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Abstract—In the Bitcoin mining network, miners contribute
computation power to solve crypto-puzzles in exchange for finan-
cial rewards. Due to the randomness and the competitiveness of
mining, individual miners tend to join mining pools for low risks
and steady incomes. Usually, a pool is managed by its central op-
erator, who charges fees for providing risk-sharing services. This
paper presents a hierarchical distributed computation paradigm
where miners can distribute their power among multiple pools.
By adding virtual pools, we separate miners’ dual roles of being
the operator as well as being the member when solo mining.
We formulate a multi-leader multi-follower Stackelberg game to
study the joint utility maximization of pool operators and miners,
thereby addressing a computation power allocation problem. We
investigate two practical pool operation modes, a uniform-share-
difficulty mode and a nonuniform-share-difficulty mode. We derive
analytical results for the Stackelberg equilibrium of the game
under both modes, based on which optimal strategies are designed
for all operators and miners. Numerical evaluations are presented
to verify the proposed model.

Index Terms—Bitcoin mining pool, reward variance, risk aver-
sion, Stackelberg game.

I. INTRODUCTION

Bitcoin [1] blockchain is maintained by a network of miners
through a block-appending process called mining. Miners have
to solve a computationally-difficult crypto-puzzle before adding
a block to the blockchain. Block generators will receive mon-
etary rewards as a mining incentive. The system periodically
adjusts the difficulty of crypto-puzzles so that the probability
of a miner generating a block depends on the ratio between
its own computation power and the network-wide computation
power. Plenty of computation power has been dedicated in
mining, causing the probability extremely small for individuals,
especially small miners, to find a block in a short time. Thus,
most miners join mining pools, where they aggregate their
computation power and cooperate in mining. If a member
finds a block, the obtained block reward will be shared among
all members. Pooled mining increases the chance of being
awarded and effectively reduces the variance in the reward for
individual miners. In reality, pooled mining has dominated the
Bitcoin mining network, occupying more than 90% of the total
computation power. There exist more than 20 Bitcoin mining
pools, among which F2pool, Antpool, Poolin, BTCpool, and
Slushpool [2–6] are the most popular.
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Fig. 1: Three competitions in the Bitcoin mining network: (1) inter-pool game
where all pool operators compete with each other to attract miners, (2) intra-
pool game where all pool members compete for pool rewards, and (3) network-
wide game among all solo power and pooled power.

Usually, a pool is managed by a trusted operator who is
responsible for identifying members’ contributions and dis-
tributing rewards accordingly. The operator charges service
fees by cutting a fixed percentage of a block reward. To
verify each member’s contribution, an operator will ask its
members to solve sub-puzzles which are easier than the block
puzzle. Each solution to a sub-puzzle, called a share, has a
probability of being a valid solution to the block puzzle. Then,
pool members show how much effort they have put into the
pool by submitting shares. Based on the number of submitted
shares, the operator can fairly distribute pool rewards. The pool
operator should carefully decide its share difficulty, i.e., the sub-
puzzles’ difficulty, as this value affects its own service cost
as well as its member’s benefits. Actually, miners can apply
either solo mining or pooled mining, or even both. Pooled
mining offers miners a steadier income but a lower long-term
revenue due to the service fees. Solo mining charges no extra
cost, but miners suffer from a high uncertainty of the reward.
This return-risk tradeoff challenges each miner to determine
a suitable ratio between solo mining and pooled mining to
maximize its income at a steady rate. Meanwhile, rather than
selecting a certain pool, a miner can join multiple pools. How
a miner diversifies its computation power across different pools
is also a non-trivial problem given the diversity of pools. Pools
differ in their mechanisms, such as their service fees and
reward distribution methods, incurring different expectations
and variances of members’ incomes.

In this paper, we present a hierarchical distributed computa-
tion paradigm consisting of multiple mining pools and a set of
miners in the Bitcoin mining network. Miners can distribute
their computation power to multiple pools as well as solo
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Fig. 2: A special configuration of Fig. 1, where all miners contribute partial
power to solo mining and meanwhile, M2 joins Pool1, M3 joins Pool2, and
M1 joins both. Eclipses and circles represent pools and miners, respectively.

mining. As depicted in Fig. 1, three types of competitions exist
in the proposed paradigm: (1) all operators form an inter-pool
competition, each aiming to attract more computation power
by designing a reasonable pool mechanism; (2) members in
the same pool form an intra-pool competition, each aiming
to maximize its utility by devoting a reasonable computation
power to the pool; and (3) all individual mining power, in-
cluding all solo-mining entities and pools, forms a network-
wide mining competition. Obviously, the intricate relationship
between pools and miners makes it hard to achieve the joint
utility maximization for both sides.

We exploit game theory to analyze the complex interactions
among pools and miners, who aim to maximize their own
utilities. We propose a multi-leader multi-follower Stackelberg
game to study the pool-mechanism-based power allocation
problem. Such a clear two-level game model is simplified from
the above-mentioned three-type-competition model by adding
virtual players in the leader level. That is, for each miner, we
add a virtual pool to recruit its solo-mining power. Each virtual
pool is assumed to be exclusively open to its designated miner
and charge no fees. Fig. 2 shows a possible miner allocation
profile of Fig. 1. From the global view, there are five pools
in total, two of which are real pools (solid eclipses) and the
remaining three (dashed eclipses) are virtual pools. From a
miner’s local view, it faces three pools, among which one
is private and another two are public. For example, M1 can
join Pool0, Pool1, and Pool2. By adding virtual pools, we can
separate a miner’s dual roles of being an operator as well as
being a member when he mines solo.

