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ABSTRACT

This paper is motivated by the fact that modern cities are
surprisingly vulnerable to large-scale emergencies, such as
the recent terrorist attacks on Paris that resulted in the
death of 130 people. Disaster shelters are one of the most
effective methods to handle large-scale emergencies. Hence,
this paper establishes disaster shelters with bounded costs.
The objective is to minimize the total establishment costs of
disaster shelters under three constraints. The first constrain-
t is a distance constraint, which requires that people must
be assigned to disaster shelters within a certain range. The
second constraint is a capacity constraint, which requires
that disaster shelters must have the capacity to hold incom-
ing people. The third constraint is a connection constraint,
which requires that disaster shelters should be connected to
avoid being isolated. Two bounded algorithms are proposed
to efficiently establish disaster shelters. Real data-driven ex-
periments are conducted to demonstrate the efficiency and
effectiveness of the proposed algorithms.
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1. INTRODUCTION

Recently, France has witnessed unprecedented attacks on
Paris that resulted in the death of 130 people [1]. While
effective policies are necessary to resolve this crisis, we are
motivated by the fact that modern cities are vulnerable to
large-scale emergencies, such as terrorist attacks and refugee
crises. Meanwhile, disaster shelters are one of the most ef-
fective methods to handle large-scale emergencies. They are
defensive buildings with food storages and medical facilities.
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Figure 1: Scenario of the disaster shelter placement.

Hawaii has established underground disaster shelters to pro-
tect people from hurricanes [2]. While disaster shelters can
effectively save lives in emergencies, few research efforts were
made. Establishment costs of disaster shelters are currently
unbounded in existing literatures [3]. In contrast, this paper
explores the bounded placement of disaster shelters to min-
imize their establishment costs. Our scenario is shown in
Fig. 1, which is a three-dimensional Euclidean surface rep-
resenting the ground of the city. People are distributed in
the Euclidean surface (known a priori). Disaster shelters of
different capacities are established with different establish-
ment costs. A large-capacity disaster shelter has a higher
cost than a small-capacity one.

The objective of this paper is to minimize the total estab-
lishment costs of disaster shelters under three constraints.
The number, locations, and capacities of disaster shelter-
s serve as variables that need to be determined. The first
constraint (distance constraint) is that people must be as-
signed to disaster shelters within a certain range. Other-
wise, people may not have enough time to reach disaster
shelters in large-scale emergencies. The second constraint
(capacity constraint) is that disaster shelters must have the
capacity to hold incoming people. A crowded disaster shel-
ter can lead to epidemic spreadings, insufficient amount of
foods, and evacuation space problems. The third constrain-
t is that disaster shelters should be “connected” to avoid
isolations (connection constraint, formally defined later in
the problem formulation). This constraint aims to maintain
the communication between different disaster shelters, such
that searches and rescues can be facilitated. For example,
family members separated in different disaster shelters can
be found through those communications. Rescue teams can
also be supported by nearby disaster shelters.

The remainder of this paper is organized as follows. Sec-
tion II surveys related works. Section III describes the model
and then formulates the problem. Section IV analyzes the
problem. Section V proposes bounded solutions. Section VI
includes the experiments. Section VII concludes the paper.



2. RELATED WORK

Few research efforts have been made with respect to the
placement of the disaster shelters. Park et al. [3] proposed a
combinational optimization method to determine locations
of tsunami vertical evacuation shelters. Genetic algorithms
were used to solve the placement problem without a bounded
performance. Gama et al. [4] studied the shelter placement
for mitigating urban flood disasters. A coverage model was
proposed to maximize a gradual demand coverage function,
which represents a trade-off between a full coverage objective
and a distance objective. Hefller and Hamacher [5] explored
the sink location problem in evacuation planning, such that
disaster shelters are reachable for people. Their results were
evaluated by numerical tests including random data as well
as real world data from the city of Kaiserslautern, Germany.
The above works are conducted by the transportation re-
search community. Few bounded results were presented.

