CISS 2015

Baltimore, Maryland March 18th, 2015

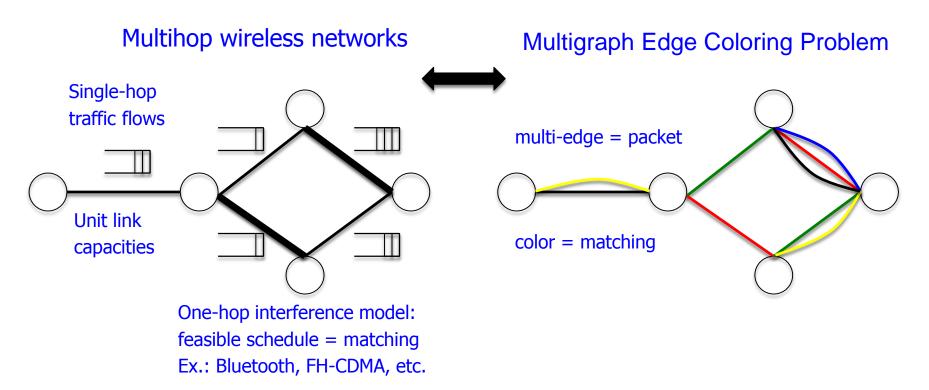
Node-based Scheduling with Provable Evacuation Time

Bo Ji

Dept. of Computer & Information Sciences Temple University E-mail: boji@temple.edu

Joint work with Jie Wu@Temple

Link Scheduling for Minimum Evacuation Time



• Evacuation time: time needed for draining all the existing packets

- A critical metric in settings without future arrivals
 - Goal: minimize the evacuation time
- In settings with arrivals, a good measure of short-term throughput & closely related to the delay performance

Multigraph Edge Coloring Problem

- The problem is generally NP-hard [Holyer'81]
- Approximations
 - Shannon's theorem [Shanon'49], Vizing's theorem [Vizing'64], ...
 - Any constant-factor approximation ratio better than 4/3 is NP-hard [Holyer'81]
 - If a small additive term is allowed, much better approximations (exact or asymptotic) [Sanders & Steurer'08,...]
- A survey book on graph edge coloring [Stiebitz et al.'12]
- Limitations
 - All rely on recoloring-based techniques
 - The colors (or schedules) are computed all at once
 - The complexity depends on # of multi-edges (or # of packets)
 - Could be impractically high
 - Unsuitable for link scheduling and packet evacuation
 - More limited applications to settings with arrivals

Online Algorithms

- Quickly compute one color (or schedule) at a time
 - Complexity is only dependent on network size
 - Link count and node count
 - High complexity is distributed over time
 - Desirable for applications such as link scheduling
 - Functional even if packet arrivals are considered
- Example algorithms
 - Maximum Weighted Matching (MWM) algorithm
 - MWM-α algorithm
 - Greedy Maximal Matching (GMM) algorithm
 - Randomized Maximal Matching (RMM) algorithm
- Existing online algorithms all have an approximation ratio no better than 2! [Gupta et al.'09]

- Edge-based
- Load-agnostic

Node-based Approach

- Input-queued switches
 - Modeled as bipartite graphs
 - A class of Lazy Heaviest Port First (LHPF) algorithms [Gupta et al.'09]
 - Maximum Vertex-weighted Matching (MVM), also known as Longest Port First algorithm [Mekkittikul & McKeown'98]
 - Maximum Node Containing Matching algorithm [Tabatabaee & Tassiulas'09]
 - LHPF is both evacuation-time-optimal and throughput-optimal
- Multihop wireless networks
 - Modeled as general graphs
 - Evacuation-time performance is largely unknown
 - Our focus: develop and analyze node-based scheduling algorithms with provable evacuation time and lower complexity

Our Contributions

- Prove that MVM has an approximation ratio no greater than 3/2 in multihop wireless networks
- Propose a new node-based algorithm Critical Node Matching (CNM) algorithm
 - CNM guarantees an approximation ratio no greater than 3/2 as well
 - CNM has a lower complexity of O(m \sqrt{n}) than O(m \sqrt{n} logn) of MVM, where m and n are the link count and the node count, respectively
- As a byproduct, these algorithms serve as an alternative for achieving Shannon's bound of 3/2 Δ, where Δ is the maximum node degree