Our proposed game includes two subgames for the pools
(as leaders) and the miners (as followers), respectively. In the
leader subgame, each operator has a privilege to set its pool
mechanism by anticipating miners’ responses. In the follower
subgame, miners decide their allocation strategies based on
their own computation power and the observed pool mecha-
nisms. We model miners as risk-averse players so that it is
easy for them to join multiple pools. Thus, each miner is tagged
with a risk-tolerance level, which affects its utility seriously. We
analyze the equilibrium in the proposed Stackelberg game under
two different pool operation modes, i.e., operators adopting a
uniform/non-uniform share difficulty among its members. By
achieving the corresponding Stackelberg equilibrium, we design
the optimal strategies for both operators and miners. The major
contributions of this paper are as follows:

• We propose a Stackelberg game to study a pool-mechanism-
based power allocation problem in a hierarchical mining
network under two different pool operation modes.

• We characterize miners as risk-averse players and propose a

variance-involved power function to reflect their utilities.
• We design optimal strategies for operators and miners by

finding the Stackelberg equilibrium in the proposed game.
• We consider a special homogeneous-miner case and derive

explicit-form expressions of the optimal strategies for both
operators and miners in the uniform-share-difficulty mode.

• We perform numerical evaluations and conduct real-data
experiments to confirm all the theoretical results.

II. SYSTEM MODE

A. Preliminary

Bitcoin mining is a process where all miners are asked
to solve a crypto-puzzle in order to create a block. Each
block generator is rewarded with bitcoins in an amount we
will denote R. The occurrence of finding a block can be
well approximated by a random variable following a Poission
process. The system adjusts the network difficulty, denoted D,
so that the whole network finds a block every T = 600s
on average. D represents the difficulty of a crypto-puzzle (its
current value is 1.6×1013), which is related to the network-wide
hash rate, i.e., a measurement of computation power. Currently,
its value is 1.3 × 1020 h/s, meaning that the number of hash
the Bitcoin mining network can compute is 1.3 × 1020 per
second for solving a crypto-puzzle. The target value is chosen
so that every computed hash will lead to a valid block with a
probability of 1/(232D).

B. A Hierarchical Bitcoin Mining Network

This paper focused on a hierarchical Bitcoin mining network.
Corresponding notations are listed in Table I. We consider a
set of M miners, and N public mining pools. Fig. 1 depicts
an overview of this network. Operators are responsible for
providing risk-sharing services to miners and make money by
taking a cut from pool rewards. Operators decide their pool
mechanisms individually, which will affect their own profits
as well as members’ benefits. Based on pools’ mechanisms,
each miner further determines how to allocate its power to
different pools. Then, the whole network is involved in a series
of repetitive block-appending competitions. Each of them aims
for a maximum of utility (details are given in Section III),
incurring a chain of non-trivial and intricate competitions due
to the specificity of mining.

C. Strategy Space

1) Miners’ Decisions: As is shown in Fig. 2, miner Mj of
computation power hj in total is facing N+1 pools: N mining
pools and solo mining. Thus, Mj needs to determine a vector
mj = (β0

j , β
1
j , · · · , βNj ) to show its power allocation decision,

where 0 ≤ βij < 1 and
∑N
i=0 β

i
j = 1 for for each i ∈ [0, N ].

(Note that, the index 0 is used to represent solo mining.) The
miner moves by choosing a mj for one mining round. For
simplicity, we assume that mj remains constant for all miners
in one mining round.



TABLE I: Summary of Notations.

Symbol Description
D / R / T blockchain mining difficulty / reward / interval

C Constant of value T/232

N / M number of pool operators / miners
Oi / Mj the i-th operator, i ∈ [0, N ] / the j-th miner, j ∈ [1,M ]

e communication expense between any operator-miner pair
bi Oi’s budget

di / fi Pooli’s share difficulty / reward cutting rate
oi=(di, fi) Oi’s strategy vector

o−i / o all operators’ except Oi’s / all operators’ strategy profile
αj Mj ’s risk tolerance level, αj ∈ (0, 1)

hj /Hi /H Mj ’s / Oi’s /network-wide computation power
βi
j Mj ’s power allocation ratio in Pooli, βi

j ∈ [0, 1]

mj =(βi
j) Mj ’s power allocation vector

m−j / m all miners except Mj ’s / all miners’ allocation profile

2) Operators’ Decisions: As we mentioned before, pools
apply a share-based method to identify each member’s com-
putation power contribution. Thus, operator Oi assigns sub-
puzzles with a share difficulty di (di < D) to its members. Each
share has a probability di/D of being a valid solution to a new
block. Shares do not have any real value other than acting as the
main reference when distributing the reward. When a member
in a pool finds a share that is also a valid block solution, the
pool operator submits it to the blockchain and distributes the
obtained reward to all pool members according to the number of
shares they have submitted. Usually, Oi takes a fixed percentage
cut fi of the block reward as its service fees before distribution.
Thus, operator Oi should make decisions on the share difficulty
di, and how much its service fee should be, in the form of a
reward cutting rate fi. Each decision is vital and non-trivial.
A big di makes it hard to truly reflect how much work a
member has performed, especially for those small members,
therefore deterring them from joining the pool. However, a
small di means Oi has to communicate with each member
frequently for share submissions, which inevitably brings extra
communication costs. Similarly, a high fi definitely hurts its
members’ incomes while a low fi may not be able to cover its
own cost of service.