Due to the recent development of Delay Tolerant Network-
s (DTNs), the search and rescue after disasters were stud-
ied by the wireless network community. Mase and Okada
[6] designed Unmanned Aerial Vehicles (UAVs) for message
deliveries in large-scale disaster environments. Messages are
sent and received through wireless links between devices and
the UAV. DTNs can be built based on the UAVs. Yang et
al. [7] focused on the capacity constrained Voronoi diagram,
which partitions the network to minimize imbalanced traffic
loads among disaster shelters. We additionally consider the
communication between disaster shelters. Our disaster shel-
ter placement problem extends the classic set cover problem
in terms of the connection constraint. Given some elements
and a collection of sets of elements, the classic set cover prob-
lem aims to select minimum sets to cover all given elements
[8]. Elements in a set are covered if this set is selected. In
our problem, disaster shelters are mapped to sets and people
are mapped to elements. Geometric set cover techniques [9]
are used, while the connection constraint is posed.

3. PROBLEM FORMULATION

Our scenario is based on a three-dimensional Euclidean
surface that represents the ground of a city. Let p denote
a person that is planned for disaster shelters. P is the set
of people, i.e., P = {p}. Locations of people are known a
priori. Let s denote a disaster shelter. S is the set of the
disaster shelters, i.e., S = {s}. Then, the location, capacity
and establishment cost of s are denoted by s, ¢s, and es,
respectively. We consider that the capacity of a disaster shel-
ter is bounded, i.e., cmin < ¢s < Cmax. The establishment
cost of a disaster shelter depends on its capacity. Clearly,
a large-capacity disaster shelter has a higher establishment
cost than a small-capacity one. We use e; = F'(¢s) to denote
the pre-known establishment cost function. Let x, s denote
a boolean decision variable. x, s = 1 means that the per-
son, p, is assigned to the disaster shelter, s. Finally, D(-) is
a pre-known distance function.

Our objective is to minimize the total establishment cost-
S, >, es, of the disaster shelters. The number, location-
s, and capacities of the disaster shelters (i.e., |S|, ls, and
cs) are variables. We determine the assignment plan of
Zp,s. Three constraints are posed. The first constraint (dis-
tance constraint) is that people must be assigned to disaster
shelters within a certain range of 7, i.e., 3z, = 1 and
D(p,s) - xp,s < r. This constraint guarantees that people

have enough time to reach disaster shelters in large-scale e-
mergencies. The second constraint (capacity constraint) is
that disaster shelters must have the capacity to hold incom-
ing people. We have Zp ZTps < cs to ensure sufficient re-
sources for people in disaster shelters. The third constraint
is that disaster shelters should be “connected” to avoid iso-
lations. We say two disaster shelters are neighboring, if the
distance between them is no larger than a threshold that is
denoted by R. The third constraint (connection constraint)
means that the induced neighboring graph of the disaster
shelters includes all disaster shelters and is connected. This
alms to maintain temporary communication between differ-
ent disaster shelters, since disasters may destroy wired and
wireless communication infrastructures. Vehicles equipped
with wireless devices can move around disaster shelters to
provide temporary communication based on DTNs.

As a trade-off, we need to balance the number and ca-
pacities of the disaster shelters. For the same cost, we can
either establish many small-capacity disaster shelters or a
few large-capacity disaster shelters, depending on the dis-
tribution of the people. This trade-off becomes even more
complex, when the location problem is involved. Since we
require that disaster shelters should be connected, the es-
tablishment of a disaster shelter can be used to hold people
or serves as an intermediate relay to connect other disaster
shelters. Hence, our problem faces unique challenges.

4. PROBLEM ANALYSIS
We start with the problem hardness:

Theorem 1. Our placement problem is NP-hard.

