
Max Progressive Network Update
Yang Chen and Jie Wu
Temple University, USA

Email: {yang.chen, jiewu}@temple.edu

Abstract—Datacenter network must constantly be updated to
adapt to frequent traffic changes and achieve high network
utilization. However, the quality of service can be easily reduced
by unexpected transient link congestion, which may be caused
by variable link transmission latency during flow migration.
Furthermore, when network administrators reallocate bandwidth
resource without taking flow path information into consideration,
deadlocks among flows waiting for link resources unavoidably
block the update process. In this paper, we prove finding a
feasible update plan with the minimum number of rate-limiting
flows when deadlocks occur is NP-hard. We propose a buffer-
assisted schedule, Max Progressive Updating Method (MAPUM),
to update the network in a consistent and efficient way. Extensive
simulations prove that MAPUM accomplishes network update
effectively and without loss.

Index Terms—Network updates, SDN, consistent, congestion.

I. INTRODUCTION

Temporary network update disruptions may occur with
many unexpected events like packet loss or blackholes. The
reasons for disruptions include straggling of switch rule up-
date, controller disconnection, and imperfection in clock syn-
chronization. To prevent anomalies, researchers pay extensive
attention to the network update problem in SDNs. There are
three key challenges for network update issues: optimality,
consistency, and swiftness [1]. An optimal migration requires
that the final routing configuration after the update be the same
as the given target state, which is derived by solving the multi-
commodity flow problem [2]. In SDNs, a centralized controller
with a global view can guarantee optimality by directly
establishing the targeted network configuration. A consistent
migration of flows satisfy the properties of congestion-free,
loop freedom and no temporary demand reduction. A swift
update prevents a new routing setup from becoming obsolete
due to frequently changing network conditions. Swiftness is
more critical in data centers, where network update serves as
usual maintenance.

Current update schedules suffer from different downsides.
We illustrate the unfeasibility of current methods in Fig. 1.
There are three flows f1, f2, and f3, whose capacities are 0.7
unit, 0.8 unit, and 1 unit, respectively. Each link has a capacity
of 1 unit. We need to migrate the flows’ paths from the initial
state in 1a to the final state in 1b. Only when a flow’s final
path has enough available bandwidth, can it be consistently
migrated. Flows are unsplittable. However, it is obvious that
none of these flows can be updated to their final paths because
other flows’ initial paths are occupying their resources. When
flows’ initial paths occupy other flows’ final state paths, none
of them can be updated; we call this a deadlock. Flows f1, f2

A B

D C

f1 f2

f3
(a) Initial state

A B

D Cf1

f2

f3

(b) Final state

Fig. 1: A network update example.

and f3 form a deadlock. Current works either neglect handling
this situation or randomly stub out flows to vacate competing
links. For example, SWAN [3] can only accomplish an update
when leisure capacity exists along all links of the flow’s path.
In this example, all the links with flows going through them
are saturated and have no free bandwidth. SWAN will come up
with no solution. Dionysus [4] generates a dependency graph
and finds all SCCs (strong connected components). When
deadlocks exist, it tries to randomly rate limit a few flows until
all deadlocks break. This solution causes packet loss, which
reduces the quality of service. Additionally, the link capacity
reservation method [3] has so little flexibility that bandwidth
utilization is always low. The intermediate state involvement
method [5] increases the number of update steps to avoid link
congestion due to flow mixture in different network states.

In this paper, we focus primarily on how to generate a
consistent update plan that breaks all of the deadlocks with
the help of the switch buffer, a resource ignored in previous
research. We present a heuristic algorithm, Max Progressive
Updating Method (MAPUM), to address this problem. With
the help of an adequate amount of buffer, we can break the
deadlocks where interwoven flows compete for bandwidth
and update the network in a lossless manner. Deliberately
deploying buffers in switches further shortens the time that it
takes to migrate the flows. We also investigate the complexity
of the deadlock-breaking problems mentioned above, and we
demonstrate that they are NP-hard.

