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Abstract—The software-defined network (SDN) allows us to
control network flows easily and dynamically. Intrusion detection
systems (IDS) are among the controller’s applications. The IDS
can become overloaded when analyzing a large amount of traffic.
Multiple instances of IDSs are recommended across a network
to increase processing power. SDN centralized control facilitates
the deployment of multiple IDSs on the data plane. This paper
proposes a method to deploy some IDS chains, helping the
controller increase the detection rate. By grouping flows in a
balanced manner and assigning each group to one IDS chain,
transmission delay can be reduced. In this study, we formulate
an optimization problem to minimize the cost of grouping flows
using a modified version of K-means and assigning an IDS chain.
We implement our method on a test bed and a trace-based
simulation. In various traffic scenarios, our proposed method
can satisfy different measurements, such as detection rate and
dropping rate, and only increases the delay by a small amount
over one IDS scheme.

Index Terms—Attack detection, IDS, grouping traffic, K-means,
load balancing, SDN, matching problem.

I. INTRODUCTION

Software-defined networking (SDN) is an emerging archi-
tecture that enables a computer network to be intelligently and
centrally controlled via software applications. It separates the
control plane and data plane of the network [1]. On top of the
control plane, there are many network applications running
on the application layer. Due to the large scale of traffic as
well as different applications that the controller has to handle,
an overhead is possible for the controller [2]. One of the
security applications is the intrusion detection system (IDS).
IDS helps the controller to detect anomaly flows and install
new rules to block abnormal traffic in the flow tables on
the switches. The controller’s overhead can be reduced by
considering security applications in the data plane. While
assigning IDS to all switches can increase detection rates,
installing IDS on switches has some costs, and due to a limited
budget, it is not practical. In addition to the cost, the process of
IDS takes time and makes delays in the transmission process.
Providing some chains of IDSs across the data plane would
be helpful. This provides a higher detection rate on the data
plane and lower overhead on the controller. Fig. 1 illustrates
the SDN including the application layer, control plane, and
data plane. There are some applications including firewall,
load balancer, and routing in the application layer. The yellow
boxes in the data plane display IDS components installed on
the given switches. There are some flows such as f1 and f2 in
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Fig. 1: Redirecting packets through IDSs on the data plane.

this network. Each of these flows will be redirected through
some IDSs in order to perform intrusion detection.

One of the measurements to evaluate the performance of the
IDS is detection rate. The rate of blocked malicious packets
can be displayed by the detection rate which is determined by
AB/AR, where AB denotes the number of blocked malicious
packets and AR presents the number of received malicious
packets. Fig. 2 (a) shows that the more the number of IDSs
across the network, the higher the detection rate. Fig. 2 (b)
illustrates the impact of a large quantity of incoming traffic on
the overhead of controller. Low performance leads to reduced
detection rate as well as increased dropping rate.

Flow rules are installed by the controller to detect attack
flows by redirecting incoming traffic to alternative paths (rather
than the shortest path from source to destination) that go
through specific intrusion detection systems. Finding the best
path and selecting the best IDS chain for each flow is a difficult
task. The following questions need to be addressed:

• IDS has limited hardware resources in terms of CPU
power, memory access speed, and storage capacity. Due
to these limitations, IDS applications are unable to
achieve an acceptable detection rate. Chains of IDSs may
provide a solution to this problem. How can multiple
IDSs be implemented on the SDN?

• Implementing an IDS chain can improve detection rates.
Due to installation costs and flow table capacity limita-
tions, IDS cannot be installed on all switches. Therefore,
there are a limited number of IDSs. As incoming traffic is
grouped, there is no need for many IDSs. Which method
is the best for grouping flows?

• Grouping flows and IDS assigning techniques can have
a significant impact on performance measurements, such
as dropping rates under high load and transmission de-
lays caused by non-shortest path routing. How can we



TABLE I: Main notations
Symbol Meaning
f, F Single flow, Set of flows
sj/dj Flow j’s source/destination
cj Centroid of cluster j
Fj jth flow group
sj/dj Source/Destination centroid of group j
I/Ii Set of IDS chain/IDS chain i
hi/ti IDS chain i’s head/tail
dist(.) Defined distance
rj Traffic rate of flow j
K Total number of clusters
G(V,E) Network including node set V and link set E

maintain balanced flow groups? How can flow groups be
matched with IDS chains?

