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Abstract—Today, large DNN models are often trained in
parallel and distributed environments, which inevitably incur
high costs for fault tolerance. Existing solutions rely on periodic
checkpoints to save training state in run-time and recomputing
from the latest checkpoint to recover upon a failure. Despite
recent efforts to reduce checkpoint cost, data transfer bandwidth
can become a bottleneck, limiting checkpoint frequency, and
consequently leading to high recomputing cost. This paper focuses
on efficient fault tolerance for large model training and proposes
Controlled Predicting-assisted Self-Recovery (CPSR). Instead of
resource-consuming recomputation, it features a lightweight pre-
dictor, fed by routine checkpoints, to predict training state prior
to a failure. The prediction error exhibits as a minor perturbation
that can be self-corrected by the training process itself. We
propose a quantified model of predicting-based recovery cost
during rehabilitation and introduce a novel checkpoint interval
problem that seeks to minimize the overall fault tolerance cost.
We present a solution to compute the optimal checkpoint interval
configuration for a given setting, balancing checkpoint and
recovery cost. Extensive testbed experiment data demonstrate
that CPSR reduces the recovery cost by 41.66% on average
compared with state-of-the-art approaches, while introducing a
small GPU memory footprint (less than 200MB).

Index Terms—Fault Tolerance, Large Model Training, Self-
correcting, Predicting-based Recovery

I. INTRODUCTION

In recent years, DNN models have experienced rapid growth
in terms of parameter size [1] and dataset volume [2]. For
example, the PalLM large language model has 540 billion
parameters [3]], and is trained using a dataset of 780 billion
tokens. Large model training is usually computationally inten-
sive and time-consuming. OPT-175B is trained with 992 GPUs
for more than two weeks [4] and DeepSeek-v3 used 2,048
GPUs for 50 days [3]]. Various parallel schemes, for example,
Data Parallel (DP) [6], Pipeline Model Parallel (PMP) [7-
10|, tensor parallel [11} [12]], sequence parallel [13] and MoE
parallel [[14} [15], have emerged to facilitate large DNN model
training jobs, especially in distributed environments. These
training jobs inevitably suffer from high fault rates [4] 5].
Meta’s LLaMA3 pretraining has been reported to have ex-
perienced 466 interruptions during a 54-day period [16].
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Figure 1. Performance impacts of bandwidth competition.

Checkpoint/recompute has emerged as the dominant fault
tolerance method for training large models [17H20]], but intro-
duces a high cost of fault tolerance, including the checkpoint
cost from training interruptions in run-time and the recovery
cost caused by recomputing the lost progress upon a failure.
Recent studies have focused on decoupling checkpoint op-
erations from training workflow to reduce checkpoint cost.
Specifically, recent checkpoint mechanisms [17, [19, 20] save
the state of a training job by two steps: snapshot (GPU-to-
CPU) and persistence (CPU-to-storage).

The latest snapshot methods significantly reduced train-
ing interruptions, but frequent checkpointing remains infeasi-
ble [20]. The checkpoint interval of large training jobs can be
as long as 3 hours [21], leading to high recomputing cost in the
event of a failure. For example, the recomputing cost for the
OPT-175B training reached 178,000 GPU hours, 13% of the
total amount [4]. This is mainly because the limited CPU-to-
storage I/O bandwidth increases the persistence time [[19} 20],
especially when the model states become larger. Due to the
high I/O contention among the tasks, the checkpoint time for
a large training job can reach 10-15 minutes [4]]. Fig. [T] shows
a similar situation we experienced when multiple parallel
tasks (GPT/CodeSearch) perform concurrent checkpoints on a
server. Moreover, frequent data loading operations in modern
training frameworks [22, 23] further aggravate I/O pressure,
thus increasing persistent time (by 19.7%). Data bandwidth
can become a bottleneck, restricting the checkpoint frequency.

This paper revisits the issue of failure recovery for large
model training from a novel perspective. Recent studies sug-
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Figure 2. Boosted rehabilitation vs. recomputing recovery.

gested that the model training process is capable of tolerating
minor perturbations, introduced by quantization [24} 25|, lossy
recovery [26, 27]], or asynchronous model updating [28]], etc.
Instead of recovering the training state with expensive recom-
puting, we take advantage of the self-correcting characteris-
tic [26] of model training and let it rehabilitate. We propose
Controlled Predicting-assisted Self-Recovery (CPSR) that a)
includes a lightweight predictor, fed by routine checkpoints,
to quickly predict training state upon a failure, giving the
recovery a boost start (as shown in Fig.[2), and b) incorporates
a quantified model of the Predicting-Based Recovery (PB-R)
cost to guide control of the PB-R process.

As Recomputing-Based Recovery (RB-R), the proposed PB-
R method also restarts from the latest checkpoint but does
not require recomputation, therefore, has more potential for
fast failure recovery. It introduces two challenges. a) How to
accommodate the predictor training in the original training
process, without introducing an additional device, is a key
acceptance factor in real-world applications. b) Accurate pre-
diction of the training state brings the training closer to where
the failure occurred and, therefore, requires less recovery.
However, it depends on a larger checkpoint sample size, which
consequently increases the checkpoint frequency. How to trade
off prediction accuracy and checkpoint cost is a key issue.

This paper makes the following key contributions:

o« We propose a novel predicting-based failure recovery
framework, CPSR, that incorporates predicting-assisted
boost to the self-recovery of model training. It accommo-
dates a lightweight predictor to support fast and accurate
failure recovery in parallel and distributed environments.

o« We introduce a quantified recovery cost model and a
novel checkpoint interval problem that minimizes the
overall fault tolerance cost. A solution is proposed to
compute the optimal checkpoint intervals.

o Comprehensive data from testbed experiments based on
real application setups demonstrate that CPSR reduces
the recovery cost by 41.66% on average compared with
state-of-the-art approaches.

II. RELATED WORK

A. Consistent Fault Tolerance

Traditional fault tolerance approaches aim to restore an
interrupted job to its exact state before a failure. The Check-

point/restart method periodically saves the training state, usu-
ally includes parameter state and optimizer state, to persistent
storage, and recomputes the loss process upon a failure.