MVM

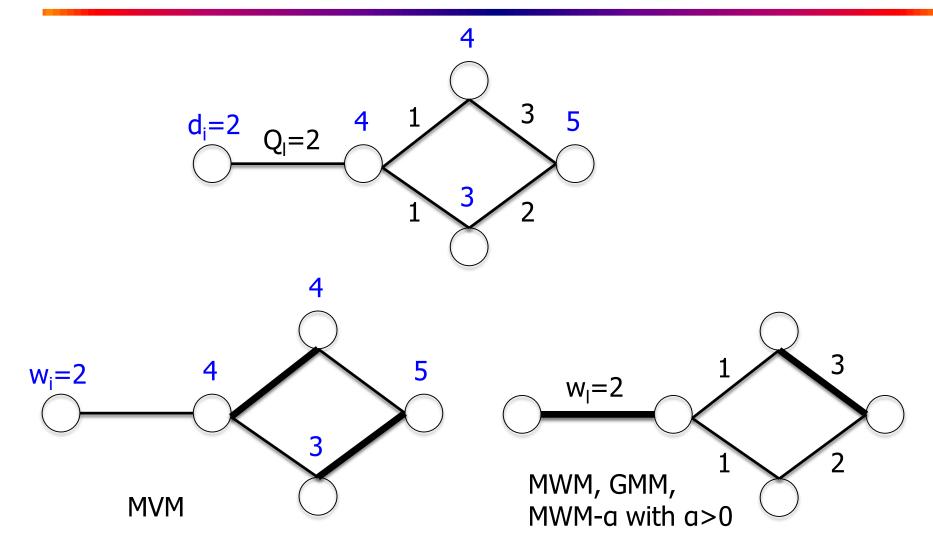
T

- $Q_l(t)$: # of packets waiting to be transmitted over link I
- L(i): set of links incident to node i
- $d_i(t) = \mathring{a}_{l_{l,l}(t)} Q_l(t)$: degree of node i
- M: matching
- G: set of all the matchings

MVM:

- $w_i(t) = d_i(t)$: weight of node i
- $w(M) = \sum_{i:L(i) \cap M \notin \emptyset} w_i(t)$: weight of matching M
- $MVM\hat{1}$ arg max_{$M\hat{1}$ G} w(M): Maximum Vertex-weighted Matching
- The MVM algorithm finds an MVM in each time slot
- MVM has a complexity of O(m \sqrt{n} logn)

MVM - Example



Theorem 1: MVM has an approximation ratio no greater than 3/2.

Proof Sketch:

- Minimum evacuation time \geq maximum node degree = Δ
- MVM achieves Shannon's bound
 - Evacuation time of MVM $\leq 3/2 \Delta$ (Proposition 1)

Proposition 1: Suppose the maximum node degree is no smaller than two. Under the MVM algorithm, the maximum node degree decreases by at least two within every three consecutive time-slots.

Proposition 1: Suppose the maximum node degree is no smaller than two. Under the MVM algorithm, the maximum node degree decreases by at least two within every three consecutive time-slots.

Proof Sketch:

- If the maximum node degree does not decrease in a time-slot, it will decrease in both of the following two time-slots
 - Critical node: Node having a maximum degree
 - Lemma 1: If the subgraph induced by all the critical nodes is bipartite, then there exists a matching that matches all the critical nodes [Anstee & Griggs'96]
 - Lemma 2: If there exists a matching that matches all the critical nodes, then MVM will match all of them as well
 - In both of the following two time-slots, the subgraph included by all the critical nodes is indeed bipartite

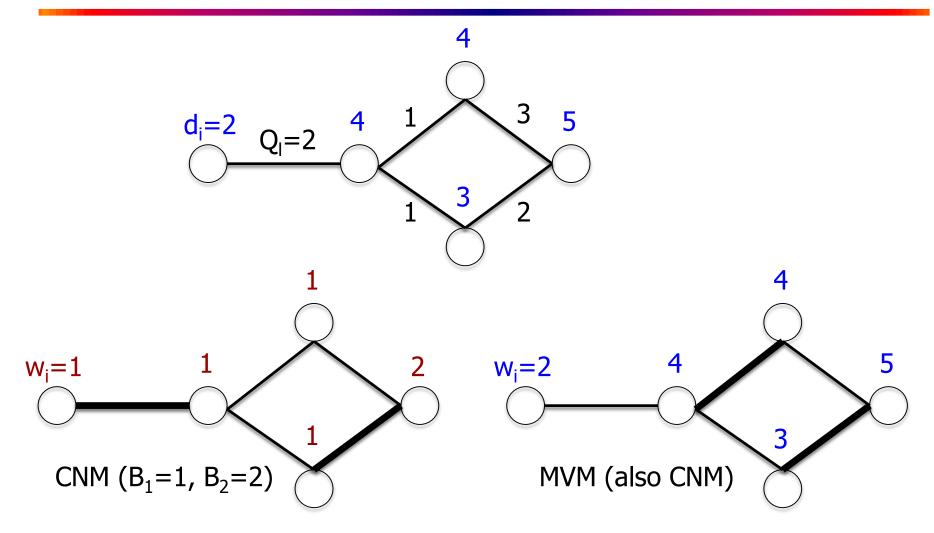
Observation: in order to achieve 3/2, it is sufficient to focus on scheduling the critical nodes