Our work involves designing and developing an SDN de-
ploying IDS on some switches in the data plane. In this way,
we will reduce the dropping rate, increase the detection rate,
and prevent the controller from being overloaded. Forwarding
flows from a source to a destination on a network can be
problematic when all traffic passes through several specific
switches. There is also the issue of flow grouping and matching
of IDSs. A trade-off must be considered between detection
rate, dropping rate, and delay. Chains of IDSs deployed across
the data plane and redirecting flows through these chains
satisfy detection rate and overhead. IDSs can be chained
in a fixed or dynamic sequence. We call these methods as
total matching and partial matching in this paper. Since there
is an IDS on some switches, rather than on all switches,
all traffic should take additional hops that deviate from the
shortest path to the destination. This will increase latency. Due
to the limitations of keeping a large flow table and transmission
delay, we can group incoming traffic. This reduces the total
number of rules needed in flow tables. All flow in a group
follows the same path. Due to the fact that each flow has a
source and a destination, K-means clustering is not suitable
for this problem. The distance is the number of hops between
the source/destination of flows and centroids. We proposed a
modified version of K-means clustering, with a new distance
measurement in a 2-D space. The main contributions are as
follows:

• We propose a method to provid chains of IDSs on the
data plane to increase the rate of intrusion detection and
reduce the dropping rate.

• We introduce a creative centroid-based (modified K-
means clustering method) to group the incoming flows
in order to reduce transmission delay.

• To solve the joint optimization problem, we propose a
two-phase algorithm to achieve the optimization goals.

• We provide an in-depth investigation on grouping flows
and matching flow groups to IDS chains under different
scenarios. We introduce two models for matching flow
groups to IDS chain: minimum cost 2-D matching and
minimum cost 3-D matching.

• Finally, we evaluate the performance of our approach on
a real test bed under different measurements.

(a) Detection rate with IDS (b) Overhead for controller

Fig. 2: Data plane extension.

II. RELATED WORK

During recent years, there has been a considerable num-
ber of researches on SDN network architecture while they
integrate IDS into SDN. Studies regarding SDN have been
actively conducted as it is considered the next promising
networking platform [3]. Authors in [4] introduce a lightweight
flow-based IDS that periodically gathers statistical information
about flows from SDN switches to detect multiple types of
attacks and separate these attacks from real traffic. Manos et
al. in [5] propose an IDS that automatically detects several
DDoS attacks, and then as an attack is detected, it notifies
a SDN controller. Authors in [6] presents a new method for
identifying attacks on SDNs based on the similarity to existing
attacks, as well as a packet aggregation technique designed
for the purpose of creating attack signatures and using them
to anticipate attacks on SDNs.

It is an important limitation of distributed controllers that the
switch-controller mapping is statically configured, resulting in
uneven load distribution among controllers [7]. Neghabi et
al. in [8] review the load-balancing mechanisms which have
been used in SDN systematically based on two categories:
deterministic and non-deterministic. Authors in [9] propose
a new approach which is an SDN-based architecture for
attack detection in the data plane. They designed a zone-
based architecture in the KIDS to provide scalability and
anomaly detection. Cui et al. in [10] propose a load-balancing
strategy based on the changing characteristics of real-time
response times versus controller loads when using multiple
SDN controllers. Authors in [11] try to deal with the challenge
that how to achieve load balancing without additional device
and software on commodity switches while dealing with
network/traffic uncertainties.

Goo et al. in [12] propose a traffic grouping method using
the correlation model. They consider the similarity index
between two flows by calculating the Euclidean distance value.
Johnson et al. in [13] present an approach for rebalancing as
a Worker Assignment Problem by assigning worker stations
to minimize the total distance traveled. In our approach, we
introduce a novel extension regarding the provision of IDS in
the data plane in order to reduce the load on the controller and
enhance the rate of attack detection. The data plane is equipped
with a chain of IDSs that are connected to several switches.
By using a modified version of K-means, incoming flows are
assigned to certain groups based on the new measurement for
the distance, and then redirect them to IDS chains.



(a) Original route configuration (b) New path for the group

Fig. 3: Original and grouped routes.

III. BACKGROUND AND MOTIVATION

In SDN, the controller monitors all the switches in the
network and sets rules in the flow tables on each switch. The
centralized controller communicates with switches through a
protocol like OpenFlow [14], and abstracts the data plane’s
routing and forwarding with a match-action table. The switch
sends a packet-in message to the controller whenever a new
packet arrives that does not match any of the flow table
entries. Also, SDN-based intrusion detection systems (IDSs)
identify and report malicious behavior or attacks to network
administrators as intrusion events. Therefore, any malicious
activity is reported to the network controller. The IDS of SDN
are designed currently with a machine learning approach [15].