There are multiple ways to design a fair reward distribution
method in pooled mining, such as Pay-Per-Share and Pay-
Per-Last-N-Shares. All of them aim to distribute the reward
proportional to each member’s computation power contribution.
This paper does not focus on solving a fair reward distribution
problem. For simplicity, the remaining reward R(1 − fi) will
be distributed in proportion to the number of shares members
submitted during that mining round. Thus, Oi’s strategy vector
can be expressed in the form of oi = (di, fi).

III. PROBLEM FORMULATION

A. Operator-Miner Interaction: A Stackelberg Game

The interactions among operators and miners can be charac-
terized as a leader-follower Stackelberg game by adding virtual
players in the leader level. We add M more virtual pools,
each exclusively accessible by a designated miner. Thus, a
miner’s power for solo mining can be considered as power
contribution to its corresponding virtual pool. From the global

view, there are N + M pools in the mining network. From a
miner’s local view, it faces N + 1 pools, indexed from 0 to N ,
where Pool0 is its corresponding virtual pool. In the proposed
game, operators act as leaders and move first to reveal their own
decisions by perceiving miners’ reactions, and then followers,
i.e., miners, respond with their power allocations. It is a multi-
leader multi-follower Stackelberg game, two levels of which
can be described as follows. In the first level, the competition
among pools forms a non-cooperative leader subgame, where
each operator Oi optimizes its strategy vector oi = (di, fi)
by predicting the miners’ reactions as well as considering
other operators’ strategies. In the second level, each miner Mj ,
responds to the current pool mechanisms, by distributing its
power to the target pools, considering its total computation
power hj and allocations of other miners’. Since decisions
are made for individual utility maximization, a non-cooperative
follower subgame is also formed.

B. Miner-side Problem

All miners are assumed to be risk-averse players, each aiming
to optimally create a mining portfolio that maximizes its risk-
adjusted rewards. Thus, we characterize a miner Mj by its total
computation power hj and its risk tolerance level αj where
αj ∈ (0, 1). We denote uij as Mj’s expected utility in Pooli,
which can be expressed as Eq. (1):

uij = Pri ·
(
pij
)αj

, (1)
where Pri represents the probability of Pooli finding a block,
and pij represents the payoff Mj can obtain when Pooli
successfully finds a block. Due to Mj’s risk-averse nature, pij is
discounted by its risk tolerance level αj . Besides, the expression
of pij is defined as below:

pij = rij − cij − vij , (2)

where rij , c
i
j , and vij represent Mj’s reward, cost, and variance

in Pooli. These three parameters are related to the amount of
computation power Mj contributes to Pooli. We show their
accurate definitions in Section IV. Note that, our novelty lies
in that we take the reward variance in the pool as a negative
factor for miners’ pooled mining payoff. This is reasonable
and necessary since the main purpose for Mj to join mining
pools is to reduce the high variance of its reward at the cost
of losing partial profits. It is obvious that when choosing from
two pools of identical rewards and costs, risk-averse miner Mj

should select the pool offering a lower reward variance. Thus,
Uj , which represents Mj’s total expected utility, can be easily
obtained as a sum over uij , i.e., Uj =

∑N
i=0 u

i
j . We define Mi’s

optimization problem below.

Problem 1 ( OPMINER).
maximize Uj =

∑N

i=0
uij , (3a)

subject to 0 ≤ βij < 1,
∑N

i=0
βij = 1, (3b)

where (βij) is a decision vector that represents Mj’s power
allocation ratios.



C. Operator-side Problem

Operator Oi’s utility, denoted Vi, is defined as Vi = r̄i − c̄i,
where r̄i is its expected payoff and c̄i is its cost. r̄i is the
product of Pri and Oi’s service fees, and c̄i is yielded due
to the operator-member share submission communication cost.
Thus, operator 0i’s optimization problem is defined in Eq.(4).

Problem 2 ( OPOPERATOR).

maximize Vi = r̄i − c̄i, (4a)
where c̄i ≤ bi, (4b)

where bi represents Oi’s budget constraint.

D. Operator-Miner Stackelberg Game

OPOPERATOR and OPMINER together form the proposed Stack-
elberg game. To achieve equilibrium in this game, where
neither the leaders (operators) nor the followers (miners) have
incentives to deviate, we need to find its subgame perfect Nash
equilibria (NE) in both the leader stage and the follower stage,
by applying backward induction. Formally, the SE point(s) is
defined as follows.

Definition 1. Let m and o denote the optimal power allocation
vector of all miners and the optimal strategy vector of opera-
tors, respectively. Let (mj)

M
j=1 = m and (oi)

N
i=1 = o, then the

point (m∗,o∗) is the Stackelberg equilibrium if the following
conditions hold:

Vi(m
∗,o∗) ≥ Vi(m,o),∀i, (5a)

Uj(m
∗,o∗) ≥ Uj(m,o),∀j. (5b)

IV. UTILITY ANALYSIS

A. Miner-side Utility

1) Probability: Pri represents the probability of Pooli find-
ing a block. Let Hi represent Pooli’s computation power and
let H represent the network computation power, Pri = Hi/H
can be easily obtained.

2) A Variance-involved Payoff: pij is the payoff Mj obtains
from Pooli when Pooli successfully finds a block. rij is related
to Mj’s power contribution to Pooli as well as Pooli’s service
fees. After Oi takes a fee of Rfi, the remaining part will
be shared among all members. As Mj’s computation power
to Pooli is hij = hjβ

i
j , Mj should receive a reward hij/Hi

times the remaining reward. Thus, rij = R(1 − fi) ·
(
hij/Hi

)
.