The main contributions of our work are in the following:

1) We summarize current network update methods and
analyze their advantages and disadvantages.

2) We propose a buffer-assisted strategy in order to up-
date network in a consistent way, even when there are

complex deadlocks. We also prove that it is NP-hard
to allocate buffers’ sizes and locations to resolve all
deadlocks with a minimum effect on the network. Then
we introduce a heuristic solution to efficiently arrange
buffers in the switches.

3) We demonstrate the significant advantages of our ap-
proach compared to current works in simulations.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model and
the problem formulation. Section IV talks about generating a
resource dependency graph. Section V analyzes the problem
and proposes our MAPUM solution. Section VI includes the
experiments. Finally, Section VII concludes the paper.

II. RELATED WORK

When it comes to the routing reconfiguration problem, there
are two basic mainstream methods: ordering [6, 7] and two-
phase [8–10]. The ordering method updates the forwarding
table in the switches one-by-one in a specified order. The order
is carefully calculated to preserve certain required properties,
for example, loop-free, or blackhole-free. However, this order
might not guarantee both forwarding and policy demand. The
two-phase update scheme installs both the initial and final
rules on all switches, and it tags packets to signal which
rule should be applied. This method ensures the success
of an update, but it doubles the number of rules on every
switch, wasting expensive and power-hungry ternary content-
addressable memory (TCAM) resource. In this paper, we
perform the two-phase commit using version numbers for
update rules to maintain packet coherence.

Due to constantly changing traffic demands, data center
network updates occur frequently whether triggered by the
operators, applications, or sometimes, even by failures. The
inherent asynchrony will lead to over-utilization of links,
inducing congestion and packet loss. One might just ignore
these effects, hoping things will get better on their own, but
delays and loss of data are not desirable, especially in real-
time applications . Therefore, recent developments have con-
sidered consistent migration, i.e., congestion-free and without
temporary demand reduction [1, 3, 5, 11]. One paper [12]
does not strictly require that the update process be lossless.
Rather, it aims to obtain time-efficiency and minimize the loss
of packets.

We can roughly classify update strategies into three cat-
egories: link reservation [3], intermediate state involvement
[5], and time-awareness [1, 13–15]. The approach of SWAN
[3] has two parts: First, if a fraction s of capacity (slack)
is guaranteed to be free on each link for both the old and
new flow, the network can be updated in d1/se − 1 steps.
Second, in order to solve the problem optimally, SWAN uses
linear programming to check if a solution with x steps exists.
However, when there is no slack on some edges, the algorithm
is unlikely to halt in certain steps with a high computation
complexity. ZUpdate [5] attempts to compute and execute a
sequence of steps to progressively meet the end requirements
from an initial traffic matrix and a traffic distribution. To safely

Final State Constraints

Dependency Graph Generator

Buffer Allocaiton Schedule

Network

Initial State

Fig. 2: Scheduling process.

migrate flows, these representative update scenarios need to be
guaranteed that there will be no congestion. However, applying
intermediate states will stretch the update time, and the traffic
chaos caused by the migration will last longer. Time-awareness
consistent update strategy [13] utilizes time-triggered network
updates to achieve consistency by either the ordering or the
two-phase commit method. This scheme asks too much of
time synchronization. With one straggling switch, the whole
process can create serious congestion or other problems.

III. MODEL AND FORMULATION

Our scheduling process is shown in Fig. 2. From the
network administrator, we learn the initial and final network
states, the consistency and what constraints must be preserved.
Assume the initial and final states are both valid and the
flows are unsplittable. Consistency requires that the update
be loop-free, drop-free, and congestion-free. We need to find
a feasible and efficient solution to consistently migrate flows
with the help of switch buffer, even when the network has a
lot of deadlocks among flows in different states. Deadlocks
are detected using a dependency graph generator. We propose
an efficient approach, MAPUM, which focuses on handling
deadlocks with the help of the proper allocation of buffer
location and size.