Clustering algorithms try to decompose the set of nodes into
a number of disjoint clusters. The problem is how to select the
cluster head or Centroid and how to manage the clusters. A
K-means clustering tries to group similar items in the form
of clusters [16]. Initially, it starts with a group of randomly
chosen centroids, which are used as the starting points for
every cluster, and then iteratively optimizes the positions
of the centroids. The central point of a cluster is called a
centroid. The K-means algorithm identifies K a number of
centroids, and then allocates every data point to the nearest
cluster, while keeping the centroids as small as possible. Most
strategies involve running K-means with different K values
and finding the best value using some criterion. The two most
popular criteria used are the elbow [17] and the silhouette [18]
methods. Balanced clustering is a special case of clustering
where, in the strictest sense, cluster sizes are constrained to
⌈NK ⌉ or ⌊NK ⌋, where N is the number of points and K is the
number of clusters. In our problem, nodes includes servers and
switches. Links are the connections between two nodes or the
total number of hops between nodes. Also, |F | = N where
F is the set of flows and K is the number of IDS chains.
The balanced K-means algorithm can be implemented using
the Munkres [19] or Hungarian algorithm [20] for solving
minimum-cost assignment problems.

Generally, matching problems seek to find a set of edges
such that each vertex belongs to at most one of the edges in
the chosen set. Consider a network G = (V,E), where V is the
set of nodes and its cardinality. E is the set of links between
nodes and its cardinality. The purpose of weighted matching
is to assign edges weights in order to identify a set of disjoint
edges, edges that do not share a vertex, that have the greatest
weight sum. Perfect weighted matching is designed to produce
an edge set on a bipartite graph consisting of two equally sized

vertex sets [21]. Weighted 3-D Matching utilizes 3-D hyper-
graphs as an extension of Weighted Matching. The Iterative
Round Search approach approximates the general weight 3-D
matching problem [13]. There are several possible solutions
to the matching problem, including two-round matching, local
ratios, Genetic Hungarian Search, and Hungarian Search.

IV. PROPOSED METHOD FOR DEPLOYING IDS CHAINS

We propose a novel data plane extension for SDNs that
addresses the challenges discussed in this paper. It is a routing
mechanism that guarantees automatic traffic detection. It is
common to find an IDS application in the network application
on top of the control plane. Although it has limited capabilities,
it is widely used. Furthermore, there is limited capacity for
communication between the data plane and control plane. A
large volume of traffic can overload the SDN controller and
cause the entire network to go down, as SDN is entirely
control-based. In this paper, we propose a new approach that
allows data plane switches to provide security functions as
part of packet processing logic. This is because the controller
usually handles a number of applications. The installation of
IDS on some switches in the data plane can reduce the burden
on the controller significantly. Furthermore, for a given traffic
flow, a greater number of IDSs will increase the likelihood
that an attack will be detected. Directing flows through some
specific path including IDS leads to increased transmission
delay. Grouping incoming flows and using the same path for
the flows in the same group can reduce this delay. Upon
entry into the network, the classifier first categorizes the traffic
pattern into suitable categories, following which it assigns
the IDS chain that is most appropriate to that traffic pattern.
New arrival flows can be determined immediately, allowing
the controller to deal with traffic dynamics.

A. The Flow Grouping Solution

Using the proposed approach, incoming flows are grouped
based on their source and destination. Then, assign each group
to an IDS chain using the matching problem. This problem is
NP-hard, and we propose a modified version of K-means as an
approximation solution. Lloyd’s algorithm is the most popular
way of solving K-means. As a basic concept, we will group
the flows and add a set of rules that apply to the group of flows.
First, we classify the flows based on the distance of source
and destination hosts from the centroid of the clusters. Next,
we assign one IDS chain to each flow group. The controller
installs flow rules based on the redirecting of packets of flows
in each group to go through a specific number of IDSs in the
assigned chain. Security actions that use the same cluster ID
are considered as belonging to the same cluster. The clustered
action operates as a single integrated action across a variety
of flow rules. Fig. 3 illustrates an example of grouping flows.
For this toy example, f1 and f2 are combined as one group.
By doing so, these flows are redirected along a single path
rather than multiple paths. As a result of grouping flows, f2
will pass through a longer path (3 hops instead of 2 hops)
from its source to its destination.