Specifically, r0j = R given the virtual Pool0 charges zero fee
and is only open to Mj (i.e., H0 = h0j ). cij is the communication
cost for share submission. Denote e as the communication cost
used to submit a share. Then, cij the product of e and the number
of shares that it submits. During a mining round, Mj calculates
a total of hijT hash values. Given Pooli’s share difficulty di,
each of its computed hash has a probability ξ = 1/(232di)
of being a share specific to Pooli. (Note that, a share for
Pooli won’t be accepted by another Poolj , as each pool’s
sub-puzzle is unique.) So Mj will find λ = hijTξ shares on
average. Obviously, the total cost is cij = ehijTξ. Specifically,
cij = 0 since solo mining has no communication cost on share
submission.
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Fig. 3: Utility is affected by the risk tolerance level.

Similar to block mining, finding shares with a constant
computation power hij is a Poisson process with hijξ as the rate
parameter. We said that mining for time T results in λ shares on
average. We can say further that the number of shares found
follows the Poisson distribution with a parameter λ, so this
quantity is also the variance of the number of shares found. The
share difficulty di indicates that each share has a probability
di/D to be a valid block puzzle solution. Thus, the variance
of the reward is then (Rdi/D)

2
λ. We define v0j as 0. This is

because the purpose of pooled mining is to lower the reward
variance, which doesn’t apply to solo mining.

3) Risk Tolerance Level: αj measures how much risk Mj

is prepared to take in pursuit of its objective. The higher αj
is, the more risk Mj is willing to take. Note that, α=1 is a
special case, indicating a risk-neutral miner. As is shown in
Eq. (1), to capture the risk-averse nature of miners, we apply
a power function to characterize their utilities. To show the
risk tolerance level’s effects on a power-function-based utility,
Fig. 3 gives an example where the corresponding risk-neutral
utility function is linear.

B. Operator-side Utility

As Pooli’s expected reward is RHi/H in each mining round,
Oi’s payoff, namely its expected service fees, is r̄i = fiRHi/H
given its reward cutting rate fi. In a mining round, all mem-
bers can compute HiT hash, and each computed hash has
a probability ξ of being a share. Thus, HiTξ shares should
be submitted to Oi on average, leading to a total cost of
c̄i = eHiTξ. Note that, a virtual pool operator has a fixed
strategy of (D, 0), and thereby yielding a payoff of r̄i = 0 as
well as a cost of c̄i = 0.

V. OPTIMAL STRATEGY IN OPERATOR-MINER GAME

In this section, we analyze the equilibrium in our proposed
game, based on which we can design the optimal strategies for
operators and miners. To find the leader-follower Stackelberg
equilibrium, we have to figure out the Nash equilibrium in both
the leader game and the follower game, where the concavity
of OPOPERATOR and OPMINER should be confirmed. Combining
Lemma 1 and Theorem 1, we prove the Nash equilibrium
in the follower game. Then we apply backward induction
and prove the Nash equilibrium in the leader game based on
Lemma 2 and Theorem 2. Corollary 1 and Corollary 2 show
the explicit expressions of homogeneous-miner-homogeneous-
operator optimal strategies. Furthermore, we investigate another
pool operation mode of a non-uniform share difficulty. We also
prove that the equilibrium is still achievable in this mode. All
complex proofs are provided in Appendix.



A. Equilibrium Analysis

Lemma 1. uij is a strictly concave for ∀i ∈ [1, N ].

Theorem 1. A Nash equilibrium exists among all miners if all
operators’ strategies are fixed.

Proof. Firstly, the strategy space for each miner,{
βij |βij ∈ [0, 1] ,∀i ∈ [0, N ]

}
∩
{∑N

i=0 β
i
j = 1

}
, is a non-

empty, convex, compact subset of the Euclidean space.
Furthermore, we know U ij is apparently continuous in this
space. To show the existence of Nash equilibrium among all
miners, we need to prove U ij is strictly concave. Obviously, u0j
is a linear function, which is definitely concave. In Lemma 1,
we have proved that uij is a strictly concave for ∀i ∈ [1, N ].
Given the fact that the sum of functions can be strictly concave
as long as all addends are concave and at least one of them
is strictly concave, we could conclude that U ij is strictly
concave.

Therefore, we can apply a classic best-response-dynamics
algorithm [7] to obtain the Nash equilibrium of the multiple-
player non-cooperative game among all miners. The equilib-
rium doesn’t accomplish in one step in reality. Miners have
to go through several iterations to update their strategies,
then reach a steady point as it is impossible for each miner
to know other miners’ strategies before it makes decisions.
Complete information is a assumption in the game theory but
not realistic in practice. We give a simple example involving
two pools and three miners with different risk tolerance lev-
els and computation power, to show how miners’ strategies
evolve before remaining unchanged. As Table II shows, miners’
strategies fix after several iterations. We also choose another
starting point, i.e., m1 = (0, 0.5, 0.5), m2 = (0.5, 0.3, 0.2),
and m3 = (0.15, 0.37, 0.48). In this case, miners’ strategies
converge to the same final values after 17 rounds.

Corollary 1. Assume that all miners share an identical risk
tolerance level, denoting α and all operators’ budgets are
unlimited, i.e., bi=+∞,∀i. Each miner’s optimal strategy can
be explicitly as follows:

hjβ
i
j=

{
hj −

∑N
i=1 hjβ

i
j i = 0,

[(M−1)α+ 1] / [(Mα+ 1)M ]·(x/y) else,
(6)

where x = R(1−fi) and y = eC/di−R2diC/D
2. (Note that,

x and y are just intermediate variables which are introduced
for the simplicity of writing.)