A. A Motivating Example and Some Insights

Consider the example in Fig. 1. As discussed above, a
consistent update plan does not exist. But with the proper
allocation of buffer and careful selection of the flows that
will be temporarily buffered in switches, we can update the
network to its final state consistently. Now let’s think of the
most trivial plan. In this paper, we assume that migration is
flow-based, which means that a flow is allowed to update only
when the links along its path are all available. The flows can
only be rate limited in their source switches’ buffer, and the
rate of the flows will be reduced to 0. We list all the feasible
update plans in Table. I. We measure time in slots and buffer
size in units. Take rate-limiting flow f1 as an example. At
time slot 0, we rate limit f1. After 2 slots, f2 can migrate
because of the available bandwidth of AB. At slot 4, f3 can
move to its final path. At slot 5, f1 migrates and the update is
finished. The buffer size is 5. There are, in total, five methods
to consistently break all the deadlocks. The minimum number
of rate-limiting flows is only one; the minimum time is 4
and the minimum buffer size is 5, which demonstrates that

TABLE I: Rate-limiting plan

Combination of flows f1 f1and f2 f1and f3 f2and f3 f1,f2and f3

rate-limiting flows 1 2 2 2 3

Update time 5 4 5 7 3

Buffer size 3.5 4.4 7.5 10 5.3

different scheduling plans matter. Intuitively, we should buffer
flows with an initial path that includes many congested link
resources, and a final path that consists of few bottleneck
links. It is also better to limit flows that are engaged in a
higher number of deadlocks, because it is more beneficial for
resolving all deadlocks. Furthermore, we can utilize buffer to
accelerate the update. Consider the following situation. If flow
f1’s initial path occupies f2’s final path resources, f2 occupies
f3’s,..., and fn−1 occupies fn’s. Therefore, we need to first
update f1, then f2,..., and finally, fn. This process means that
the update will take a long time. With the help of buffer, we
can additionally select a flow in the middle to be buffered so
that two parts of the update process can be done concurrently,
significantly shortening the time needed. With more parallel
processes like these, the time can be reduced further. In an
extreme case, if we buffer every flow, the network can be
updated in the shortest time.

B. Network Model

The network G consists of a set of switches S and a set
of directed links L. A flow f is from a source switch si to
a destination switch sj with traffic volume tf . Links along
the path of f are defined as Lf = {li,j |li,j ∈ pf}, where
pf is the forwarding path of flow f . The network state N
is the combined state of all flows, i.e., N = {f |f ∈ F}.
The network state includes each flow’s path and its allocated
bandwidth. We use two-phase commit to update each switch’s
routing table information. At every hop, the switch checks
the packet’s header to decide its outgoing port. The controller
needs to manage the time to tag the packets with the new
version number.

Network, graph, capacity: We define a network as a simple
directed graph with edge capacities.

Definition 1: Let G = (V,E) be a simple connected
directed graph with n = |V | nodes representing the switches,
and m = |E| edges representing the links. We denote the set
of outgoing edges (u, v) of a node v ∈ V by out(v) and the
set of incoming edges (u, v) by in(v). A network N is a pair
(G, c), with c : E → R+ being a function assigning each edge
e ∈ E a capacity of c(e).

Flow: Next, we define an unsplittable flow according to the
buffer-involved flow constraints, i.e., demand satisfaction, flow
conservation, and capacity constraints. As is common in this
context, we only consider self cycle-free flows in this paper.

Definition 2: Let N = (G, c) be a network. A map f :
E → R+ is called an unsplittable flow from s to t if it is
cycle-free and satisfies the buffer-involved flow constraints, i.

Fig. 3: Resource dependency graph.

e., ∀v ∈ V \{s, t} :

f(e)e∈in(v) = f(e)e∈out(v) + buffer(v, f), (1)
f(e)out = df = f(e)in, (2)

∀e ∈ E :
∑
f

f(e) ≤ c(e) (3)

with df being the size of f and the edges with f(e) > 0
forming the path of f from s to t. All these unsplittable flows
form the set F = {fi, i = 1, 2, ...,m} if there are m flows.