Proof: The proof is done through two special assump-
tions, under which our problem becomes equivalent to the
geometry set cover problem [10]. Given some elements and
a collection of sets of elements, the set cover problem aims
to select a minimum number of sets to cover all given ele-
ments. The geometry set cover problem is a special case, in
which elements are distributed in the Euclidean space and
sets are geometric balls. An element is covered by a set, if
it is geometrically included by the ball of that set.

Let us consider the disaster shelter placement problem in
the Euclidean space. The first assumption is that the es-
tablishment cost of a disaster shelter barely depends on its
capacity. As a result, the capacity of each shelter can be
large enough to hold all incoming people, i.e., the second
constraint (capacity constraint) is relaxed. The second as-
sumption is that R is large enough, such that we can relax
the third constraint (connection constraint). When R goes
to infinity, all disaster shelters are neighboring and connect-
ed. Then, let us reduce the geometry set cover problem to
our disaster shelter placement problem. This reduction is
done by mapping elements and sets to people and disaster
shelters, respectively. The geometric ball of each set has
a radius of r, i.e., the disaster shelter will hold all people
within the range of r. Our problem can also reduce to the
geometry set cover problem in the same manner (they be-
come equivalent to each other). Since the geometry set cover
problem is NP-hard, our problem is also NP-hard. |

We apply a discrete framework to solve the disaster shel-
ter placement problem. The three-dimensional Euclidean
surface, which models the ground of the city, is horizontally
discretized by a grid, i.e., the vertical projection of the dis-
cretized surface would be a grid at the horizontal plane. An
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Figure 2: An illustration of the discrete framework.

example of the discretization is shown in Fig. 2. Then, each
square in the grid has a size of A x A, in which A is the
discrete step measuring the distance between neighboring
grid intersections. Let L denote the set of locations at grid
intersections on the discretized three-dimensional Euclidean
surface (the ground of the city). We assume that disaster
shelters are only established at locations that belong to L.
Since the slope of the ground is limited, such a discretiza-
tion brings a limited information loss. A brings a trade-off
between the accuracy and the time complexity. A small-
er A brings a higher accuracy at the cost of a higher time
complexity, since the set L becomes larger. In addition, the
establishment cost function, es = F'(cs), is also discretized.
This is because the shelter capacity is discretized, i.e., the
number of people that it can hold is an integer. We have:

Definition 1. The coverage radius, vs, of a disaster shel-
ter, s, is the mazimum possible distance that satisfies: (i)
vs <1, and (it) s has a sufficient capacity to hold all people
within . People within the coverage radius of s are covered
by s, and the set of covered people is denoted by Ps.

In Definition 1, r comes from the distance constraint, in
which people must be assigned to disaster shelters within a
range of r. A disaster shelter will not cover people without
the range of r. In addition, the coverage radius is restricted
by the capacity constraint, in which disaster shelters must
have the capacity to hold incoming people. Note that the
area within the coverage radius of a shelter is not necessarily
a disk, since the ground of the city may not be flat. For a
disaster shelter at a given location, its coverage radius can
be determined once its capacity is known.

S. BOUNDED SOLUTIONS

Two bounded algorithms are proposed for our problem.
The first and second algorithms independently and cooper-
atively consider the connection constraint, respectively.

5.1 Two-Stage Algorithm

We propose a Two-Stage Algorithm (TSA) to place disas-
ter shelters. The first stage resolves the distance and capac-
ity constraints, and then, the second stage places additional
disaster shelters to satisfy the connection constraint. TSA
is presented as Algorithm 1. Lines 1 to 4 correspond to the
first stage. In lines 1 to 3, disaster shelters at all possible
locations with each possible capacity are mapped to a collec-
tion of sets. People are mapped elements, and people that
are covered by a disaster shelter are mapped to elements in
the corresponding set. In line 4, an existing approximation
algorithm is used to solve the geometric set cover problem.

Algorithm 1 Two-Stage Algorithm (TSA)
Input:

A set of people, P, and their locations,

An establishment cost function, F(-),

A distance function on Euclidean surface, D(-),
A set of discrete locations, L,

A range, r, and a connection threshold, R.
Output: S, their locations, and capacities.