The explicit expressions in such a special case allow us to
intuitively observe that a pool’s share difficulty and reward
cutting rate vitally influence miners’ decisions. In the following,
we will discuss how each pool operator optimizes these two
factors, based on the method of backward induction.

Lemma 2. Vi is a strictly concave for ∀i ∈ [1, N ].

Theorem 2. Assuming e is less than 1 bitcoin (this is definitely
holds in reality), each pool operator Oi can achieve utility
maximization by optimally setting its share difficulty di and

Round

Ratio Init. 1 2 3 4 5 6-14
β0
1 0.34 0.566 0.559 0.569 0.570 0.571 0.572
β1
1 0.33 0.058 0.104 0.103 0.102 0.102 0.102
β2
1 0.33 0.376 0.337 0.328 0.328 0.327 0.326
β0
2 0.25 0.649 0.682 0.695 0.703 0.714 0.732
β1
2 0.25 0.089 0.051 0.031 0.013 0.005 0.000
β2
2 0.50 0.262 0.267 0.274 0.284 0.281 0.268
β0
3 0.50 0.739 0.741 0.742 0.753 0.762 0.781
β1
3 0.25 0.204 0.232 0.237 0.230 0.227 0.219
β2
3 0.25 0.057 0.027 0.021 0.017 0.011 0.000

TABLE II: Miner strategy iterations in a setting of (α1, α2, α3) =
(0.1, 0.4, 0.9), h1 : h2 : h3 = 3 : 7 : 10, o1 = (40, 0.01), o2 = (8, 0.09),
and (R,D, e)=

(
12.5, 800, 2−8

)
.

reward cutting rate fi . That is, a Nash equilibrium exists
among all operators.

Proof. Based on the Nash equilibrium achieved among all
miners, each pool operator Oi can optimize its strategies to
achieve profit (defined in Problem 2) maximization. Obvi-
ously, Oi’s strategy space, {0 < fi < 1} ∩ {di ≥ 1}, is a non-
empty, convex, compact subset of the Euclidean space. Further,
we know Vi is apparently continuous over the domain of
{0 < fi < 1} ∩ {di ≥ 1}. Since we have proved that Vi is a
strictly concave function in its domain in Lemma 2, we can
confirm the existence of operators’ Nash equilibrium.

Corollary 2. Assume that all miners share an identical risk
tolerance level α and and all operators’ budgets are unlimited,
i.e., bi = +∞,∀i.. Each operator’s optimal strategy can be
explicitly as follows: f∗i = (xdi + y) / (2xdi) and d∗i = di so
that f∗i and d∗i satisfy 2yzd+xyfi = xzfid

2
i , where x = R/H ,

y = eC, and z = R2C/D2. (Note that, x, y and z are just
intermediate variables which are introduced for the simplicity
of writing.)

B. Non-Uniform-Share-Difficulty Pool Operation Mode

Previously, we focus on a pool operation mode where an
operator sets a uniform share difficulty for its members. In
this case, members devoting different computation power will
have different numbers of submitted shares on average, and
each share has the same worth. Now, we move on to another
practical mode where a mining pool supports a non-uniform
share difficulty for its members. In this mode, all members
will submit shares in similar paces, indicating that they have
an identical communication cost in expectation. However, the
share difficulty is variable among members to match their
own computation power, and each member’s share is priced
proportional to its share difficulty.

1) A Pool Member’s Reward, Cost and Variance: In the
non-uniform-share-difficulty mode, the reward cutting rate fi
is still in operator Oi’s decision vector. Instead of deciding the
share difficulty di, Oi determines share collecting speed si, so
that each of its members will submit siT shares in expectation
during a mining round. The corresponding communication cost
is cij = esiT . When Pooli with a total computation power of



(a) α = 0.01. (b) α = 0.1. (c) α = 0.4. (d) α = 0.8.
Fig. 4: Homogeneous miners’ utility under different risk tolerance levels.

Power ratio SN SA MR MNO MAO
0.05 0.5482 0.5477 0.5578 0.5890 0.5719
0.10 1.0982 1.0964 1.1773 1.1780 1.1757
0.15 1.6446 1.6446 1.7334 1.7670 1.8007
0.20 2.1954 2.1929 2.3451 2.3560 2.4257
0.25 2.7411 2.7501 2.8068 2.9449 3.0507

TABLE III: Miner’s average income under different investment methods.

Hi finds a block,, miner Mj with computation power hjβij will
receive a reward of pij = R(1 − fi) · (hjβij/Hi). Mj’s share
difficulty can be expressed as dij = hjβ

i
j/(2

32si), indicating
its share is worth a value of Rdij/D. Thus, its reward variance
can be calculated as vij = siT ·

(
Rdij/D

)2
=R2dijhjβ

i
jC/D

2.
Obviously, a big si leads to a low variance for members.

2) Utility Reformulation and Equilibrium Analysis: Mj’s
utility Ui can be easily reformulated by applying these updated
pij , c

i
j , and vij in the non-uniform-share-difficulty mode. Now,

we rewrite the utility function for each pool operator in this
mode. Oi’s expected payoff r̄i remains unchanged, while its
communication cost should change into c̄i = NsieT . Thus, Vi
in this mode can be easily updated accordingly.

Theorem 3. When operators’ strategies are fixed, there exists
a Nash equilibrium among all miners.

Theorem 4. Assuming e is less than 1 bitcoin, each pool
operator Oi can achieve utility maximization by optimally
setting its share collecting speed si and reward cutting rate
fi . That is, a Nash equilibrium exists among all operators.

