Some Reflections on C&I Education

Jie Wu
Computer and Information Sciences
Temple University
Roadmap

- **Current Crisis**
 - IT Market Demand
 - CS Enrollment

- **Several Initiatives**
 - NSF: BPC-A and CE21
 - ACM: CSTA

- **C&I Curricula**
 - ACM (AIS and IEEE) Curriculum 2013
 - Multi-subject and Cross-disciplinary

- **Chinese vs. U.S. Ed. System**
 - Final Thoughts

CNCC 2011
1. Current Crisis

- IT job growth projections out-pace student interest in computing majors by a factor of 5.5

<table>
<thead>
<tr>
<th>Major</th>
<th>Jobs</th>
<th>Grads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computing</td>
<td>140,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Engineering</td>
<td>60,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>80,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Mathematics</td>
<td>160,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>120,000</td>
<td>40,000</td>
</tr>
</tbody>
</table>
In High School

- Participation in all STEM disciplines (science, technology, engineering, and mathematics) is increasing, except in the field of computer science.

Percentage of New STEM Jobs By Areas Through 2018

- Computing: 71%
- Computer Support: 7%
- Database Admin.: 2%
- Systems Analysis: 10%
- Computer Networking: 21%
- Software Engineering: 27%
- CS/IS: 1%
- Other Computing: 3%
- Physical Sciences: 7%
- Traditional Engineering: 16%
- Mathematics: 2%
- Life Sciences: 4%

CNCC 2011
In College

- Since 2000, the number of majors in computing is down 70% overall, and the number of women is down 80%
- CS is threatened by one of its own innovations – using the internet for offshore job outsourcing

Figure 6. BS Production (CS & CE)
2. Several Initiatives

- Broadening Participation in Computing Alliance (BPC-A)
 - BPC-A addresses issues across K-16

- Computing Education for the 21st Century (CE21)
 - Effective teaching and learning in computing
 - NSF-initiated CS 10K project: 10,000 high school teachers to teach AP exam in CS by 2013

- Cyberlearning: Transforming Education (CTE)
ACM: CSTA

- **Computer Science Teachers Association (CSTA)**
 - Evolved from ACM's K-12 task force
 - Working on revising the model curriculum
 - Computing education for students ages 5-18 (K-12)

- **Learn from the successful stories of**
 - National Science Teachers Association (NSTA)
 - National Council for Teachers of Mathematics (NCTM)

CNCC 2011
Challenge 1

- Changing the perception of CS as a service discipline
- Branding CS discipline
- Attaching more participants in CS STEM
3. C&I Curricula

- Diversification of C&I education
 - Past foundation
 - mathematical logic
 - mathematical engineering (M. Snir)
 - Current foundation
 - mathematics, statistics, cognitive sciences,
 social sciences, physical sciences, etc.

- More multidisciplinary and cross-disciplinary applications
 - Double major, CS-major X-minor, and X-major CS-minor
ACM (AIS and IEEE) Curricula

- Curriculum 65
 - Prelim. recommendation
- Curriculum 68
 - Algorithmic thinking
- Curriculum 78
 - Programming skills
- Curriculum 91
 - Multiple core
- Curriculum 01
 - Multiple tracks
- Curriculum 13 (cs2013.org)
 - Outward looking

- Curriculum 05
 - Computer Engineering
 - Computer Science
 - Information Systems
 - Information Technology
 - Software Engineering
 - Multiple Introductory Seq.
 - Imperative-first
 - Object-first
 - Functional-first
 - Algorithm-first
 - Hardware-first

CNCC 2011
Computing Education Matters

- **ACM Symposium on Computer Science Education (SIGCSE 2011)**
 - Special session: the CS 10K project
 - Panel: Successful K-12 outreach strategies
 - Technical paper: Tutoring for retention
 - Panel: Top issues in providing successful undergraduate research experiences
 - Town meeting: expanding the women-in-computing community
 - Panel: Curriculum 2013 reported from ACM/IEEE joint task force

- **ACM Journal of Educational Resources in Computing**
- **ACM Transactions on Computer Education**

CNCC 2011
Distance and Online Education

- **Substitution (disruptive) process?**
 - Problematic remote assessment

- **Facilitate better interaction**
 - Student-student
 - Student-faculty

- **Offer self-service education**
 - Student-pull (on-line)
 - Lecturer-push (in-classroom)