CheckFreq [19] is among the first attempts to enable
snapshot and persistent operations to be pipelined with the
original training process. It significantly reduced snapshot cost,
but was restricted by host memory bandwidth. To reduce
checkpoint cost, Gemini [17] attempts to hide snapshot cost
within communication gaps, but risks network contention and
may degrade communication performance in parallel settings.
JIT-Checkpointing [18] employs a just-in-time approach via
a proxy-server architecture to isolate the host from process
crashes, preserving the model states. However, its effectiveness
is severely constrained by the type of failure (for example,
ineffective against proxy-server failures). Despite recent efforts
to reduce checkpoint cost, the limited bandwidth for data trans-
fer restricts checkpoint frequency [29]. These approaches can
incur prohibitive recovery costs [19]] and even risk complete
job failure when large-scale errors occur [17, [18].

B. Inconsistent Fault Tolerance

In parallel settings, a global checkpoint involves local
checkpoints for each task, performed in synchronous [18]]
or asynchronous [19l [20] manners. In either way, a degree
of global consistency is usually mandatory to complete the
global checkpoint. Recent studies have shown that the iterative
convergent training process has a self-correcting characteristic
that it is capable of tolerating minor perturbations [24-28]], in-
spiring a new trend of inconsistent fault tolerance approaches.

SCAR [26] was the first to demonstrate that minor incon-
sistencies of parameter states among parallel training tasks do
not affect convergence properties or even the trajectory of an
iterative training job, providing an important foundation for
future studies. Differentiated checkpoint intervals are adopted
among parallel tasks, without global consistency guarantees.
Failures are restored by local checkpoints, avoiding expensive
global rollback and recomputing. CPR [27] further proposed
a partial recovery approach and explored the effect of incon-
sistent model states on the training accuracy empirically.

An effective quantitative model describes how the pertur-
bation affects the training accuracy is missing. This makes
inconsistent approaches difficult to control [27] and not easily
accepted [26] by real-world applications.

C. Parallelism Techniques

A range of parallel schemes [6-8, [12] 30] have been
proposed to deal with rapidly increasing dataset volumes and
model sizes. Multiple orthogonal schemes can be used in a
hybrid manner [6, [11} [12] to facilitate large model training
in distributed environments. Specifically, two parallel schemes
are important to implement the proposed CPSR.

Data Parallelism (DP) launches multiple replica instances
(worker tasks) across devices. Each worker consumes a sub-
set of data and participates in periodic global parameter
updates, usually implemented by collective communication
(e.g., AllReduce [31]), to ensure model convergence. Model
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Figure 3. CPSR framework.

state redundancy is introduced across workers within a DP
group. This provides an opportunity to reduce the overhead
of the proposed predictor. The prediction workload can be
shared among predictor instances that reside with each original
training task in a DP group, as examples in Section [[TI-B}

Pipeline Model Parallelism (PMP) splits model layers into
pipeline stages (tasks) distributed across multiple devices, but
suffers from pipeline bubbles (idle time). GPipe [7] introduces
micro-batching to improve training performance. DAPPLE [8]]
adopts the One Forward-One Backward schedule to reduce the
memory footprint of activations. Inevitable bubbles in PMP
provide an opportunity for a device to host additional tasks.
Assisted by recent fast-switching approaches [10} 30} 32], it
is possible to run additional lightweight training tasks without
strongly interfering with the original training task.

III. CPSR DESIGN

We propose a novel failure recovery framework, CPSR, to
support fast recovery for large model training in parallel and
distributed environments. Fig. [3] shows the overall design of
CPSR. It consists of four modules, predictor, coordinator,
fitter, and planner. The predictor is trained in run-time on
the same device of each target training task, with periodic
checkpoints. It infers the training state (parameter state and
optimizer state) based on the last checkpoint to restart an
interrupted task upon failure. The coordinator manages the
device memory and the execution flows of the original training
task and the predictor training task to reduce the predictor
overhead. The fitter collects validation loss values of a training
job over time and dynamically characterizes the properties
(coefficients) of the loss function curve, indicating the con-
vergence trajectory of the training.

A. Predictor

The predictor is designed to achieve both lightweight and
precision. As shown in Fig. [] the predictor consists of
two core components: FFT-based Data Denoising (FDD) and
Variable-Interval Temporal Predictor (VITP).

To avoid high-overhead training with large checkpoint
samples (for example, the full OPT-175B model checkpoint
can reach 2.5 TB), we propose a data denoising method
FDD. It first applies a Fast Fourier Transform (FFT) to the
checkpoint data sequence, mapping time-domain parameters to
the frequency domain to separate components. High-frequency
data (noise perturbations) are filtered out to reduce overhead,
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Figure 4. Predictor design.

low-frequency data (slow-changing baseline states) are stored
as baselines, and only mid-frequency data (stable evolutionary
patterns) that account for 40% of the total volume are fed to
the main DNN of the predictor. The proposed FDD proce-
dure significantly reduces the volume of training data, while
preserving prediction accuracy.

The convergence rate of a training job, denoted by (v),
generally exhibits a superlinear decrease over time. As a result,
the training process can be divided into non-uniform phases
with different convergence behaviors, according to v. This
requires the predictor to have the ability to predict variable-
interval time series. Traditional Transformer-based time series
prediction models [33] demonstrate strong performance in
fixed-interval scenarios, but cannot be directly applied to
variable-interval settings. We design a Transformers-based
model to handle irregular temporal spacing. VITP introduces
a dynamic time embedding layer that encodes varying check-
point intervals into the latent space. The time embeddings
are additively combined with input features before position
embedding, injecting temporal awareness.

Eventually, upon failure, the time domain prediction state
from VITP is constructed with the resident low-frequency data
from FDD via inverse FFT (iFFT) to form the prediction state,
maintaining both short-term dynamics and long-term trends.