(a) Grouping flows (b) Assigning flow groups to IDS chain (c) Source and destination of centroids

Fig. 4: Grouping flows, matching, and assigning IDS chains.

Fig. 5: Total matching.

Theorem 1. The flow grouping problem is NP-hard, which
implies that we should not expect efficient algorithms that find
optimal solutions.
Proof: The proof has been shown in [22] and [23] with an
Exact Cover by 3-Sets and a reduction from Planar 3-SAT. ■
Definition 1. (Grouping strategy) A grouping strategy ∆,
defines a partition {F1, ..., FK} of F , where Fj ⊆ F is
referred to as the jth group. Each grouping strategy partitions
the inputs based on the similarity of specific features. The total
number of partitions or groups can be a predefined parameter.

Definition 2. (GroupFlow) A GroupFlow includes multiple
flows that have been forwarded through the same path. The
path of a group flow depends on the location of IDS chains
which are deployed in the network to detect anomalies.

With these two definitions, we need to define grouping
strategy and similarity measurement. K-means can be used
as a grouping strategy for flow set F . Each data point in
the K-means clustering is a flow f ∈ F . K-means is based
on measuring the distance between data points and their
centroids. Here, we have a different problem and a different
similarity measurement in comparison with the general version
of K-means. In our problem, data points are flows which
have source sj and destination dj . The modified K-means
clustering should be done for pair (sj , dj), where distance
measurement is dist(sj , sk) + dist(dj , dk) for a cluster with
center c. The steps of the proposed approach are as follows:

• Run modified K-means clustering for pair (sj , dj), where
distance measurement is dist(sj , sk)+ dist(dj , dk) for a
cluster with center ck. The distance between each host
and the center of cluster is the total number of hops.

• Run balanced K-means algorithms for each cluster.
• Use the standard perfect matching to pair cluster centers

with chain of IDSs.

Fig. 6: Partial matching.

Balanced clustering involves an equal number of points in
each cluster. Our approach to balanced K-means clustering
differs from those commonly used. To determine if groups are
balanced, we use the total data rate of the groups rather than
the number of group members. Once the cluster is formed from
modified K-means clustering, the cluster center becomes the
representative for bipartite matching.

Definition 3. (Distance) The distance measurement is the
summation of the distance of each source sj to the clus-
ter centroid ck’s source and distance of each destination
dj to the cluster centroid ck’s destination. Distance value
dist(sj , sk)+dist(dj , dk) is used to finding the nearest cluster
centroid for each flow group.

For any clustering method, the important question is
whether the particular estimations converge in an appropriate
sense. In order to answer this question, we need to establish a
related optimization problem and make the notion of conver-
gence precise [24]. The word convergence means the algorithm
has successfully completed this clustering or grouping of data
points in K clusters. The algorithm will make sure it has
completely grouped the data points into correct clusters, if
the difference in the values of the last two iterations is less
than a particular threshold. Classical K-means is designed
for Euclidean distance, which happens to satisfy the triangle
inequality. Using the triangle inequality is required in order
to find the bounds to avoid redundant distance calculations.
Based on the fact that most distance calculations using stan-
dard K-means are redundant, the optimized algorithm uses
a more efficient calculation method. If a point is far from
a center, it is not necessary to calculate the exact distance
between that point and the center to know that it should not
be assigned to that center. On the other hand, if a point is
substantially closer to one center than to any other, calculating



Algorithm 1 Balanced-Modified-K-means

Require: Flow set F
1: Initialize the K cluster centroids
2: repeat
3: for each (sf , df ) of flow f ∈ F do
4: for each centroid ck do
5: sk ← source of ck, dk ← destination of ck
6: j ← argmink(dist(sf , sk) + dist(df , dk))
7: Fj ← Fj ∪ f
8: for each cluster Fj do
9: Calculate RFi

=
∑

f∈Fj
rf

10: Find c′j as new centroid based on RFi

11: Update centroids c′1, c
′
2, ..., c

′
K

12: until Convergence
13: return List of clusters and their centroids

the exact distance is not necessary to determine that the point
should be assigned to that first center. There is usually a
latency added to network traffic when using an IDS, and the
more complex the inspection of any packet is, the longer the
packet is delayed on its forwarding. We propose balanced
modified K-means and matching problems in 2-D and 3-
D. We take the traffic rate of flows into account to have
balanced groups in the process of flow grouping. Otherwise,
large traffic leads to dropping packets due to overloading on
the IDS chain. The proposed method of assigning IDS chains
to the flow groups is based on the number of hops between
the centroid and IDS chain. We introduce total matching and
partial matching models.

