
 - Know your enemies and know yourself
 - Objective to attract attackers to interact with them in cyberspace?
 - It is relatively easy to engage your enemies in a battle field

Effectiveness

- Effectiveness measurement for attackers
 - Rate frustration in time and cost
- Effectiveness measurement for systems
 - Time and place of attacker's action
 - How much attacker's resources are wasted (e.g. num. of packets)
 - How long before attacker break the system/ stop acting
 - How much valuable data are breached
 - And more...

Measurement

Lord Kelvin: If you cannot measure it, then we cannot improve it

Extended dependability that includes security

- Mean time between security incidents (MTBSI)
- Mean time to incident discovery (MTTID)
- Mean time to incident recovery (MTTIR)

Performability: work completed before the next security breach

Degradation

- B₁: Level 1 breach, 1,000 hrs
- B₂: Level 4 breach, 5 hrs

Game Theory and Learning

- Markov chain (MC)
 - Basic MC: transition probability
 - Semi MC: time and budget limit
 - Hidden MC: partially observable state (attacker/defense)
- Stochastic repeated game
 - Learn the behavior of the attacker: learning theory

(0: healthy, 1: slightly damaged, 2: heavily damaged, 3: disabled)

Learning: Cognitive Biases

- Deception is strongly relied on human psychology
 - Cognitive biases
- Cultural biases
 - Power Distance Index (PDI)
 - Uncertainty Avoidance (UAI)

Final Thoughts

Cyber-deception: friend or foe?

- Misinformation vs. disinformation
 - Disinformation is information that is deliberately false or misleading
 - Recent events in the world
- Challenges
 - Identifying disinformation is not merely about the truth, but about referring the intent (to mislead)

QAnon or Antifa?

- An article in WeChat
 - US Capital Hill, 01/06/2021

Smarter Than You Think

- Who is Smarter
 - Human or Computer?
- Homo Dues: Man God
 - AI-designed software/media
 - Controls Homo Sapiens
 - Replaces human beings

5. Conclusions

- Importance of cyber deception
 - Compliment to the existing security methods
- Self-organized design for agility
 - Basic principles and challenges
- Future
 - A better learning model for attackers/defenders
 - Security vs. ML
 - Game theoretical models
 - Science of security (5 & P 2017)