B. Coordinator

CPSR deploys a lightweight local predictor on each GPU,
in charge of boosting the recovery of the local training task.
The coordinator is designed to accommodate the predictor
training task, along with the original training task, sharing
time and space. The coordinator obtains the pipeline topology
before training and applies fast task switching [30] to hide
the predictor training task in the bubbles (outlined zone in
Fig. B} A of the original training pipeline. We demonstrate the
effectiveness of the coordinator in Section [VI-C3]

Hosting multiple training tasks in device memory can be
difficult, as the volume of models is increasing rapidly [l [3].
Recent studies on fast task switching [30, [32] utilize host
memory as a shared warehouse of model states to increase
concurrency among tasks, but frequent memory swapping [34/]
may still cause contention for the GPU data transfer band-
width. We propose a lightweight predictor with a small
memory footprint (<200MB) that is practical to reside in
GPU memory with the original training task. The predictor
only saves its local parameter and optimizer states after each
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Figure 5. Coordinator design.

iteration, incurring negligible overhead. In circumstance where
GPU memory is insufficient, the coordinator will offload the
activations of the original training task to host memory after
the forward pass and reload them before the backward pass.
The activation offloading operations are paired with predictor
uploads to overlap with inter-stage communications in PMP to
reduce swapping overhead, as shown in Fig. [5}B. The data is
further partitioned into smaller chunks, enabling fine-grained
scheduling to maximize utilization of idle bandwidth.

Moreover, with the application of DP, the redundancy of
model states in a DP group makes it possible to further divide
the prediction workload. As illustrated in Fig.[5}C, a DP group
of 2 tasks has 2 predictors, each is in charge of half of the total
prediction workload. This will further reduce the predictor
overhead, as demonstrated in Section [VI-C3|

C. Fitter

The loss function curve is an important metric for assessing
training convergence trends [33, 36]. It can usually be fitted
online [37]. At the end of each training phase, the fitter is
launched to approximate the loss descent trajectory (coeffi-
cients). Compared with considering all previous phases, we
found that focusing on the recent time spans fits the true
curve more precisely. The reason is twofold, 1) mainstream
DNN optimizers [38] introduce stochasticity in gradient up-
dates that alter the training trajectory, 2) certain learning rate
schedulers 140]] tend to use non-uniform learning rates in
different phases of the training process. We demonstrate the
performance of the fitter in Fig. [I2] The loss curve illustrates
the relationship between training progress and training time,
which helped to inspire the modeling of rehabilitation cost.

D. Planner

The CPSR does not enforce uniform 7, among tasks, since
each task can have different parameter volumes that lead to
different checkpoint and recovery costs. As the inconsistent
fault tolerance approaches [26] 27, the planer computes op-
timal checkpoints for each task separately. Moreover, CPSR
does not require a uniform 7. throughout the training process.
The training state generally becomes stable when a model
is near convergence. Thus, it becomes easier to predict the
failed training state and recover when the training is in its

TABLE I: Notations

Notation Description

Notation Description

Ts checkpoint cost ‘ T, checkpoint interval
T recomputing-based T predicting-based
r recovery cost P recovery cost
T fault tolerance cost ‘ A failure occurrence rate
i checkpoint index ‘ t iteration index
N number of parameters X second-order moment
P to be recovered vt of gradient at iteration ¢
. o expectation of the
AF prediction deviation ‘ & Jnd-order derivative
L smoothness coefficient ‘ I strong convexity coefficient
coefficients for loss ‘
o, T

curve functions

late training phases than in its initial phases. Since T is
independent of the convergence rate v, in practice, instead of
computing an optimal 7. for the entire training process based
on average v, the planner calculates the optimal T, according
to the proposed solution (Section [V-C)) for each separate phase.

IV. CHECKPOINT INTERVAL PROBLEM FORMULATION

One key challenge in CPSR is how to decide the optimal T
for each training task of a job. This section first briefly reviews
the RB-R fault tolerance cost model and then proposes the
PB-R cost model, based on which a novel checkpoint interval
problem is introduced.

A. Recomputing-Based Recovery

The periodic checkpoint in run-time saves training states.
When a failure occurs, the training states are rolled back to the
last checkpoint to avoid a restart from the very beginning. As
shown in Fig. [6] each checkpoint operation involves a cost of
T, considering both snapshot and persistent, which is usually
not a straightforward combination. 7). is the recovery cost
(recomputing) to get the training states back before failure. 7
decides the maximum 7;.. Frequent checkpoints lead to a high
checkpoint cost, including execution stall, while infrequent
checkpoints may cause a longer recomputing time. The trade-
off of checkpoint and recovery cost is an essential issue that
has been studied in different settings [17, [19, 20, 26} 29| 33|
“41]]. More notations are listed in Table

B. Predicting-Based Recovery Problem

PB-R method also relies on periodic checkpoints to save
training states. The proposed predictor is trained in run-time
with the checkpoints. Upon a failure, the predictor uses recent
checkpoints as input to infer a training state that is close
to that before the failure. This gives the recovery a start-up
boost, at very little cost that can be omitted. The deviation
between the predicted and the true training state is defined as
prediction deviation (denoted by AF'). It shows as a minor
perturbation [26] of the model training process that can self-
correct over time. The PB-R cost 7T}, is defined as the additional
training required for a model to be rehabilitated, as shown
in Fig. [6] It is inversely correlated with the accuracy of the
predictor. A comprehensive model of T}, is needed to guide
the control of the PB-R process.
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The PB-R cost T}, is influenced by three factors, the amount
of model parameters affected by a failure, the speed of
convergence at the moment and the distance to the projected
destination. The number of parameters to be predicted (V)
can be obtained based on the partition of the model. For
example, IV, equals the number of parameters in an interrupted
PMP stage (task). We use the loss curve, fit by the fitter in
Section III-C, as an indication of the training convergence rate.
The projected distance is constrained by 7. Detailed modeling
of T, is proposed in Section

The richness of the dataset plays a decisive role in the
generalization of the DNN model [2]]. Similarly, for predictor
training, we argue that appropriately increasing the sample size
(number of checkpoints) can improve its accuracy, as empiri-
cally validated in our test (Fig. [7]and Fig. [§]in Section [VI-A).
A high checkpoint frequency can affect the training process,
causing a higher checkpoint cost. However, a low checkpoint
frequency can jeopardize the accuracy of the predictor and in-
crease the difficulty of self-recovery or even make it infeasible.
T, is a critical controller for predicting-assisted self-recovery.
This paper introduces a novel checkpoint interval problem to
trade off the checkpoint and recovery cost.