B. Matching Flow Groups with IDS Chain

Once the incoming flows are grouped by modified K-means
clustering, all flow groups will be assigned to the IDS chains
deployed in the data plane.

Definition 4. (Matching) For a given group Fj , there is a
matched IDS chain based on the matching of centroid ck with
the specific IDS chain. The head of each cluster of flows
should be assigned to one IDS chain. This matching is based
on the weight of each link between the head of the cluster and
the head or tail of the IDS chain.

Fig. 4 (a) shows the first step, which is calculating the
distance between sources and destinations of flows and initial
centroids. We have the distance measurement dist(sj , sk) +
dist(dj , dk) and flows would be divided into three clusters
with centroids {c1, c2, c3}. Fig. 4 (b) illustrates details of our
defined centroid. It includes source sk and destination dk.
After grouping the flows, each group will be assigned to one
IDS chain. Fig. 4 (c) shows the assigning of the heads and tails
of the IDS chains to the source and destination of the centroids.
hi is the head of IDS chain i and ti is the tail of this IDS
chain. All flows in a cluster k get a virtual center, including
source sk and destination dk. We introduce two models for
matching the centroid of flow groups to IDS chains: 1)Total
matching which is assigning the sk and dk to the hi and ti of

Algorithm 2 Matching IDS chains (Total matching)

Require: IDS chains I and set of K clusters
1: for each unmatched centroid ck do
2: sk ← source of ck, dk ← destination of ck
3: for each IDS chain i ∈ I do
4: hi ← head of i
5: i∗ ← argmini{dist(sk, hi)}
6: Assign sk to hi∗ , Assign dk to ti∗

7: return List of matched IDS chains and clusters

Algorithm 3 Matching IDS chains (Partial Matching)

Require: IDS chains I and set of K clusters
1: for each unmatched centroid ck do
2: sk ← source of ck, dk ← destination of ck
3: for each IDS chain i ∈ I do
4: i∗ ← argmini dist(sk, hi)
5: j∗ ← argmini dist(ti, dk)
6: Assign sk to hi∗ , Assign dk to tj∗

7: return List of matched IDS chains and clusters

IDS chain i respectively. This is a 2-D minimum cost perfect
matching. 2)Partial matching which is assigning sk to hi and
assigning dk to tj where hi and tj are the head and tail of
two different IDS chains. This is a 3-D minimum cost perfect
matching. Figs. 5 and 6 illustrate the total matching and partial
matching models, respectively. Fig. 5 shows a fixed IDS chain
for each flow group. Fig. 6 shows IDS chains which are not
fixed (in the case of sequential order) for each flow group. In
this type of IDS chain, there are cross connections between
IDS chains. There are two problems that can be classified as
grouping incoming traffic and IDS assignment issues. These
two important problems can be formulated as follows:

Problem 1. Grouping incoming traffic to reduce transmis-
sion delay in a balanced way. The distance of flows to the
cluster’s centroid and the total amount of traffic in each cluster
are important factors that should be taken into consideration.
This problem is NP-hard, and we provide an approximation
based on the grouping of the incoming flows with the help of
the modified version of K-means clustering. We formulate the
grouping incoming traffic problem as an optimization problem
with an objective of minimizing overhead/cost.

min
∑

Fj∈F
cost(Fj)

subject to cost(Fj) = |Fj | ·
∑

f∈Fj

rf
(1)

Here, cost(Fj) represents the cost of clustering incoming
traffic f . The cost represents the overhead of the controller
due to any extra work for grouping the incoming traffic. This
is based on the total number of flows and total traffic rate rf
in each cluster Fj . For simplicity, we assume that rf = 1.