—_

: for each location, [ € L do

for each discrete capacity, c¢min < ¢ < Cmax do

3: Calculate the set of covered people, Ps, for the dis-

aster shelter, s, with [s =1 and ¢s = ¢. Map s to a
set and P, to elements in s. Use the establishment
cost, es = F(cs), as the set weight.

4: For the mapped sets and elements, use an approximation
algorithm to solve the geometric set cover problem. The
resultant collection of selected sets are mapped back to
the disaster shelters, including locations and capacities.

5: Map locations in L as nodes in a graph (nodes are con-
nected if their distance is no larger than R). Use an ap-
proximation algorithm to solve a Steiner tree problem,
which selects nodes to connect the terminals (disaster
shelters in line 4). Selected nodes are recorded as new
disaster shelters with minimum capacities.

6: return the resultant disaster shelters in lines 4 and 5.

»

The sets, which are selected by the approximation algorith-
m, are mapped back to disaster shelters at given locations
with given capacities. The resultant disaster shelters satisfy
the distance and capacity constraints, but may not satisfy
the connection constraint. To satisfy the connection con-
straint, we introduce the second stage, which includes line
5. The resultant disaster shelters of the first stage are re-
garded as terminals in a Steiner tree problem. Through
another existing approximation algorithm, they can be con-
nected by placing additional disaster shelters with minimum
capacities. TSA is bounded:

Theorem 2. Let ai and az denote the approximation ra-
tios of existing algorithms for the geometric set cover prob-
lem and the Steiner tree problem, respectively. Then, the
approzimation ratio of TSA is a1 + a2 X (14 [2r/R] X a1).

Proof: Let TSA;1 and TSA2 denote the cost of the disas-
ter shelters placed by the first and second stages of TSA,
respectively. Let OPT; and OPT> denote the optimal cost
of the disaster shelters for the first and second stages of T-
SA, respectively. Let OPT denote the optimal cost of the
disaster shelters in our problem. Based on the definition of
the approximation ratio, we have the following inequalities:

OPTl S TSA1 S a1 X OPTl (1)
OPT2 S TSAQ S a2 X OPT2 (2)

Since the optimal placement in our problem is also a solution
to the geometric set cover problem in the first stage, we have:

TSA1 S a1 X OPT1 S a; X OPT (3)

Let us consider a special solution to the Steiner tree problem
in the second stage, based on the optimal placement in our
problem. Since people must be assigned to disaster shelters
within a certain range of r, the distance between a disaster
shelter in TSA; and its closest disaster shelter in OPT must



be no larger than 2r. Consequently, we can use |2r/R| dis-
aster shelters with minimum capacities (and thus minimum
establishment costs) to connect an arbitrary disaster shelter
in TSA; to disaster shelters in OPT. Hence, we can use a
total cost of OPT + |2r/R] x OPT; as a special solution to
the Steiner tree problem. The cost of this special solution is
no smaller than OPTy by the definition. We have:

TSAz < a2 x OPTs < az x (OPT + | 2] x TSAY)  (4)

If we combine Eqgs 3 and 4, we have:

TSA1 + TSAs = TSA; 4+ a2 X (OPT =+ \_%J X TSA1)

2
< [a1 a2 x (1+ LETJ x a1)] x OPT (5)
The proof completes. |
Let |P| denote the number of people (set cardinality of
P). Since there exist approximation algorithms [10, 11] with
a1 =log|P| and as = %, we have the following corollary:
Corollary 1. The approximation ratio of TSA can be
S+ (1+212%5))  log|P|. When 2r < R, it is 3 + log|P|.

The bound of TSA depends on |2r/R], which represents
the tightness of the connection constraint. When R is large
enough, the connection constraint can be relaxed, and then,
we can focus on the distance and capacity constraints. The
time complexity of TSA depends on the time complexities of
approximation algorithms for the geometric set cover prob-
lem and the Steiner tree problem. TSA solves the distance
and capacity constraints by the geometric set cover problem,
and then, solves the connection constraint by the Steiner tree
problem. TSA solves constraints independently.