Definition 1. Predicting-based Checkpoint Interval Prob-
lem (PCIP). Given failure rate ), checkpoint cost T, the
amount of parameter affected by a failure N, and the second-
order moment of the gradient v of a model, find a checkpoint
interval T, with minimum fault tolerance cost T;.

n=3" (T +T)PMd (1)
s.t. T, = f(Np, v, Te) )
P(t)=Xe M X =1/T 3)

F(y) < F(z) + V(@) (y —2) + Llly —«|*/2 @&

F(y) > F(2) +V(2) (y —2) + plly —z[?/2 (5
The fault tolerance cost 7; consists of the total checkpoint
cost and the accumulated PB-R cost for random failures. We
assume a widely applied failure scenario in the literature that
the occurrence of failures is random (a Poisson process) with
a failure rate A [37, 41], whose inter-arrival time ¢ follows
the density function given by Eq. 3] Eq. @] and Eq. [5] express
the smoothness [42] and strong convexity [43]] of the DNN
objective function F, where z,y € R?.

mintmum

C. Assumptions

In this paper, we make the following assumptions. First,
failures are assumed to follow a Poisson distribution (Eq. [3),

aligning with the literature [37, [41]]. Second, the minor pertur-
bation caused by the prediction deviation does not affect the
original model convergence property and trajectory, which is
theocratically proved in [26] and empirically validated in our
experiment (Section [VI-CI). Finally, we assume that the loss
function of a model training job can be fitted [35H37].

V. APPROACH

The PCIP presents two main challenges. How to quantify
the PB-R cost 7,7 How to compute optimal checkpoint
interval for each training phase with a small overhead? First,
Section [V-A] proposes a model of the prediction deviation
introduced by the predictor. Then the PB-R cost model T},
is presented in Section reflecting the additional training
time required to eliminate the prediction deviation. Finally,
Section [V-C] presents a solution for PCIP.

A. Prediction Deviation

The prediction deviation AF represents the difference
in model quality, indicated by the variation of the loss
value, between the predicted and the true training state.
The Smoothness and Strong Convexity of the DNN objective
functions (Eq. f] and Eq. [5) provide the upper and lower
bounds of AF' caused by parameter perturbations (dx), as
V(z)Téx + £|0z|? < AF < V(2)Téz + L||6z|. L and
1 correspond to the upper and lower bounds of the eigenvalue
of the Hessian matrix [42, 43]] of the function F'. From the
second-order Taylor expansion, there exists some 6 € [0, 1],
AF = VF(z)"0x+ 462" V2F (x+06z). In practice, a scalar
curvature estimate &; is often used to approximate the second-
order term. For any dz, there exists &; € [u, L] such that

AF ~ V(z)T6x + & ox|? /2, (6)

where &; denotes the estimated average curvature along the
update direction at iteration t.

The second moment of the gradient is commonly employed
to approximate the Hessian diagonal based on the Lipschitz
continuity assumption, i.e. E[g?] ~ diag(V?F(6)), due to the
high time complexity to compute second-order derivatives. We
use the Exponentially Weighted Moving Average (EWMV)
of squared gradients as an online estimator [38] that v; =
Bovi_1+(1—32)g:2. An approximate form of &; is as follows:

S = Zj; [Beve1; + (1 = B2)ge;°l /Ny, (D

where v, ; can be obtained from the optimizer state [38].

The proposed predictor is a time-series predicting model
fed by checkpoints. Its accuracy is affected by the sampling
interval (checkpoint interval). The projected difficulty of the
prediction is positively correlated with 7, as demonstrated
later in Fig. We establish the relationship between the
accuracy of the predictor (indicated by its validation loss
value) and the checkpoint interval as

lossy(t) =e ™ 7ot 8

where 7y and 7 are coefficients of the loss function that can
be fitted online [37].



Meanwhile, the predictor regressively learns the evolution
pattern of parameter states and optimizer states over time. The
loss function for regression problems [44-46] usually adopts
the Mean Squared Error (MSE) as

tossylt) = 3 (0 = 43 /Ny ©

With Eq.[8] Eq.[9]and Eq.[6l we derive the relationship from Tt
through 0, to AF. The first term in Eq. [6]is omitted because
it is usually much smaller than the second one (over 140
times in our experiment training GPT3-3.35B). The prediction
deviation AF is related to T, as

AF = ¢(Nje et ), (10)

B. Predicting-Based Recovery Cost

The prediction deviation incurs a minor perturbation that
needed to be self-corrected by the training process with extra
training time, introducing recovery cost 7,. We first construct
a mapping of the prediction deviation AF' and the estimated
recovery time based on the trajectory of the validation loss
value of the original training job. The loss value serves as a
nonnegative metric to track training progress and assess model
quality. Its function outlines the training progress over time
and generally exhibits convexity and monotonic descent [35-
37]. Research has shown that neural network algorithms
exhibit linear or superlinear convergence rates of O(u*) [33].
Thus, we model the loss function as an exponential function,

(1)

where the coefficients a; and «g can be fitted by the fitter
proposed in Section [[II-C|l «; controls the curvature of the
loss curve, while the position of the curve is controlled by as.

Furthermore, we develop a cost model to characterize the
temporal degradation caused by perturbations, compared with
the failure-free scenario. Suppose the failure-free convergent
parameter state is x*, and the parameter state at the k-th
iteration is x. If the condition F'(xy)—F'(z*) < e is satisfied,
where F' is the objective function and € corresponds to the
prescribed convergence tolerance, then xj is considered to
have converged. Suppose a predicting-based recovery occurs
at time ¢, causing a loss variation AF. After recovery, the
training converged at iteration &', and the loss function satisfies

loss, (k') = [(em@1)t. e 4 AF}(efal)k/ft.

predicting—assisted

loss,(t) = e~ 1ttoz,

12)

The predicting-assisted term represents the training itera-
tions before ¢ and the prediction deviation caused by the
prediction on restart. The rest of Eq.[I2] describes the training
process after the predicted boost start. Although it does not
guarantee an identical convergence state, compared with that
of failure-free training, our experimental results (Fig. [§) indi-
cate that decent predictions (accurate to 10~%) are sufficient to
preserve the original convergence behavior. This aligns with
recent studies on parameter quantification [25]. Therefore, the
recovery cost model is

T, =k —k=In[l +e*t=2  AF]/ay.  (13)

Since e*1te=2. AF € (0, 1), and it is typically a small value,
applying the first-order Taylor approximation In(1 + z) = z
for small x, we derive the explicit form of Eq. [2| as

Tp — e%tle—02 | (é’Npe_TlTic—H—Q)/QOél. (14)

C. Optimal Checkpoint Scheme

Based on the PB-R cost T;., we propose an optimal check-
point scheme to minimize the fault tolerance cost in the
training process. Combining with Eq. [I4] we further formulate
the objective of the PCIP as

S 3 ajt—a
Ti= 3 iy O+ SR NG (15)
In practice [22], v undergoes only minor variations in a short
period of time. Therefore, a training phase is divided when the
accumulated variation of v exceeds a threshold. During each
training phase, the temporal effects on £ are ignored. At the
start of each phase, ¢ is approximated as a piecewise constant.