Initial and final network state: In this paper, we only
consider network updates for flows, i.e., given a set of old
forwarding rules for some flow f , we want to change it into
a set of new forwarding rules for another flow f ′.

Definition 3: Let N be a network, and let F and F ′ be
flows in N . A network update is a triple (N,F, F ′).
Atomicity of network updates: We assume that the change
from a flow f to a flow f ′, both from s to t, is performed as
an atomic operation on the source router s. In practice, this
can be achieved by a two-phase protocol [9]. All forwarding
rules for F ′ are installed by the SDN controller first. When
these installations are confirmed, the ingress router s will start
tagging all packets from F to F ′. Note that with this method, if
the latency from s to some node in the network is the same for
F and F ′, the flow F ′ will arrive after F has already departed.

IV. DEPENDENCY GRAPH GENERATION

The primary challenge is to tractably explore relationships
among flows and resources in the initial and final states. In
this paper, we leverage a dependency graph to describe the
update relationships. As shown in Fig. 2, the dependency graph
generator takes the initial state NSi, the final state NSf ,
and the required constraints as input. There are two types of
nodes in our dependency graph: link nodes and flow nodes.
Link nodes represent link resources and are labelled with the
amount of current residue capacity. Flow nodes correspond
to different flows marked with demands. An edge from a
link node to a flow node means that the flow needs this link
resource to update, and the weight of the edge shows the delay
after the resource becomes available. The link transmission
delay is taken into consideration.

To simplify, we measure the delay in the same units as
the update step. latelj ,fi = m if the link lj is the mth link
that flow fi passes in the final state. latefi,lj = m if the
link lj is the mth link that flow fi passes in the final state.

Algorithm 1 Dependency Graph Generator

Input: The initial and final network State Nini and Nfin,
each flow i’s demand demfi , and each link’s capacity cj ∈
C;

Output: Dependency Graph G;

1: for each link lj in the network do
2: add a new node with its residue capacity reslj = clj −∑

demfi in the initial state Nini, , pfi passes link lj ;
3: for each flow fi ∈ F do
4: add a new flow node with its demand demfi ;
5: for each link along the initial (and final) path of flow

fi do
6: add a directed edge from the flow node to the link

node (in the final path, the direction is reversed);
7: label the edge with the transmission latency latefi,lj

(or latelj ,fi in final st) in units of step;
8: return Dependency Graph G;

Algorithm 1 shows the details of generating a dependency
graph. Take Fig. 3, the dependency graph of Fig. 1, as an
example. There are three deadlocks in the dependency graph,
shown in Fig. 4. We can clearly see that f1 involves all three
deadlocks, which means that rate limiting f1 will make the
update feasible. Therefore, the minimum number of flows to
be rate limited is 1. However, this does not demonstrate that
this method is the fastest plan or that it needs the least amount
of buffer.

V. CONSISTENT UPDATING STRATEGY WITH BUFFER
ASSISTANCE

A. The Hardness of the Buffer-assisted Schedule

To ensure a consistent update plan, we introduce buffer
to strategically break the deadlocks. Buffer scheduling is a
resource allocation problem: how can we allocate fewer buffer
resources to accomplish a consistent network update.

Theorem 1: Without limitations on buffer size or location,
a consistent network update can be accomplished in one step.

Proof: First, we block all the flows and wait for a sufficiently
long period of time. When there is no residue traffic in the
network, we can migrate flows to their new paths with ade-
quate bandwidths. Because the initial and final states are valid,
there will not be any inconsistencies like loops, blackholes, or
congestions. �

Buffer is expensive and has limited size. The above situation
is an extreme condition. it is possible to strategically migrate
flows in a specific order, or to limit a few of them to achieve a
consistent update. As a result, we are required to choose only
certain flows to be rate-limited from all the flows that need to
be migrated. We also decide where to begin buffering and what
percentage of the flow to buffer to meet the Quality of Service
(QoS) requirement. After making a scheduling decision, we
must continue selecting flows until all the deadlocks have been
resolved. This is a complex resource allocation problem. We

Fig. 4: Deadlocks in the dependency graph.

can prove the complexity of handling deadlocks in network
update with the help of buffer.