- **Recent online educational innovations**
 - iTunes U
 - MIT's OpenCourseWare
 - Chinese college courses online: www.icourses.edu.cn

CNCC 2011
Distributed Ed: Stanford “Intro to AI”

- S. Thrun (Stanford) and P. Norvig (Google)
- Free and online worldwide from Oct. 10 to Dec. 18, 2011
- Delivering lectures on youtube
- Earning class certificate once passed

- Intro & complexity
- Tech trends
- Naming
- Enforcing modularity
- Operating systems
- Concurrency
- Threads
- Performance
- Networks
- Layers
- Routing
- End-to-end
- Sharing networks
- Distributed naming
- Fault tolerance
- Atomicity
- Recovery
- Isolation
- Multi-site atomicity
- Consistency and replication
- Security
- Message authentication
- User authentication
- Certification

F. Kaashoek (lecturer)

D. Katabi (recitation)

CNCC 2011
Diversity

CMU (School of Computer Science): Department, Institute, and Center
- Computer Science Dept.
- Human-Computer Interaction Institute
- Institute for Software Research
- Language Technologies Institute
- Lane Center for Computational Biology
- Machine Learning Department
- Robotics Institute

CMU Ph.D. Programs
- Computation, Organizations and Society
- Computational Biology
- Computer Science
- Human-Computer Interaction
- Language and Information Technologies
- Machine Learning
- Machine Learning and Public Policy
- Machine Learning and Statistics
- Robotics
- Software Engineering

CNCC 2011
The Bigger Picture

- **CS role in four scientific paradigms**
 - **Theory**: The primary scientific paradigm
 - **Experimentation**: The use of apparatus, artifacts, and observation to test theories and construct models
 - **Computation (1980s)**: A specialization of experimentation with tools focused around numerical techniques afforded by computers
 - **Data-driven (2010s)**: data and the computational systems needed to manipulate, visualize, and manage large amounts of scientific data

CNCC 2011
Challenge 2

- Expanding C&I curricula while maintaining its core
- Utilizing IT technology for effective teaching and learning
- Educating CS students in ways of thinking and problem solving, which characterize CS
Why Picasso & Matisse are Great

- Know how to make appropriate abstraction - very important in CS!
- Many CS students use excessive amounts of math to explain simple things!

- ACM International Collegiate Programming Contest (ICPC)
 - Shanghai Jiaotong University (3 time winners, tied 1st overall)
 - Zhejiang University (2011 winner)

- D. A. Patterson (CACM, 2005): Reflections on a Programming Olympiad
 - Putin met the 2004 winner team
 - U.S. president met football champions
Shanghai Kids
First class city, first class education

Education performance of 15-year-olds
Selected countries/regions, 2009

Mean reading score

<table>
<thead>
<tr>
<th>Country</th>
<th>Rank</th>
<th>Mean PISA Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>China (Shanghai)</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>South Korea</td>
<td>2</td>
<td>510</td>
</tr>
<tr>
<td>Finland</td>
<td>2</td>
<td>460</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>3</td>
<td>410</td>
</tr>
<tr>
<td>Singapore</td>
<td>5</td>
<td>410</td>
</tr>
<tr>
<td>Canada</td>
<td>5</td>
<td>410</td>
</tr>
<tr>
<td>Japan</td>
<td>5</td>
<td>410</td>
</tr>
<tr>
<td>Poland</td>
<td>11</td>
<td>410</td>
</tr>
<tr>
<td>United States</td>
<td>11</td>
<td>410</td>
</tr>
<tr>
<td>Germany</td>
<td>14</td>
<td>410</td>
</tr>
<tr>
<td>Britain</td>
<td>19</td>
<td>410</td>
</tr>
<tr>
<td>Dubai</td>
<td>41</td>
<td>410</td>
</tr>
<tr>
<td>Russia</td>
<td>41</td>
<td>410</td>
</tr>
<tr>
<td>Mexico</td>
<td>46</td>
<td>410</td>
</tr>
<tr>
<td>Brazil</td>
<td>51</td>
<td>410</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>65</td>
<td>410</td>
</tr>
</tbody>
</table>