Theorem 1. An optimal checkpoint interval that minimizes the
cost of fault tolerance in the PCIP can be calculated as

S S
B+ MNAT,

where A = EN,me™~*? /204 and B = aq — \.

(16)

Proof. By integrating and adding the resulting geometric
series on Eq. we obtain
B Ts AN ™2

1 — e MTetTs) 2016
where 0 = a1 — % — A and n represents the checkpoint
numbers that is typically a large value.

Next we show that 1 — e(Te+7:) converge to 1 as n
increases. It can be divided into three terms according to 6. (1)
em1(Te+Te) can be expressed as 2 /e~ 1™ Te+Ts)+e2 which
represents the ratio of maximum (initial) to minimum (con-
vergence) loss values 2 /e that is independent of T,. (2) The
overall trend of the loss function is monotonically decreasing
(1 > 0), thus e~/ Te(TetTe) s in [0,1]. (3) nA(T. + Ts)
represents the expectation of the number of failures, which
typically ranges from hundreds to thousands in large model
training [4], thus " Te+Ts) dominates e™?(Te+7:) Because
1 — e"MTetT5) convergences to 1 as n increases, we simplify
T; by canceling out 1 — e™?(Te+7T) "and seek the minimum 7}
by taking the derivative of 7; with respect to T, as

dr, _ AT M) - AENper—ey
dr, — [L — e MTeATo)]2 + 20102T.2
In practice Ty, T, < T'f, by approximating 1 — e~ 7e+7T%) o
—\(T. +Ts), we obtain Ty /[\N(T. + Ts)]?> = A/(BT. — 1),
where A = {NpTe™ %2 /2a; and B = aq — A O

T . [1 _ eng(TC+TS)], (17)

(18)

VI. EVALUATION
A. Resuming Training from a Failure
CPSRE] is implemented as a plug-in module for PyTorch.
The checkpoint module is developed based on the Checkfreq

Uhttps://github.com/wangzc-HPC/CPSR.git



TABLE II: Evaluation workload

Model Dataset # Layer # Hidden size  # of Params
VGG16 ImageNet 16 _ 144M
GPT2-0.35B  CodeSearch 24 1024 350M
GPT3-3.35B  CodeSearch 16 4096 3.35B

snapshot [[19]. No user intervention is required to apply CPSR,
except for checkpoint storage configurations.

CPSR periodically monitors tasks’ run-time status. Upon
device-level failure, e.g., GPU-side training task failures,
CPSR first restores the interrupted task based on the last
checkpoint, then uses predictor to infer a training state as a
boost-start, followed by the self-recovery process. For parallel
training jobs, one key technical challenge is maintaining the
communication context among tasks in the same job. We
adopt a similar method of communication proxy [18]] to main-
tain communication links, buffers, and message consistency,
avoiding cascading errors caused by communication timeout.
Upon node-level failure, e.g. multiple GPU-side failures and/or
CPU-side failure, CPSR recovers each task independently, and
reboots proxies and reestablish links if needed.

B. Experimental Setup

We conducted comprehensive testbed experiments to eval-
vate the performance of CPSR. The results show that CPSR
achieves 1.46x training throughput over state-of-the-art failure
recovery approaches on average.

1) System Setups: The testbed consists of two platforms.
Platform A has four servers with Inte]l XEON 6330 CPUsx2
and NVIDIA A30 GPU (24GB)x2 each, and platform B has
one server with Intel XEON 8480+ CPUx2 and NVIDIA
H100 GPU (80GB)x8. All servers use 12GB/s (PCle4.0)
GPU-to-CPU bandwidth. The CPU-to-storage bandwidths for
the A30 server and the H100 server are 250MB/s and 2GB/S
PCle4.0, respectively. All servers run on 64-bit Ubuntu 20.04.5
LTS with CUDA toolkit V12.4, PyTorch 1.11.1, and NCCL
v2.19.4. We use platform A for most of our tests, because it
represents a typical distributed training environment, and it has
relatively small GPU memory, which helps to demonstrate the
effectiveness of CPSR under high GPU memory contentions.
We combine both platforms to form a 16 GPU environment
for our large-scale experiments in parallel training scenarios.

2) Baselines: We compare the proposed CPSR with three
state-of-the-art checkpoint approaches: Pytorch checkpoint
API [22], CheckFreq [19]], and PCcheck [20]. The Pytorch
checkpoint API is currently the first choice for many deep
learning practitioners. CheckFreq is the first to enable pipelin-
ing snapshot and training operations, which significantly re-
duced the snapshot time. PCcheck further reduced snapshot
cost through memory pinning, while enabling concurrent
checkpointing to reduce persistent costs. Furthermore, chang-
ing the checkpoint interval 7, would have an impact on
the recovery cost in RB-R methods. We designed ablation
experiments forcing all approaches to use a uniform 7 in each
case, eliminating 7, variance in recovery cost measurements.
CPSR_FIX represents the approach of CPSR with fixed T..

3) Workloads: We evaluated CPSR with popular and rep-
resentative large DNN models, including GPT-3, GPT-2 and
VGG16. The number of layers, hidden sizes, and intermediate
sizes of the workloads are tuned to fit our testbed. Table
shows the detailed configurations. As in most related work,
the Adam [38] optimizer is used for all training tests.