Problem 2: Find an IDS chain assignment for each flow
group so that the total number of malicious packets is mini-
mized by ensuring that all the traffic is forwarded to an IDS
chain before reaching the destination. We assume that the



(a) One IDS (b) Same IDS (c) Mixed IDS

Fig. 7: Different combination of IDS.

locations of IDS chains are predetermined. The problem can
be expressed as the following:

min
∑

i∈I
cost(I)

subject to cost(I) =
∑

Mj,i=1
Rj ∗min dist(Fj , Ii)

Rj =
∑

f∈Fj

rf

1 ≤ |Ii|

(2)

Here, cost(I) represents the cost of assigning a flow group
to an IDS chain Ii. This is based on the total traffic rate of
each flow group and the distance between the centroid of the
flow group and the IDS chain. Rj denotes the total traffic
rate of flow group j. rf denotes the data rate of flow f . The
distance between IDS chain I and flow group Fj is shown
by dist(Fj , Ii), which is the number of hops between the hi

and sj . Mj,i is a matrix that shows each flow group Fj is
assigned to which IDS chain Ii. Grouping the flows is done
by a modified version of K-means clustering. Algorithm 1
presents the steps of grouping the incoming traffic into K
clusters. The first step is initializing the K cluster centroids
randomly. The second step is finding the distance of each
pair (sj , dj) to centroid ck and assigning flows to each cluster.
After clustering all the flows, it is necessary to update the
centroids and find {c′1, c′2, ..., c′K} such that the sum of the
shortest path distance from all flows in the cluster j to the
new centroid c′j is minimized. This process continues until it
converges to a stable state. Since we consider traffic rate rf
for updating the centroids, the convergence result applies to
balanced K-means. This algorithm returns a list of clusters and
their centroids. We introduce two models for matching step.
Algorithm 2 presents the details of the total matching method
for matching clusters with fixed IDS chains. The first step is
the matching process based on the distance of each cluster
centroid ck and the head and tail of the IDS chain i. Each
flow group is assigned to the IDS chain i∗ with the minimum
distance. sj will be assigned to hi∗ and dj will be assigned
to ti∗ . This is the 2-D minimum cost perfect matching. The
output of this algorithm is the list of matched IDS chains
and clusters. Algorithm 3 presents the details of the partial
matching method for matching clusters with dynamic sequence
of IDS chains. Each flow group is assigned to an IDS chain
after finding the best head of chains i∗ and the best tail of
chains j∗. sj will be assigned to hi∗ and dj will be assigned
to tj∗ . This is the 3-D minimum cost perfect matching. The
output of this algorithm is the list of matched IDS chains and
clusters. We assume that the total number of groups is the same
as the total number of IDS chains. For generalization, this is
solvable as long as the total number of groups is smaller than

Fig. 8: Datacenter topology.

the number of IDS chains [25]. In this case, the assigning flow
groups to IDS chains should be a type of partial assignment.

Theorem 2. The complexity of the Algorithm 1 is O(KEL).
The complexity of the Algorithm 2 is O(K2(V + E)).
Proof: The most time-consuming part of this algorithm is the
K-means clustering, which takes O(KEL), where E is the
number of links in the flow groups and L is the number of
iterations until convergence. For Algorithm 2, the complexity
of finding a path is O(V +E). The complexity of finding all
the paths of K group flows is O(K(V +E)). The most time-
consuming part of this algorithm is the matching which takes
O(Klog(K)), Therefore, the algorithm takes O(K2(V +E)).

■V. EVALUATION

We conduct real experiments on our test bed to validate
our approach. In our network, we have gateway nodes, SDN
switches, and some servers serving as sources and destinations.
It is a perfect tree topology with four layers. There are 32
servers, 15 SDN switches, and some regular L2 switches,
shown in Fig. 8. We have a Dell 3248 PowerEdge server
as our controller, which is running an ONOS platform. IDSs
are installed on the associated server for each switch. After
describing the network and flow settings, we analyze the
results from various perspectives to provide an insightful
interpretation. To demonstrate the feasibility and efficiency of
the proposed algorithm, we conduct the experiment evaluation
on a real test bed. Fig. 7 displays different combinations of
IDSs. Fig. 7 (a) illustrates a scenario in which each flow
passes through one IDS. Fig. 7 (b) shows the scenario in which
multiple flows go through the same IDS sequence. Fig. 7 (c)
presents the mixed IDS, when for each of IDSs, there is one
full flow as well as a partial amount of another flow. In other
words, there is full flow f1 for IDS1 and then just a partial
flow f1 will pass through IDS2. In fact, the partial flow of
f1 consists of the packets, including the normal ones and
the abnormal missing ones. We install Snort on some Ubuntu
servers to perform as an IDS in our network. The legitimate
traffic was generated by using Ostinato traffic generator. The
Ostinatoas a network traffic generator can be used in normal
mode and burst mode to generate legitimate traffic. For the
purpose of generating malicious traffic, Kali Linux was used.