5.2 Tree Growth Algorithm

This subsection presents a Tree Growth Algorithm (TGA)
to place disaster shelters. The distance, capacity, and con-
nection constraints are cooperatively considered. The idea
of TGA is to iteratively place a disaster shelter that can
connect to an existing disaster shelter, until all people are
covered. We start with the following definition:

Definition 2. The adjacent location is defined based on
a set of the disaster shelters, S. | is adjacent to S, if it is (1)
in the range of R of at least one disaster shelter in S, and
(ii) not in the coverage radius of a disaster shelter in S.

The coverage radius is in Definition 1, and R is the thresh-
old for the connection constraint. If we place a disaster shel-
ter at an adjacent location of S, then it is connected to S,
and therefore satisfying the connection constraint. Mean-
while, since people in adjacent locations of S are not cov-
ered by S, the placement of a disaster shelter at an adjacent
location can also provide efficient coverage to people (the
distance and capacity constraints are stisfied). To quantify
the connection constraint, we slightly abuse the notation,
and use D(I,S) to denote the distance between [ and its
closest disaster shelter in S. If [ is adjacent to S, then we
have min, v, < D(,S) < R.

TGA is presented in Algorithm 2. In line 1, it initializes
S =0, i.e., no disaster shelter has been placed. In line 2, a-
mong all the locations, it places the first disaster shelter that
minimizes IL(DCS)‘ Here, es = F(cs) is the establishment cost

s I

Algorithm 2 Tree Growth Algorithm (TGA)
Input:

A set of people, P, and their locations,

An establishment cost function, F(-),

A distance function on Euclidean surface, D(-),
A set of discrete locations, L,

A range, r, and a connection threshold, R.
Output: S, their locations, and capacities.

Initialize S = 0.

Among locations | € L, place a disaster shelter, s, with

a capacity, c¢s that minimizes 1«‘“1(:7)

Add s to S, and then, remove Ps from P.

while P # () do
Find the set of locations, L', that are adjacent to S.
Among locations [ € L', place a disaster shelter, s,
with a capacity, cs, that minimizes W.

Add s to S, and then, remove Ps from P.

8: return S, their locations, and capacities.

N =

i‘

of a disaster shelter with a capacity, cs, and |Ps| is the num-
ber of people covered by the disaster shelter, s. Therefore,

% represents the “cost-to-benefit” ratio, which should be
minimized. Note that FI‘I(DC»S‘) involves the distance and ca-

pacity constraints, but not the connection constraint. This
is because line 2 only places the first disaster shelter. Line 3
updates the disaster shelter placement, and removes covered
people. Lines 4 to 7 iteratively place a disaster shelter, until
all people are covered. Line 5 calculates the set of adjacent
locations of the existing disaster shelters, S. Among all the
adjacent locations of S, line 6 places a disaster shelter that

.. . F N)-D(1,S . .
minimizes %, which represents an improved “cost-
s

to-benefit” ratio. Here, D(I, S) is the distance between [ and
its closest disaster shelter in S. It additionally incorporates
71(325\) . Line 7 updates the dis-
aster shelter placement, and removes covered people. The
iteration terminates when all people are covered.

In TGA, the distance and capacity constraints are satis-
fied by the definition of the coverage radius. Meanwhile, the
connection constraint is satisfied by the definition of the ad-
jacent location. Let mins s denote the minimum coverage
radius in TGA. Then, TGA is bounded as follows:

the connection constraint into

Theorem 3. In terms of minimizing the total establish-
ment cost, TGA has an approzimation ratio of —= = log |P|
to the optimal disaster shelter placement algorithm.