C. Data and Analysis

Based on empirical data from real-world training work-
loads [4]], we set the system failure rate A at 0.08 failure/hour
(one failure every 12 hours). We demonstrate the fault toler-
ance performance of the CPSR in five aspects.

1) Recovery Cost: This experiment illustrates the recovery
cost of CPSR. Since the PB-R cost is related to three variables,
T,, N, and v, to evaluate the recovery performance of different
checkpoint methods, we conducted experiments in three di-
mensions: checkpoint intervals, model parameter volumes and
failure occurrence phases. All baselines are RB-R approaches
that are based on recomputing to recover. Thus, we use vanilla
as the representative of the RB-R approaches. Fig. [7]shows the
recovery cost comparisons of different approaches. Since the
other three approaches share an identical recovery mechanism,
their recovery performance in Fig. [7] and [§] is collectively
represented by baseline.

The first deciding factor for recovery performance is 7t,
which also indicates the maximum recomputing cost. All
RB-R approaches tend to choose small 7, to avoid a high
recomputing cost, which is not usually feasible in practice. As
illustrated, CPSR_FIX outperforms baselines for large T, (20-
100 training iterations) by 43%. This is because CPSR_FIX
boosted the rehabilitation to recover without actual recom-
putation. In this 7, rage, it is possible to provide a decent
sized dataset for the predictor. However, we also notice that
when we push the limit and set 7, to ultra-large (300-500
iterations), CPSR_FIX fails to fully recover the model training
process in some cases. The reason is twofold, 1) insufficient
checkpoints brought the predicting accuracy of the predictor
down; 2) significant prediction deviation makes it difficult for
the model training to self-correct.

The second factor is the volume of the model parameters.
We used two similar workloads (GPT2-0.35B and GPT3-
3.35B) with different levels of parameter volumes (350 million
and 3.35 billion). As illustrated, comparing results with the
same T settings, CPSR_FIX performs better for the smaller
model than for the larger model, by 21% on average. This
is because a larger parameter volume N, can cause a larger
prediction deviation of the predictor. However, it is important
to note that reducing T, leading to a larger sample size, also
helps to increase the accuracy of the predictor. For example,
the recovery cost of the GPT-3 model with 7. = 50 is 42%
less than that of the GPT-2 model with T,. = 100.

The third factor is the failure occurrence point. We highlight
failures in three stages of the training lifecycle, the beginning
stage (25% progress), the middle stage (50% progress), and
the late stage (75% progress). CPSR_FIX reduces the recovery
cost by 18.6%, 50.8%, and 55.4% on average, at different
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Figure 7. Recovery cost comparisons (training GPT2-0.35B).

Failure-free

§ 1.31 —— Baseline
?:I 1.04 —— CPSR_FIX_50
e Fault CPSR
© 0.7 0
°
© 0.41
5 M i

0.14 i . o

2K 5K 7K 10K 12K 15K 17K 20K
Iterations

Figure 8. Validation loss curves under multiple failures.
"CPSR_FIX_50" indicates using CPSR with a fixed check-
point interval of 50 iterations.

stages, respectively. It performs better in the middle and late
stages than at the beginning of training. With the progression
of training, the predictor gradually converges (around 800
iterations). Meanwhile, the parameter states of the training
model become increasingly stable as the training progresses.
This reduces the prediction deviation in CPSR_FIX and, in
turn, reduces the recovery cost.

Please note that the upper limit of feasible 7, in CPSR
increases as training progresses and training states become
stable. This is another reason why CPSR chooses the optimal
T, for different training phases separately, rather than using a
uniform 7, throughout the training process.

Fig. [§] presents the loss reduction trajectories during the
recovery process for different checkpoint approaches training
GPT2-0.35B. It indicates that after failure, the model instance
recovered by CPSR has a better model quality (lower loss
value) than the baseline in 58.9% of the time.

In summary, CPSR supports large 7. and large models
with billion-level parameters, aligned with current application
scenarios [20]. It performs better in the middle and late stages
of a training than in its early stage. It reduces the recovery
cost by 41.66% on average, compared with baselines.

2) Total Fault tolerance Cost: Fig. [J] illustrates the total
fault tolerance cost comparisons. CPSR achieves the lowest
fault tolerance cost compared with the baselines (37.5%, and
36.9% lower than CheckFreq and PCcheck, respectively).

The checkpoint interval settings are critical to the overall
cost of fault tolerance. The proposed CPSR can calculate an
optimal checkpoint interval without user input. However, the
baselines, CheckFreq and PCcheck all require user inputs.
PCcheck requires users to specify the checkpoint cost control

1800

IR CheckFreq (ckpt,recovery)
I PCcheck (ckpt,recovery)
[EB& CPSR (ckpt,recovery)

[ CPSR_FIX (ckpt,recovery)
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600 1

Fault tolerance cost (s)
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O,
VGG16(2D*2P)

GPT2-0.35B(2D*2P) GPT3-3.35B(2D*4P)

Figure 9. Fault tolerance cost comparisons. "D" and "P"
indicate parallel degree of DP and PMP, respectively. 2D*2P
means 2 DP groups and 2 PMP states.

parameter (denoted g in [20]). CheckFreq requires a user-
specified checkpoint cost, e.g., 3.5% of the Job Completion
Time (JCT) in [19]. We found that this setting triggered
a high checkpoint frequency, exceeding the CPU-to-storage
bandwidth capacity in our testbed, and causing severe training
process blockage. Give enough data bandwidth, the baselines
prefer high checkpoint frequency to reduce recomputing cost.
Therefore, we configure the checkpoint cost of PCcheck
and CheckFreq to 2% of the JCT, within the data transfer
bandwidth limit, so the checkpoint frequency is the highest
and concurrent persistent operations will not cause blockage
of the training process.

CPSR reduces recovery cost by eliminating recomputing.
It has a better recovery ability that does not require a high
checkpoint frequency as a baseline, as shown in Table III.
Meanwhile, the optimizer states tend to be more stable in the
latter phases of the training process than in the early phases.
CPSR is able to capture this momentum (v) to reduce the
checkpoint frequency in the latter phases. CPSR maintains
a lower checkpoint cost, while incurring almost the same
recovery cost as CPSR-FIX. This advantage is more prominent
in long training durations.