CNM – Lower Complexity MVM

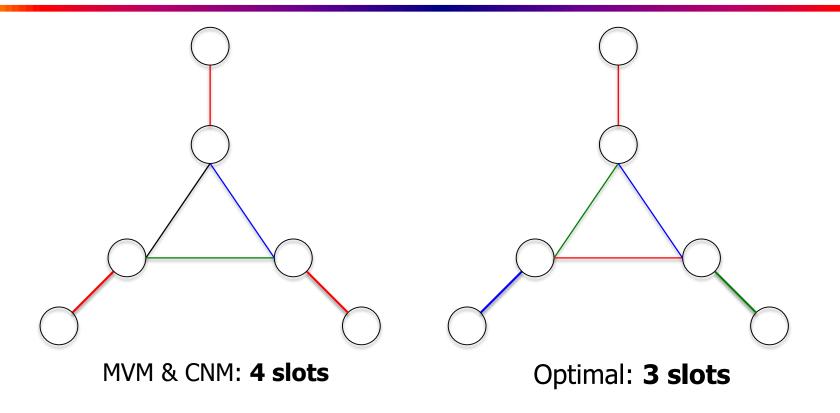
- Critical Node Matching (CNM) algorithm
 - Motivated by the key observation, focus on scheduling the critical nodes
 - Assign node weights as follows:
 - $W_i(t) = B_2$, if i is a critical node
 - $W_i(t) = B_1$, otherwise
 - $0 < B_1 < B_2 \in B$, both B_1 and B_2 are bounded positive integer
 - Find an MVM based on the new weights in each time-slot
- An implementation with O(m √n) complexity for bounded integer weights [Huang & Kavitha'12, Pettie'12]

Theorem 2: CNM has an approximation ratio no greater than 3/2.

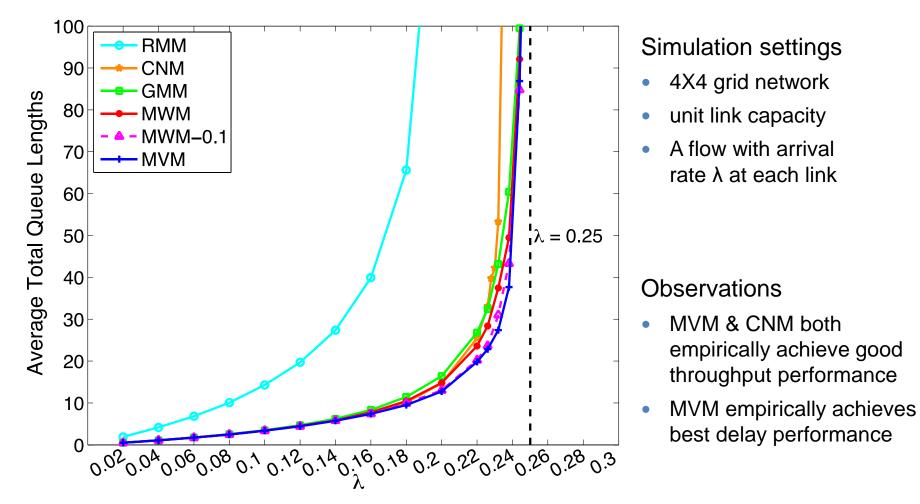
CNM - Example



Lower Bound of 4/3



First time-slot, second, third, and fourth.



- Proved that MVM achieves an approximation ratio no greater than 3/2 for the minimum evacuation time problem
- By making a key observation that it is sufficient to focus on scheduling the critical nodes for achieving an approximation ratio no greater than 3/2, we proposed a lower-complexity algorithm – CNM – with a same performance guarantee
- These algorithms serve as an alternative for achieving Shannon's bound
- Node-based approach is less studied
 - Performance limits of the node-based algorithms?
 - Conjecture: 4/3 is tight for MVM (and CNM) much more challenging
 - If an additive term is allowed, can we develop node-based algorithms with better approximations (exact or asymptotic)?
 - Throughput performance in settings with arrivals?

Thank You !

Questions?

E-mail: boji@temple.edu