Mean maths score

<table>
<thead>
<tr>
<th>Country</th>
<th>Rank</th>
<th>Mean PISA Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>China (Shanghai)</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>Singapore</td>
<td>2</td>
<td>490</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>3</td>
<td>490</td>
</tr>
<tr>
<td>South Korea</td>
<td>3</td>
<td>490</td>
</tr>
<tr>
<td>Finland</td>
<td>4</td>
<td>490</td>
</tr>
<tr>
<td>Japan</td>
<td>8</td>
<td>490</td>
</tr>
<tr>
<td>Canada</td>
<td>9</td>
<td>490</td>
</tr>
<tr>
<td>Germany</td>
<td>13</td>
<td>490</td>
</tr>
<tr>
<td>Poland</td>
<td>21</td>
<td>490</td>
</tr>
<tr>
<td>Britain</td>
<td>23</td>
<td>490</td>
</tr>
<tr>
<td>United States</td>
<td>26</td>
<td>490</td>
</tr>
<tr>
<td>Russia</td>
<td>38</td>
<td>490</td>
</tr>
<tr>
<td>Dubai</td>
<td>41</td>
<td>490</td>
</tr>
<tr>
<td>Mexico</td>
<td>49</td>
<td>490</td>
</tr>
<tr>
<td>Brazil</td>
<td>55</td>
<td>490</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>65</td>
<td>490</td>
</tr>
</tbody>
</table>

Source: OECD PISA 2009 Results
Amy Chua’s “Tiger Moms”

- Time Magazine, Jan. 2011
 - Is tough parenting really an answer?

- NY Times, Jan. 15, 2011
 - Chinese children typically start their formal education at age two
 - The Chinese tend to favour the U.S. education system for trying to make learning exciting and not just a chore

- NY Times, Nov. 3, 2011
 - The China Conundrum
 - It is difficult to identify good Chinese students from applications
Elite to Mass to Universal

- Almost all schools follow similar curricula
- Almost every child in China learns one classical musical instrument
 - ... but, there are only 2 or 3 thousand die-hard classical music fans in Beijing!
Conflicting Views on Education in U.S.

- Thomas L. Friedman: Five Pillars of Prosperities
 - Public education, modernization infrastructure, open immigration policy, basic R&D, and regulation of private economic activity

(Three-time Pulitzer winner)
Conflicting Views on Education in U.S.

- The debate on “the need of higher education”
 - Bill Gates, Steve Jobs, and Michael Dell never completed their college study
Things Students Learn at College

50% of the learning material for a student’s career future is outside the classroom

45% show no significant gains in critical thinking, analytical reasoning, and written communications during the first 2 years

BUT

- Learn how you learn
- Learn how to think
- Learn self-discipline
- Learn how to communicate effectively

CNCC 2011
U.S. Ed. System

- **National priority**
 - Public safety, transportation, energy, education, health, advanced manufacturing

- **Admission criteria**
 - Standardized test, GPA/HPA, extracurricular activities, etc.

- **Different types**
 - Vocational technical institutions, community colleges, universities, and professional schools
Chinese System vs. U.S. System

- Chinese system
 - Highly structured, disciplined learning

- U.S. system
 - Critical thinking and student-centered learning

China and the U.S. should learn from one another and adopt what the other does best!
Merits of U.S. Ed. System

- U.S. system
 - Flexibility of educational system
 - Importance of extra-curricular activities
 - Club activities
 - Sports
 - Volunteering

- Five pillars of learning
 - Learning to know
 - Learning to do
 - Learning to live together
 - Learning to be
 - Learning to transform oneself and society

CNCC 2011
Education for Building Character!

- Learning the lesson from the classical music world
- Musicianship with character
- Violinists
 - Past generation: Heifetz, Oistrakh, Menuhin, Kreisler, Elman...
 - Current generation: Perlman, Mutter, Vengerov, Bell, Chang...
Challenge 3

- Developing general education to produce well-rounded citizens
 - Fulfilling individual potential AND
 - Contributing to social transformation
Final Thoughts

- **Education ecosystem**: government, industry, academia, and professional societies
Charles Darwin (Origin of Species)

“It’s not the strongest of the species that survives, not the most intelligent, but the one most responsive to change.”