Moreover, it is worth mentioning that the recovery costs
of all approaches are more stable than checkpoint costs; this
is because checkpoint costs can be affected by bandwidth
contention in both snapshot and persistent procedures. As
shown by the error bars in Fig. [0] the recovery cost of CPSR
is as stable as that of recomputing-based approaches.

3) Parallel Training Scenario: We employ the 1F1B
pipeline scheduling strategy for PMP training. It is a widely
applied scheme [8, 30] for large model training. The number



TABLE II: Checkpoint interval 7, and JCT comparisons.

Model CheckFreq PCcheck CPSR JCT
VGGI16 23 21 53 61h10min
GPT2-0.35B 19 17 33 7h41min
GPT3-3.35B 36 32 49 10h55min
30
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Figure 10. Training overhead of predictor and pipeline bubble
between consecutive checkpoints.

of micro-batches is set to the number of pipeline stages.

Fig. [I0] illustrates the overhead of training the predictor,
compared with pipeline bubbles between consecutive check-
points, training the GPT2-0.35B model. It shows that the
overhead of the predictor is small enough that it can be hidden
in the pipeline bubbles of the original model training process.
As the number of pipeline stages increases, more bubbles
occurred. In the meantime, with the parallel degree of DP
increased, the overhead of training the predictor is divided
in a DP group, therefore the per-task overhead decreases.
This makes it easier to overlap the overhead with the pipeline
bubbles. As a result, CPSR is suitable for large-scale parallel
training with PMP and/or DP, aligning with the current trend.

4) Memory Utilization and Switching Cost: CPSR ships
with a lightweight predictor that has small memory footprints
and is more likely to reside on the same device as the original
training task without memory swapping. We divide multi-
dimensional tensors into samples according to the present
token size in a serialized manner.

Fig. [T1] shows the GPU memory footprint of the predictor
during GPT2-0.35B and GPT3-3.35B model training. We
tested different token size configurations and get similar results
of less than 200MB of GPU memory. We also considered
scenarios where GPU memory is strictly limited and the
predictor state need to be swapped out of the GPU memory
to make space for the original training task. The activations
swapping time for token size of 1024 is 0.011 second, much
smaller than the forward propagation (0.151 seconds) or the
back propagation (average 0.237 seconds) of GPT2-0.35B.
For token size 4096, swapping takes 0.018 seconds and is
still far lower than the forward (0.245 seconds) or backward
propagation (1.552 seconds) for GPT3-3.35B. It is possible to
hide the swapping overhead in communication idle time.

As a result, the proposed predictor is a lightweight model
with small memory footprint (less than 200MB) that can reside
in GPU memory with the original training task, or quickly
swapped to host memory with little overhead.

5) Loss Curve Fitting: Fig. [12] demonstrate the perfor-
mance of the fitter with two examples (GPT2 and VGGI16
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(a) Token size of 1024 (GPT2-0.35B).(b) Token size of 4096 (GPT3-3.35B).

Figure 11. GPU memory footprints of the predictor.
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Figure 12. Loss curve fitting.

models). The fitter is launched at the end of each training
phase, when the accumulated variation of the convergence
rate (v) exceeds the threshold of 5%, around 1000 and 2000
iterations in the experiments, respectively. As illustrated, the
fitter can accurately capture the trajectory of the loss function
online, with RMSE of 0.0824 and 0.3749, respectively. Note
that the fitting result may vary because the optimizer contin-
uously adjusts its optimization direction to reduce the loss.

VII. CONCLUSION

This paper revisits the failure recovery of large model
training from a novel perspective. Instead of recomputing the
lost process from the last checkpoint, we propose a predicting-
based recovery framework, CPSR, that takes advantage of the
self-correcting characteristic of the DNN training process. It
features a predictor that is located on the same device as
the original training task and fed by routine checkpoints in
run-time. Upon a failure, the predictor predicts a training
state close to before the failure to give the recovery a boost,
reducing the recovery cost. We introduce a novel optimal
checkpoint interval problem to guide predicting-assisted self-
recovery and propose a solution. Extensive testbed data are
presented to demonstrate the performance of CPSR. It reduces
the recovery cost by 41.66% on average, taking 39% fewer
checkpoints compared with state-of-the-art approaches, and
causing a small memory footprint of less than 200MB.

VIII. ACKNOWLEDGMENT

This work was supported by the Natural Science Foundation
of Jilin Province (Grant 20230101062JC), and the National
Natural Science Foundation of China (Grant 62272190).



(1]
(2]

(3]
(4]

(3]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

J. Achiam, Adler et al., “Gpt-4 technical report,” ArXiv, 2023.

C. Schuhmann, R. Beaumont, R. Vencu et al., “Laion-5b: An open
large-scale dataset for training next generation image-text models,”
Advances in neural information processing systems (NeurIPS), 2022.
A. Chowdhery, Narang et al., “Palm: Scaling language modeling with
pathways,” Journal of Machine Learning Research (JMLR), 2023.
S. Zhang, S. Roller, N. Goyal et al., “Opt: Open pre-trained trans-
former language models,” ArXiv, 2022.

A. Liu, B. Feng et al., “Deepseek-v3 technical report,” ArXiv, 2024.
S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2020.

Y. Huang, Y. Cheng, A. Bapna et al., “Gpipe: Efficient training of
giant neural networks using pipeline parallelism,” Advances in neural
information processing systems (NeurIPS), 2019.

S. Fan, Y. Rong, C. Meng et al., “Dapple: A pipelined data parallel
approach for training large models,” in ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPopp), 2021.
S. Li and T. Hoefler, “Chimera: efficiently training large-scale neural
networks with bidirectional pipelines,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2021.

H. Zhao, Q. Tian, H. Li, and Z. Chen, “Flexpipe: Maximizing training
efficiency for transformer-based models with variable-length inputs,”
in USENIX Annual Technical Conference (ATC), 2025.

D. Narayanan, M. Shoeybi, J. Casper et al., “Efficient large-scale
language model training on gpu clusters using megatron-lm,” in
Proceedings of the international conference for high performance
computing, networking, storage and analysis (SC), 2021.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro, “Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism,” ArXiv, 2019.

S. Li, F. Xue, C. Baranwal, Y. Li, and Y. You, “Sequence parallelism:
Long sequence training from system perspective,” ArXiv, 2021.