Proof: A new concept of the person’s weight is introduced
to prove this theorem. TGA is an iterative algorithm, and
in each iteration, a disaster shelter is established to mini-
W. Note that people, who have already been
covered in i)revious iterations, are not included in Ps. The
weight of each person in Ps is defined as w, and is
denoted by wp. To unify line 2, the weight of each person
covered by the first disaster shelter is specially defined as

Eles) R Then, the total weights of people in TGA is:

‘PS‘
" " F(c.) - D(L,5)
Dwn =3 3w =323 — - p

pEP s p€EP;s s pEPs

> msin’yS X Z F(cs) (6)

£

mize



This is because > p_ ﬁ = 1. We have D(, S) > min; s
based on the definition of adjacent locations. Let s* denote
a disaster shelter in the optimal solution, S*. We have:

przzzwp (7)

peP 5% pEPyx

We claim that, for each disaster shelter in the optimal solu-
tion, the following inequality is satisfied:

Y wy<log|P|-Fles) R (8)

PEP

To prove our claim, let us consider how TGA covers people
in Ps«. Let ni be the number of uncovered people in P+,
after the k-th iteration. For a people, p, who is covered by
s in TGA and by s* in the optimal solution, we have:

F(cs)D(1,S) _ Flesr)D(L,S™) _ Flesr) R
|| - | Ps= | - nk

9)

wp:

The first inequality results from the greediness, in which

F(es)-D(,S)

TGA minimizes P among all possible placements.

s |
The second inequality results from |Ps«| > ny and D(1, S™) <
R. As a result, we have [11]:

F(cs*)-R
< — s
DR PUNSRLL
PEP k
<log|P| - F(cs+) R (10)
The proof of Eq. 8 completes. Combining Egs. 6, 7, and 8,
the following bound can be obtained:

msinfyS XZF(CS) < przz Z Wy

pEP s* pEPgx

<> log|P|- F(css)- R (11)
Eqg. 11 can be rewritten as:

S Fle) < —2

ming vs

log |P| x Y F(c+) (12)

Note that > F'(cs) and ) _. F'(cs+) are the total establish-
ment costs of TGA and the optimal solution, respectively.
Therefore, the proof completes. |

TGA’s bound depends on its minimum coverage radius,
which in turn depends on the distribution of the people and
the establishment cost function, F'(-). When F(-) is a con-
stant function, the establishment cost of a disaster shelter
is a constant, and is not related to the capacity. We have
mins vs = 7, since disaster shelters can have sufficient and
free capacities to hold all people within r. Hence, we have:

Corollary 2. The approximation ratio of TGA is % log | P|,

when F(-) is a constant establishment cost function.

The time complexity of TGA is O(|L|® + |L||P||cmax —
Cmin|). |L| is the number of locations, |P| is the number of
people, and |¢max — Cmin| is the number of different capacities.
This time complexity can be obtained by pre-computations.
O(|L|?) comes from pre-computations of the distances be-
tween all pairs of locations in L, in order to determine the
adjacent location. O(|L||P||cmax — Cmin|) comes from pre-
computations of the coverage radius for all possible disaster
shelters with all possible capacities.

6. EXPERIMENTS
6.1 Settings

Our dataset is based on the city of Cannon Beach, Ore-
gon, United States [12]. The dataset information has been
illustrated in Park’s work [12]. It includes a long and narrow
area (6.1km by 1.5km). The locations of 1,382 houses are
collected. For simplicity, we assume each house corresponds
to a single person in our experiments. Algorithms 1 and 2
are denoted as TSA and TGA, respectively. Two baseline
algorithms are used as comparisons. (i) CLS stands for a
bounded clustering method in [13]. To guarantee that each
person is within in a range, r, of the disaster shelter, the
radius of each cluster is r. Disaster shelters are established
at the center of each cluster to satisfy the distance and ca-
pacity constraints. To satisfy the connection constraint, a
spanning tree is additionally built. (ii) DAC is a divide and
conquer method. DAC iteratively divides people into two
clusters through a k-means algorithm [14]. The centers of
these two clusters are connected through placing disaster
shelters with minimum capacities. The iteration terminates
when the distance and capacity constraints are satisfied.