A. Experimental Results

We evaluate our approach using some measurements that
are crucial to intrusion detection and packet forwarding. The



TABLE II: Comparison of one IDS vs multiple IDSs
Detection Rate(%) Dropping Rate(%) Delay(msec)

Traffic Attack Rate Single 2 IDS Mixed Single 2 IDS Mixed Single 2 IDS Mixed

Sm
al

l 20% 36.6 48 52 24.9 26.3 25 1.8 3.45 3.3
50% 47.5 55 60 25.5 26.9 26.2 3.6 6.9 6.45
80% 52 69 72 24.8 26.7 25.1 6.1 11.31 10.8

M
ed

iu
m 20% 49.3 64.5 74.5 28.7 30.5 29.9 5.55 9.99 9.57

50% 60.3 71 73 28 29.5 28.9 7.1 15 14.1
80% 72 81 83 28.9 32 31.5 13.5 24.9 24.51

L
ar

ge 20% 61.8 80.3 85 31.2 34 32.7 9.6 17.4 16.5
50% 74.1 86 91 34.5 36.3 35.18 17.1 33.3 32.82
80% 81 92 94.3 35 37.5 38.7 30 54.6 54

TABLE III: Effects of clustering methods on overhead and detection rate for an IDS chain with one IDS

Clustering Method Overhead (%) Detection Rate (%) Delay (ms)
K-means and random assigning 21% 45% 2.7
K-means and total matching 27.5% 64.5% 3.33
K-means++ and total matching 31.2% 64.7% 4.1
Balanced K-means and total matching 35.7% 74% 6.32
Balanced K-means and partial matching 36% 81% 6.4

TABLE IV: Effects of IDS in control plane and data plane under different amounts of incoming traffic

Ctr-Overhead(%) Dropping Rate(%) Detection Rate(%) Delay (ms)
Anomaly Detection S M L S M L S M L S M L

Centralized IDS 7 12 27 32.6 37 43.2 39.4 53.3 68.3 2.7 5.3 19.2
Chain with one IDS 10.2 12.3 17.8 31 28.5 33.8 38.5 60.3 74.1 3.6 7.1 23.1
Chain with two IDS 10.3 12.3 18 32.9 31.5 35.6 55 71 86 9.6 15 30.3

detection rate shows the percentage of detected packets. Be-
cause of the limitations on the capacity of each IDS, some
packets will be dropped. It is possible for legitimate packets
and malicious packets to be dropped if the server receives
more traffic than it can handle. We calculate the dropping rate
to find the number of dropped packets. If IDS processed the
packets but did not detect any anomalies in them, then those
packets are forwarded to the next switch. This measurement
is known as the missing rate. The missing rate can easily be
calculated by having the detection rate and dropping rate. The
delay of transmission is another important factor.

1) Performance under One IDS vs multiple IDSs: Table II
presents the comparison between single IDS versus multiple
IDSs regarding detection rates, dropping rates, and delays.
Different amounts of traffic were classified as small, medium,
and large traffic. The size of traffic is based on the total
amount of incoming traffic. We consider 500 flows as small
traffic, 2000 flows as medium traffic, and 8000 flows as large
traffic. Additionally, we tested different measurements under
different attack rates, namely 20%, 50%, and 80%. According
to the results, assigning more IDSs has a positive impact on
the detection rate for malicious packets. There would be a
lower missing rate, but a higher dropping rate. It is evident
that considering multiple IDSs increases the delay time as
compared to one IDS. However, the increase in the delay is
not substantial. The reason for this is that some portions of
traffic were blocked or dropped by the previous IDS. This
would result in a smaller amount of incoming data for the later
IDSs. The increasing of the attack rate increases the detection
rate and decreases the missing rate. This is due to the fact that

IDS is based on a machine learning algorithm, and if there are
more samples for detecting packets of attack, the likelihood of
detection would be higher. The results indicate that attack rate
does not influence dropping rate. The dropping rate is a result
of the limited capacity of switches and is not determined by
the ratio of malicious packets or legitimate packets. The delay
is increased by increasing the attack rate, since switches need
to send alarms to the controller in order to take appropriate
action. Large traffic results in increasing the detection rate,
missing rate, and dropping rate due to having more attacks.