Theorem 3 and Theorem 4 are obtained in the non-uniform-
share-difficulty mode. Due to the page limitation, we cannot
prove them in details, while their proofs are similar to the
proofs of Theorem 1 and Theorem 2. Therefore, the Stackelberg
equilibrium also can be achieved in the non-uniform-share-
difficulty mode.

VI. EVALUATION

Our evaluation includes two main parts. First, we exam-
ine how miners (Subsection VII.A) and operators (Subsec-
tion VII.B) decide their optimal strategies. Second, we analyze
how Bitcoin market price influences the achieved equilibrium
(Subsection VII.C).

A. Miner-side Equilibrium Analysis

1) Miner Payoff under Different Investment Methods: Since
we highlight our novel miner utility function, to show its
advantage, we will compare it with some existing works that
use different utility functions to guide miners on how to select

Power ratio SN SA MR MNO MAO
0.05 560 562 147 123 99
0.10 378 391 108 115 97
0.15 282 282 110 107 94
0.20 180 185 111 105 92
0.25 128 123 102 101 90

TABLE IV: Miner’s variance under different investment methods.

mining pools. All methods to be compared are explained as
follows. (1) SN: each miner is risk-neutral and is allowed to
either mine solo or join in a single mining pool for utility
maximization; (2) SA: it is slightly different from SN in that all
miners are risk-averse; (3) MR: each miner randomly allocates
its computation power to multiple pools and solo mining; (4)
MNO: each miner is risk-neutral and optimizes its utility by
power diversification among multiple pools and solo mining;
and (5) MAO: it is our proposed method, which differs from
MNO on the risk-averse-miner assumption. We assume there
are 3 pool operators with fixed strategies and 20 miners of
different computation powers. All miners share the same risk
attitudes, i.e., α = 1 in the risk-neutral setting and α = 0.5 in
the risk-averse setting. We specify power ratios for 5 miners
as 0.05, 0.1, 0.15, 0.2, and 0.25 and randomly assign the
remaining power to another 15 miners. We model the mining
process during which 1000 blocks are generated. We treat every
20 blocks as a period and record the income for those 5 miners.
Then, we calculate their average income over 50 periods. The
results generated from different methods are given in Table III.
As we only run 1000 mining rounds, our results show that for
each size of miners, diversifying power always works better
than concentrating it. Although it should not be such a case
in the long run, this observation reflects the randomness of
mining itself and that multiple-pool investment gives miners
more income sources. We also record how often they get paid
for those 5 miners in Table IV, which reflects the reward
variance of each miner. Obviously, miners applying our utility
function can obtain incomes more frequently. We can conclude
that our proposed method brings miners steady and relatively
high incomes.

2) Factors Affects Miner’s Utilities: Now, we investigate
some factors that influence each miner’s utility. We consider
two personal reasons, i.e., a miner’s computation power as
well as its risk tolerance level, and one external reason, i.e.,
the number of pools for miners to join in. We assume that
there are 20 miners with different computation powers and an
identical risk tolerance level. From Fig. 4, we can conclude:
(1) a miner with more computation power definitely has higher



TABLE V: Miners’ strategy profiles under different risk tolerance levels

M1 M2 M3

α1 : α2 : α3 β0
1 β1

1 β2
1 β0

2 β1
2 β2

2 β0
3 β1

3 β2
3

.01 : 0.3 : 0.7 0 0.50 0.50 0.38 0.31 0.31 0.70 0.15 0.15
0.1 : 0.4 : 0.9 0 0.50 0.50 0.50 0.25 0.25 0.90 0.05 0.05
0.3 : 0.5 : 0.8 0 0.50 0.50 0.52 0.24 0.24 0.80 0.10 0.10

(a) Miner power ratio h1 : h2 : h3 = 3 : 7 : 10.

M1 M2 M3

α1 : α2 : α3 β0
1 β1

1 β2
1 β0

2 β1
2 β2

2 β0
3 β1

3 β2
3

.01 : 0.3 : 0.7 0.02 0.49 0.49 0.18 0.41 0.41 0.5 0.25 0.25
0.1 : 0.4 : 0.9 0.28 0.36 0.36 0.40 0.30 0.30 0.86 0.07 0.07
0.3 : 0.5 : 0.8 0.32 0.34 0.34 0.42 0.29 0.29 0.70 0.15 0.15

(b) Miner power ratio h1 : h2 : h3 = 1 : 1 : 1.

utility compared with a miner of less computation power; (2)
more mining pools gives more income sources for miners and
incurs a higher utility as well; and (3) a miner’s risk tolerance
level also affects its utility. In Table V, we show optimal
strategy profiles for miners with heterogeneous risk tolerance
levels under different power ratio settings.

B. Operator-side Equilibrium Analysis

This part investigates two different ways that an operator can
determine its share difficulty. The first is the one we apply in
our previous analysis, where the operator sets an identical share
difficulty for its members. In this case, members devoting dif-
ferent computation power will have different average numbers
of submitted shares and each share has the same worth. Another
way is a variable share difficulty where each member shares
the same average numbers of submitted shares, indicating that
each member has the same communication cost in expectation.
In this case, each share is priced proportional to its difficulty.
we calculate the different difficulty settings under the optimal
fee rate for each operator. We find that O1’s optimal difficulty
level should be 510 and O1’s optimal value is 480. This result
is quite reasonable as O2’s optimal fee rate is higher than that
of O1’s. To attract more computation power, O2 has to lower
its difficulty level. Otherwise, miners cannot gain from its pool.