W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” Journal
of Machine Learning Research (JMLR), 2022.

J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fastmoe: A
fast mixture-of-expert training system,” ArXiv, 2021.

LlamaTeam, “The llama 3 herd of models.”
[Online].  Available:  |https://ai.meta.com/research/publications/
the-1lama- 3-herd-of-models

Z. Wang, Z. Jia, S. Zheng, Z. Zhang, X. Fu, T. E. Ng, and Y. Wang,
“Gemini: Fast failure recovery in distributed training with in-memory
checkpoints,” in Proceedings of the Symposium on Operating Sys-
tems Principles (SOSP), 2023.

T. Gupta, Krishnan et al., “Just-in-time checkpointing: Low cost error
recovery from deep learning training failures,” in Proceedings of the
European Conference on Computer Systems (EuroSys), 2024.

J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Fre-
quent, fine-grained dnn checkpointing,” in USENIX Conference on
File and Storage Technologies (FAST), 2021.

F. Strati, M. Friedman, and A. Klimovic, “Pccheck: Persistent con-
current checkpointing for ml,” in Proceedings of ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2025.

B. Workshop, T. L. Scao, A. Fan et al., “Bloom: A 176b-parameter
open-access multilingual language model,” ArXiv, 2022.

A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative style,
high-performance deep learning library,” Advances in neural infor-
mation processing systems (NeurIPS), 2019.

J. Rasley, Rajbhandari et al., “Deepspeed: System optimizations en-
able training deep learning models with over 100 billion parameters,”
in Proceedings of ACM International Conference on Knowledge
Discovery & Data Mining (SIGKDD), 2020.

A. Agrawal, Reddy et al., “Inshrinkerator: Compressing deep learn-
ing training checkpoints via dynamic quantization,” in Proceedings
of ACM Symposium on Cloud Computing (SoCC), 2024.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]
[44]
[45]

[46]

J. Lin, Tang et al., “Awq: Activation-aware weight quantization
for on-device llm compression and acceleration,” Proceedings of
Machine Learning and Systems (MLSys), 2024.

A. Qiao, B. Aragam, B. Zhang, and E. Xing, “Fault tolerance in
iterative-convergent machine learning,” in International Conference
on Machine Learning (ICML), 2019.

K. Maeng, S. Bharuka, I. Gao et al., “Understanding and im-
proving failure tolerant training for deep learning recommendation
with partial recovery,” Proceedings of Machine Learning and Sys-
tems(MLSys), 2021.

Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated
deep learning with layerwise asynchronous model update and tempo-
rally weighted aggregation,” IEEE Transactions on Neural Networks
and learning systems (TNNLS), 2019.

Z. Huang, H. Nie, H. Jia, and others., “Flowcheck: Decoupling
checkpointing and training of large-scale models,” in Proceedings of
the European Conference on Computer Systems, 2025.

H. Zhao, H. Li, Q. Tian, J. Wu, M. Zhang, Z. Xu, X. Li, and
H. Xu, “Arraypipe: Introducing job-array pipeline parallelism for
high throughput model exploration,” in IEEE International Confer-
ence on Computer Communications (INFOCOM), 2025.

L. Zhang, S. Shi, X. Chu, W. Wang, B. Li, and C. Liu, “Dear:
Accelerating distributed deep learning with fine-grained all-reduce
pipelining,” in IEEE International Conference on Distributed Com-
puting Systems (ICDCS), 2023.

A. Devkota, R. V. W. Putra, and M. Shafique, “Switchmt: An adaptive
context switching methodology for scalable multi-task learning in
intelligent autonomous agents,” ArXiv, 2025.

M. Jin, S. Wang, L. Ma et al., “Time-llm: Time series forecasting by
reprogramming large language models,” ArXiv, 2023.

Y. Li, A. Phanishayee, D. Murray, J. Tarnawski, and N. S. Kim,
“Harmony: Overcoming the hurdles of gpu memory capacity to
train massive dnn models on commodity servers,” in International
Conference on Very Large Data Bases (VLDB), 2022.

H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-
driven scheduling for distributed machine learning,” in Proceedings
of Symposium on Cloud Computing (SoCC), 2017.

Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an
efficient dynamic resource scheduler for deep learning clusters,” in
Proceedings of the Thirteenth European Conference on Computer
Systems (EuroSys), 2018.

H. Li, Z. Wang, H. Zhao, M. Zhang, X. Li, and H. Xu, “Convergence-
aware optimal checkpointing for exploratory deep learning training
jobs,” Future Generation Computer Systems (FGCS), 2025.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” ArXiv, 2014.

R. Ge, S. M. Kakade, R. Kidambi, and P. Netrapalli, “The step
decay schedule: A near optimal, geometrically decaying learning
rate procedure for least squares,” Advances in neural information
processing systems (NeurlPS), 2019.

I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” ArXiv, 2016.

J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Communications of the ACM, 1974.

S. P. Boyd and L. Vandenberghe, Convex optimization.
university press, 2004.

L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” SIAM review, 2018.

L. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learn-
ing. MIT press Cambridge, 2016, vol. 1, no. 2.

R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial
neural networks:: The state of the art,” International journal of
forecasting, vol. 14, no. 1, pp. 35-62, 1998.

Cambridge


https://ai.meta.com/research/publications/the-llama-3-herd-of-models
https://ai.meta.com/research/publications/the-llama-3-herd-of-models

	Introduction
	Related Work
	Consistent Fault Tolerance
	Inconsistent Fault Tolerance
	Parallelism Techniques

	CPSR Design
	Predictor
	Coordinator
	Fitter
	Planner

	Checkpoint Interval Problem Formulation
	Recomputing-Based Recovery
	Predicting-Based Recovery Problem
	Assumptions

	Approach
	Prediction Deviation
	Predicting-Based Recovery Cost
	Optimal Checkpoint Scheme

	Evaluation
	Resuming Training from a Failure
	Experimental Setup
	System Setups
	Baselines
	Workloads

	Data and Analysis
	Recovery Cost
	Total Fault tolerance Cost
	Parallel Training Scenario
	Memory Utilization and Switching Cost
	Loss Curve Fitting


	Conclusion
	Acknowledgment