Theorem 2: Even in the absence of partial flow limiting,
finding a feasible update schedule with the minimum number
of rate-limited flows with deadlocks is NP-hard.

Proof: Given a network’s initial and final states, there exists
several deadlocks among links in a dependency graph. Each
deadlock is a cycle consisting of multiple flows. Each flow
can be involved in several deadlocks because it must wait for
multiple link resources. Suppose there are n deadlocks in the
graph G and the general collection of deadlocks is U . In total,
m flows become involved in G and the ith flow (i = 1, ...,m)
is able to break the set Si ⊆ U . The goal is to break all the
deadlocks by cutting off the fewest number of flows using
buffer. So we reduce the original problem to the so-called set
cover problem, an NP-hard problem that covers all elements
using the fewest number of sets.

B. Rate-Limiting Flow Selection

Because of the NP-complete nature of the problem, we
propose a heuristic algorithm to find a consistent update plan
that selectively limits flows as seldom as possible.

1) Flow Priority: In order to limit fewer flows, we are
required to carefully sort the flows engaged in deadlocks and
to pick up “more beneficial” flows to be buffered first. From
the example above, we can draw a conclusion that the priority
of a flow is related to the out-degree and in-degree of the
simplified dependency graph, the deadlocks it involves, and
the whole latency of its engaged deadlocks. We formulate a
flow’s priority in Eq. 4 to evaluate the importance of breaking
deadlocks and quickly update.

prifi =
d(out)

d(in)
∗max delay(cyclek), k = 1, ..., cycfi (4)

cycfi is the number of deadlocks where flow i is involved in
the dependency graph. In the example’s resource dependency
graph, we can see that f2’s in-degree and out-degree difference
is the largest. However, f1 appears in more deadlocks, and
the sum of its deadlocks’ delays is biggest. Using Eq. 4, we
sort the importance of these flows , from most important to
least, as f1, f2, and f3. Table I verifies the efficiency of our
formulation.

2) MAPUM Scheduling: The specific update process of
deadlocks is exhibited in Alg. 2, where time is measured in
units of steps. After constructing the dependency graph G

Algorithm 2 MAPUM

Input: The dependency graph G and the deadlock set L;
Output: Updating plan of flow and buffer allocation;

1: for every new time step do
2: In order, update every flow in the next link of its initial

and final state;
3: if there is still a deadlock in L then
4: Select the current highest priority flow fhighest−pri;
5: if fhighest−pri can break down any deadlock in L

then
6: Rate-limit fhighest−pri and add buffer at the first

blocked link’s import switch along its path;
7: Delete all deadlocks that limiting the flow

fhighest−pri can solve in the deadlock set L;
8: else
9: The update arrangement is finished;

10: Break out of the for-circulation;
11: return ;

using the above strategy, we use Dionysus [4] to consistently
and efficiently update the flows that are not involved in any
deadlock. We simplify the dependency graph G by deleting the
non-blocked flows and their occupied resources. Next, [16]
is utilized to find all the elementary circuits in the current
G. Each flow’s priority is calculated by Eq. 4 and arranged
in a descending order. In every time step, we rate limit the
highest priority flow and wait for Tinterval to make sure that
no chaotic situations arise. We repeat the process until there
is no deadlock in the G.