Fig. 9 illustrates the delay time as a measure of the per-
formance of one IDS, multiple IDSs, and a mixed IDS under
different amounts of incoming traffic. The results of delay time
for multiple IDSs and mixed IDS are similar. With a single
IDS, there is less delay time than with multiple IDSs. Fig. 10
displays the detection rate of one intrusion detection system,
multiple intrusion detection systems, and a mixed intrusion
detection system under changing amounts of incoming traffic.
We have a higher detection rate when we use mixed IDS, but
it is still close to the detection rate when we deploy multiple
IDSs. The probability of detecting anomalous flows increases
when multiple IDSs are used instead of a single IDS. Fig. 11
shows missing rate for different amounts of traffic. There are
similar results for all scenarios.

2) Performance under different grouping and matching
methods: One practice for reducing the controller overhead
is to install a rule for minimal flow entry in network switches.
Table III shows the effect of different clustering methods on
overhead of controllers in comparison with general anomaly
detection, dropping rate, and the detection rate on the switches



(a) One IDS (b) multiple IDSs (c) Mixed IDS

Fig. 9: Delay time.

(a) One IDS (b) multiple IDSs (c) Mixed IDS

Fig. 10: Detection rate.

(a) One IDS (b) multiple IDSs (c) Mixed IDS

Fig. 11: Missing rate.

in the data plane. The traditional K-means method groups
the flows in K clusters without considering any limitation
on the size or number of the members in each cluster. K-
means is dependent on initial values. K-means++ removes
the drawback of K-means. The difference between the two
methods is in the process of picking the initial centroids. The
original version of balanced K-means provides K clusters,
each of which has the same number of members. Our balanced
K-means divides the flows in K clusters. Clusters have the
same amount of total data rate, rather than the total number
of members. Table III shows that balancing the clusters based
on the data rate has a positive impact on the dropping rate of
IDS. Fig. 12 illustrates the performance of different clustering
methods in terms of overhead, detection rate, and delay. In
terms of detection rate, our proposed clustering approaches
produce the most promising results, but have a high degree of
delay and overhead compared to other clustering approaches.

Table IV shows the effect of providing IDS in the control
plane and data plane with different measurements of overhead,
missing rate, dropping rate, detection rate, and delay. It appears
that the amount of incoming traffic is an important measure
to evaluate IDS deployment in the data plane. Moreover, the
number of IDSs in each chain affects all measurements. Fig. 13
shows the outcome of IDS deployment in the data plane as
a centralized or chained arrangement. As a result, we can
conclude that a chain of two IDSs provides a higher detection

rate.
According to the results, more IDSs increase detection rates

for malicious packets. In addition, the missing rate would be
lower, but the dropping rate would be higher. When using
multiple IDSs, delay time increases compared to using a
single one. This is because there is an alternative path that
involves several servers, including the IDS chain, rather than
the shortest path. Nevertheless, it is not significant. It has been
shown that increasing attack rates increases detection rates
and decreases missing rates in general. As IDS is based on
a machine learning algorithm, if there are more samples for
detecting packets of attack, there is a higher probability of
detection. Based on the results, dropping rates are not affected
by attack rates. Dropping rates are a result of the limited
capacity of switches and are not determined by the ratio of
malicious packets to legitimate packets. As the attack rate
increases, the delay increases. This is due to the fact that
switches need to send alarms to the controller before any
appropriate action can be taken. With more attack samples,
the detection rate, missing rate, and dropping rate increase.

VI. CONCLUSION

If a network is large and busy, a single IDS may be
vulnerable to packet loss, so an IDS chain setup is essential.
We proposed a novel solution for applying attack detection to
incoming traffic in the data plane by creating an approximation
model. We applied a modified version of the K-means method
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Fig. 12: Detection rate, overhead, and delay for different clustering methods.

(a) Overhead (b) Attack detection rate (c) Delay

Fig. 13: Comparison between centralized IDS, 1 IDS, and 2 IDS for detection rate, overhead, and delay.

to group the incoming flows with intuitive insights. Flows in
each group are processed into an IDS chain as a new flow.
Assigning of flows to IDS chains leads to grouped flows
detouring on a longer path and being processed by the assigned
IDS chain. We discussed several factors, such as detection rate,
missing rate, dropping rate, and delay time to evaluate our
approach. As future work, considering the common K links
in the path for grouping the flows would be a great idea. Flows
having the same path would be assigned to the same group.
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