We set A = 100m to discretize the locations. Note that
the dataset includes a long and narrow area of 6.1km by
1.5km. Therefore, such a discretization could maintain the
accuracy. To reveal the capacity constraint, we set cmin = 10
and cmax = 100. Two establishment cost functions are used:
F(cs) = \/¢s and F(cs) = 2.440.076 x ¢cs. Coefficients of 2.4
and 0.076 are used, since F(cmin) and F(cmax) can be the
same for the first and second establishment cost functions.
Therefore, fair comparisons can be obtained.

We do not use hyper-linear establishment cost function-
s, since the establishments of multiple small-capacity disas-
ter shelters can be always better than those of a few large-
capacity disaster shelters. Moreover, hyper-linear establish-
ment cost functions are also empirically impractical. Pa-
rameters, r and R, are tuned to represent the impacts of the
distance and connection constraints, respectively. While r
ranges from 200m to 400m, we set R to be 400m, 600m, and
800m. In this setting, we have R > r to guarantee that the
connection constraint is not ignored or relaxed.

6.2 Evaluation Results

The evaluation results under F'(cs) = 1/cs are shown in
Fig. 3. Three subfigures of Fig. 3(a), Fig. 3(b), and Fig. 3(c)
correspond to R = 400m, R = 600m, and R = 800m for the
connection constraint, respectively. TSA and TGA outper-
form CLS and DAC under all the settings. TGA outper-
forms TSA, since it cooperatively considers the connection
constraint. For all algorithms, the total establishment cost,
>, €s, decreases with respect to the disaster shelter range,
r. The distance constraint requires that people must be as-
signed to disaster shelters within a certain range of r. A
larger » means that the distance constraint is more relaxed,
and thus, the total establishment cost is smaller. When r
goes to infinity, the distance constraint is completely relaxed.
Another notable point is that, when the connection thresh-
old, R, becomes larger, the total establishment cost also
slightly decreases. Similarly, a larger R means that the con-
nection constraint can be more relaxed, and thus, the total
establishment cost is smaller. When R goes to infinity, the
connection constraint can be ignored. As shown in Fig. 3,
the performance gap between TSA and TGA is small when
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Figure 4: Evaluation results under F(c;) = 2.4 + 0.076 X cs.

R = 400m, but is large when R = 600m and R = 800m.
This is because TSA and TGA independently and coopera-
tively consider the connection constraint, respectively.

The evaluation results under F(cs) = 2.4+ 0.076 X cs are
shown in Fig. 4. Three subfigures of Fig. 4(a), Fig. 4(b),
and Fig. 4(c) correspond to R = 400m, R = 600m, and R =
800m for the connection constraint, respectively. The results
in Fig. 4 are similar to results in Fig. 3. The only difference is
that the total establishment costs of TSA and TGA decrease
more slowly in Fig. 4. Under F(cs) = /cs, we significantly
favor the establishments of large-capacity disaster shelters,
since they are cost-efficient, especially when r is large (a
disaster shelter can cover more people due to the distance
constraint). On the other hand, when F'(c,) = 2.4+ 0.076 x
cs, we only slightly favor the establishments of large-capacity
disaster shelters, since the establishment cost function scales
linearly with respect to the disaster shelter capacity.

7. CONCLUSION

This paper minimizes the total establishment costs of the
disaster shelters under three constraints: the distance con-
straint, the capacity constraint, and the connection con-
straint. The distance constraint requires that people must
be assigned to disaster shelters within a certain range. The
capacity constraint requires that disaster shelters must have
the capacity to hold incoming people. The connection con-
straint requires that disaster shelters should be connected
to avoid isolations. Two bounded algorithms are proposed
to establish disaster shelters. Experiments demonstrate the
efficiency and effectiveness of the proposed algorithms.
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