C. Time-varying Bitcoin Market Price

Bitcoin market price is time-varying and can be modeled as
a log-normal distribution. We show how the oscillation of such
a distribution affects the equilibrium achieved by operators and
miners below. We assume there exist 3 pools in total and 100
homogeneous miners. We compare three settings: (1) Bitcoin
market price is fixed as 6.25, (2) Bitcoin market price follows
a lognormal distribution of which the mean is 6.25 and the
variance is 0.01 in Fig. 5(a), and (3) Bitcoin market price
follows a lognormal distribution of which the mean is 6.25
and the valiance is 1 in Fig. 5(b). From Fig. 6, we can see the
miners contribute more power to pooled mining as the market
price becomes more unstable.

VII. RELATED WORK

1) Bitcoin Mining Pools: There exist several mining
pools [2–6] in the Bitcoin network. Members in the same pool
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(a) µ = 6.25 and σ2 = 0.01.
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(b) µ = 6.25 and σ2 = 1.
Fig. 5: Variable Bitcoin market price.

collaborate in mining and share obtained rewards fairly. Many
feasible reward mechanisms have been proposed [8–11], among
which proportional, PPS, and PPLNS are commonly adopted
by mining pools in practice. In a proportional system, miners
make profits until the pool finds a block, each of whom will be
rewarded in proportion to the number of shares it has submitted.
The PPS approach offers an instant, guaranteed payout to a
miner for its contribution to the probability that the pool finds
a block. The PPLNS method is similar to Proportional, but
the miner’s reward is calculated on a basis of N last shares.
We apply a generalized method where rewards are distributed
based on the number of submitted shares in the mining round
when the pool finds a block.

2) Cryptocurrency Investment: The discussion on cryptocur-
rency investment is hot and there are many related works
from both economics [12–15] and computer science [16–19].
Previous papers focus on the analysis of miners’ optimal
investment portfolios. In [20], authors model how miners form
mining pools as a cooperative game with coalitional structures,
allowing a miner to join a single pool or mine solo. [21] guides
a miner on how to invest across different blockchains with the
same PoW algorithm. It leverages modern portfolio theory to
predict a miner’s allocation over time using price data and
inferred risk tolerance. [22] presents an analytical tool that
allows risk-averse miners to optimally create a mining portfolio
that maximizes their risk-adjusted rewards. This model allows
miners to invest on multiple cryptocurrencies. Our paper is a
case study on Bitcoin. Besides miners, we also consider the
investment from the pool operator side. We combine economic
theory by considering miners’ risk tolerance level and their
reward variance, and game theory by modeling the interactions
among pool operators and miners as a Stackelberg game.

3) Stackelberg Game in Cryptocurrency Mining: Stackel-
berg Game is a widely-used model in the field of cryptocurrency
mining. [23, 24] use this model to characterize the interaction
between cloud/edge computing provider and a set of mobile
miners seeking for computation offloading, and solve an op-
timal pricing-based computing resource management problem.
In [25], authors model a pool operator as the leader and a fixed
set of pool members as followers, and figure out the optimal
fee the pool operator should charge and the optimal power a
member should devote to. [26] considers the Proof-of-Stake
mining and applies Stackelberg game to maximize profits for
both a stake pool operator and stakeholders in a blockchain-
based mobile roaming management system. Our paper focuses
on Bitcoin, i.e., Proof-of-Work mining, and is more difficult
than the above-mentioned works as our game is multi-leader
multi-follower while their models only include a single leader.



Our game is different from traditional Stackelberg games, as
leaders are part of the follower game.

VIII. CONCLUSION

In this paper, we have proposed a Stackelberg game between
the pool operators for optimizing their pool mechanisms and the
miners for optimal computation power allocation strategies. We
adopt classic economic theories and characterize miners as risk-
averse players, where a power function is applied to model min-
ers’ utilities. We consider two practical pool operation modes,
a uniform-share-difficulty mode and a uniform-communication-
frequency mode. We analyze the existence and uniqueness
of Stackelberg equilibrium (SE) for the proposed game, and
derive explicit solutions for miners and operators. We study the
impacts of Bitcoin’s time-varying market price, which incurs
more power devoted to mining pools. Numerical experiments
have been conducted to further confirm our analysis.

APPENDIX

A. Proof of Lemma 1

In this part, we will show that uij is a strictly concave
function for i ∈ {1, 2, · · · , N}. For the simplicity of writing,
we will ignore the subscript/superscript of i in the below. Thus,
H is the shorthand of Hi, and we directly use

∑
hj to represent

the total computation power in the network. Similarly, hj is
short for hij , uj for uij , f for fi, and d for di. We further
define H−j , where H = hj +H−j . We define φj = uj

∑
hj .

Since
∑
hj is a positive constant, uj and φj share the same

concavity. Let r = R(1−f) and c = eC/d−R2dC/D2. Eq. (7)
shows φj’s second derivative.

∂2φj
∂h2j

= αj

(
rhj
H
− chj

)αj −ψj
h2jH (cH − r)2

(7)

where ψj = (1− αj) r2H2
−j + 2crH2 (hj −H−j + αjH−j)

− c2H3 (hj −H−j + αjH) .

Since we assume r > cH , the following inequation holds.
ψj > (1− αj) c2H2H2

−j + 2c2H3 (hj −H−j + αjH−j)

− c2H3 (hj −H−j + αjH)

= (1− αj) c2H2H2
−j + c2H3 (1− αj) (hj −H−j)

= (1− αj) c2h2jH2 (8)

Obviously, (1− αj) c2h2jH2 ≥ 0 always holds for ∀hj .
Therefore, ψj is bigger than 0, indicating that ∂2φj/∂h2j < 0.
We can conclude that φj as well as uj is strictly concave.