It takes some time to transfer a packet along a link; this
is known as the link latency. By using the time step to
reserve enough interval, we can efficiently avoid accidental
congestions. Moreover, due to the difference of each link’s
latency and the impossibility of time synchronization, it is
difficult for the controller to decide the exact update time
to send messages to update switches. It also takes different
amounts of time for switches to enforce the update plans, or
for the same switch to handle different kinds of modifications
(such as rule table insertion or deletion). We reserve enough
time in each time step to make sure that the interval is
long enough for even the slowest switch to accomplish the
controller’s update demand. The interval can be estimated as
follows:

Tinterval = max{τ(si), i = 1, 2, ..., n} (5)
τ(si) = max{ti(γ), γ ∈ Γ} (6)

Γ is the general set of all kinds of update demands from
the controller. We yield to the longest time to guarantee the
congestion-free property.

C. Schedule Improvemet

We propose a heuristic algorithm to solve the consistent
network update problem. We also find some improvements to
our algorithm that help achieve a better performance. Every

 S1

 S8 S7

 S6 S5 S2

 S4 S3

(a) The WAN topology

 ...

 ...

Core

Aggregation

Edge

(b) The fat-tree topology

Fig. 5: Topology.

link has its transmission latency, so it takes some time for the
flow to pass the link. As a result, we can begin to migrate the
flow from its source switch when the flow can obtain every
link resource. This saves the update time, but will have a more
complicated scheduling strategy. Furthermore, if the update is
slow and some buffer is released, reusing the free buffer is a
flexible process that improves the utilization of switch buffer.
We also observe that if a deadlock consists of many flows and
has a large update delay, it is necessary to rate limit more
than one flow. The divided parts of the deadlock can update
in parallel, which saves significant time. The selection of rate-
limiting flows should be balanced to achieve the min max
update time of each branch.

VI. EVALUATION

Simulated experiments are conducted to evaluate the per-
formances of the proposed algorithms. After presenting the
network and flow settings, the results are shown from different
perspectives to provide insightful conclusions.

A. Network and Flow Setting

We do simulations in two realistic topologies. The first is
Microsoft’s inter-data center WAN topology [4], consisting
of 8 switches connected as shown in Fig. 5a. Each link is
two-way and has a capacity of 10-Gbps. The second is a
fat-tree topology [17] for the data center network scenario
shown in Fig. 5b. There are 10 core switches, 20 aggregation
switches, and 40 edge switches in this network. Each edge
switch connects 2 hosts. Each switch has 4 10-Gbps ports,
resulting in a full bisection bandwidth network. There are
several flows generated randomly with different capacities, and
we change flow numbers to simulate traffic variations. We
assume the initial and final states of the network and flows
are all valid, meaning that the path has no loop and the load
on every link is within the capacity.

B. Benchmark Schemes

We compare our MAPUM with three schemes: RS (ran-
dom flow update order), DELS (delay-consideration), DEGS
(degree-consideration).

C. Performance

We study the update time and buffer size needed to finish
the flow migration using four methods.

WAN: Fig. 6a shows the update time under different num-
bers of flows. As more flows are added, the update time
increases more quickly. When the traffic load is heavy, the

50 100 150 200
The number of flows

0

500

1000

1500

2000

2500

3000
U

pd
at

in
g

tim
e

MAPUM
DELS
DEGS
RS

(a) The WAN topology

50 100 150 200
The number of flows

0

200

400

600

800

1000

Bu
ffe

r s
iz

e

MAPUM
DELS
DEGS
RS

(b) The fat-tree topology

Fig. 6: WAN simulation results.

1000 1500 2000 2500 3000 3500 4000
The number of flows

0

2000

4000

6000

8000

10000

12000

U
pd

at
in

g
tim

e

MAPUM
DELS
DEGS
RS

(a) The WAN topology

1000 1500 2000 2500 3000 3500 4000
The number of flows

0

1000

2000

3000

4000

5000

6000

Bu
ffe

r s
iz

e

MAPUM
DELS
DEGS
RS

(b) The fat-tree topology

Fig. 7: Data center simulation results.

network is likely to have more deadlocks. Then, it becomes
harder to solve deadlocks, and the advantage of our scheme is
more obvious (shown as the purple line in the picture). DELS’s
and DEGS’s performances are roughly the same, but are not
as good as MAPUM’s, because they only consider a part of
the elements influencing the flow deadlocks. RS is used as a
baseline. Fig. 6b shows the buffer size needed to accomplish
the update process. In order to migrate flows in a lossless way,
we store the upcoming flows in the switch buffer to vacate
their rooms to other flows of the final state. However, buffer
is expensive and rare, so we would like to use it as seldom as
possible. MAPUM not only achieves the best performance in
update time, but also uses the least buffer.