B. Proof of Corollary 1

If we assume all miners have an identical risk tolerance level,
denoting α, we can derive explicit expressions of each miner’s
computation power allocation in the equilibrium. Since we have
shown that uj is strictly concave, its maximal point can be
obtained by finding the solution to ∂uj/∂hj = 0, which is the
same as the solution to ∂φj/∂hj = 0.
∂φj
∂hj

=

(
rhj
H
−chj

)α
αcH2 + chjH − r (hj + αH−j)

hj (cH − r)
(9)
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Fig. 6: Homogeneous miners’ power allocation evolution.

Given the first derivative of φj in Eq. (9), we could say that
αcH2 + chjH − r (hj + αH−j) = 0, which can be simplified
as below hj = αrH − αcH2/ (cH + αr − r). Accumulating
both sides over M miners yields the following results:∑M

j=1
hj =

∑M

j=1

αrH − αcH2

cH + αr − r
, (10)

H = M
αrH − αcH2

cH + αr − r
. (11)

We further simplify Eq. (11) and obtain the explicit expression
of H shown in Eq. (12):

H =
(M − 1)α+ 1

Mα+ 1

r

c
. (12)

Thus, the explicit expression of hj can be easily obtained by
replacing H using Eq. (12) into Eq. (9).

C. Proof of Lemma 2
For the simplicity of writing, we ignore the sub-

script/superscript of i in the following part. As V , short for
Vi, is a two-variable function, the definiteness of its hessian
function determines its concavity. Denote H for the Hessian
matrix of V , with respect to fi and di, as below:

H :=

[
Vff Vfd
Vdf Vdd

]
, (13)

where

Vff =
∂2V

∂f2
, Vfd =

∂2V

∂f∂d
, Vdf =

∂2V

∂d∂f
, Vdd =

∂2V

∂d2
.

We provide the explicit-form expressions of the Jacobian ele-
ments first as below:

∂V

∂f
=

R∑
hj

(
H + f

∂H

∂f

)
− eC

d

∂H

∂f
, (14)

∂V

∂d
=

R∑
hj
f
∂H

∂d
+
eCH

d2
− eC

d

∂H

∂d
. (15)

Then, we derive Hessian elements as follows:

Vff =
2R∑
hj

∂H

∂f
+

(
Rf∑
hj
− eC

d

)
∂2H

∂f2
, (16)

Vfd =
R∑
hj

∂H

∂d
+
eC

d2
∂H

∂f
+

(
Rf∑
hj
− eC

d

)
∂2H

∂f∂d
, (17)

Vdf =
R∑
hj

∂H

∂d
+

(
Rf∑
hj
− eC

d

)
∂2H

∂d∂f
, (18)

Vdd =
eC

d2
∂H

∂d
− 2eC

d3
+

(
Rf∑
hj
− eC

d

)
∂2H

∂d2
. (19)

As H is an affine function over hj , each miner’s risk tolerance
level just affects the scalars of this linear combination. In the
following, we will showH is positive definite in the special case
where all miners share an identical risk tolerance level where H



can be explicitly expressed. The proof is enough to reflect the
concavity of V in all general cases. Let θ = R/

∑
hj , σ = eC,

and µ = R2C/D2. Given the expression of H in Eq. (12), H
can be expressed as follows:

H := R
(M − 1)α+ 1

Mα+ 1

[
vff vfd
vdf vdd

]
, (20)

where

vff =
−2θd

µd2 + σ
, (21)

vfd=
2θµd2(2f−1)− 2σµd

(µd2 + σ)2
− θ(2f − 1)

µd2 + σ
, (22)

vdf =
2θµd2(2f−1)− 2σµd

(µd2 + σ)2
− a(2f−1)

µd2 + σ
, (23)

vdd=
8µ2d2(f−1)(σ−θfd)

(µd2 + σ)3
− 2µ(f−1)(σ−3θdf)

(µd2 + σ)2
. (24)

We remove the scalar R [(M − 1)α+ 1] / (Mα+ 1), as it
won’t affect the sign of det(H). Eq. (25) shows the simplified
det(H).

det(H) =
4θσµd(θd+ σf)− 4σµ2d2(σ − 2θd)

(µd2 + σ)4

+
4θ2σf(1− f) + θ2(µd2 + σ)

(µd2 + σ)3
. (25)

Obviously, the right part of det(H) is positive. Now we show
the of the left addend is also positive if e is less than 1 bitcoin.

4θσµd(θd+ σf)− 4σµ2d2(σ − 2θd) (26)

=4σµd
[
2θµd2 + θσf + d

(
θ2 − σµ

)]
=4σµd

(
2θµd2 + θσf

)
+ 4σµd2

[(
R∑
hj

)2

− e
(
RT

D232

)2
]

=4σµd
(
2θµd2 + θσf

)
+ 4σµd2

(
R∑
hj

)2

(1− e) > 0

Now, we can conclude that the sign of det(H) is positive, and
thus, V is strictly concave over f and d.

D. Proof of Corollary 2

The optimal f and d can be obtained by solving ∂V
∂f = 0

and ∂V
∂d = 0 shown in the below:

∂V

∂f
=
σ + θd− 2θdf

µd2 + σ
, (27a)

∂V

∂d
=

2σµd+ θσf − θµfd2

(µd2 + σ)
2 . (27b)
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