Fat-tree: We also do large-scale simulations in a fat-
tree data center topology. Though there are more switches,
deadlocks are less likely to occur under this topology. The
flow paths are configured neatly, so the traffic load balances
much better than in the WAN. Resource in the data centers is
expensive. Leveraging the network in a high-utilization way
is highly recommended. Even a small congestion that lasts for
only a short time will lead to a great loss, and it should be
avoided to the best of the network administrators’ abilities.
Figs. 7a and 7b show that, of the four methods, MAPUM
performs the best. It migrates flows with the shortest update
time and the least buffer. The difference shows more clearly
when the traffic load is heavier.

VII. CONCLUSION

We propose MAPUM, a method that can achieve the con-
sistent and swift network update. We tactfully select several
switches to limit bypass flows’ rates with careful allocation of
properly sized buffer. We prove that the buffer deployment

problem is NP-hard. Furthermore, we propose a heuristic
greedy algorithm to efficiently choose rate-limiting flows
to accomplish different system constraints. We also make
some improvements to our algorithm. Our simulation results
evaluate the correctness, feasibility, and effectiveness of our
approach.

VIII. ACKNOWLEDGMENT

This research was supported in part by NSF grants
CNS1629746, CNS 1564128, CNS 1449860, CNS 1461932,
CNS 1460971, CNS 1439672, CNS 1301774, and ECCS
1231461.

REFERENCES

[1] N. W. S. Tseng, C. Lim and A. Tang, “Time-aware congestion-
free routing reconfiguration,” in The IFIP Networking 2016
Conference (NETWORKING 2016).

[2] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation
method: An approach to store-and-forward communication net-
work design,” Networks 1980.

[3] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, “Achieving high utilization
with software-driven wan,” ser. SIGCOMM ’13.

[4] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer, “Dynamic schedul-
ing of network updates,” ser. SIGCOMM 2014.

[5] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz, “zupdate: Updating data center networks with zero
loss,” SIGCOMM 2013 Comput. Commun. Rev.

[6] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and
O. Bonaventure, “Seamless network-wide igp migrations,” ser.
SIGCOMM ’11.

[7] J. McClurg, H. Hojjat, P. Černý, and N. Foster, “Efficient
synthesis of network updates,” in Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2015.

[8] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent
updates for software-defined networks: Change you can believe
in!” in Proceedings of the 10th ACM Workshop on Hot Topics
in Networks, ser. HotNets-X 2011.

[9] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker, “Abstractions for network update,” ser. SIGCOMM
2012.

[10] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent
updates,” ser. HotSDN ’13.

[11] R. W. S. Brandt, K. Foerster, “On consistent migration of
flows in sdns,” in IEEE International Conference on Computer
Communications (INFOCOM 2016).

[12] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient
congestion during network update in data centers,” in 2015
IEEE 23rd International Conference on Network Protocols
(ICNP).

[13] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network
updates in software-defined networks,” IEEE/ACM Transactions
on Networking, 2016.

[14] T. Mizrahi, O. Rottenstreich, and Y. Moses, “Timeflip: Schedul-
ing network updates with timestamp-based tcam ranges,” in
2015 IEEE Conference on Computer Communications (INFO-
COM).

[15] J. Zheng, H. Xu, G. Chen, H. Dai, and J. Wu, “Congestion-
minimizing network update data centers.”

[16] D. B. Johnson, “Finding all the elementary circuits of a directed
graph,” SIAM 2006 Journal on Computing.

[17] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, com-
modity data center network architecture,” SIGCOMM 2008
Comput. Commun. Rev.

