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Abstract—In federated learning, multiple rounds of com-
munication are involved between clients and the server to
train a global model. The extensive model updates transmitted
during the training lead to significant communication costs.
Previous methods usually employ quantization or sparsification
to compress model updates. However, the lossy compression
leads to a decline in accuracy, it is challenging to strike a
balance between communication efficiency and model accuracy.
Meanwhile, due to the data heterogeneity, local updates among
different clients are biased towards each other. Employing the
same compression ratios for each local updates will further
degrade the model accuracy. To achieve the trade-off between
communication efficiency and model accuracy, we propose Fed-
DAC, a Dual Adaptive Compression method in heterogeneous
federated learning. In the local computation phase, the loss
queue is adopted to detect the convergence trends within each
client. FedDAC can then dynamically quantify model updates
and allow for various compression ratios among heterogeneous
clients. In the global aggregation phase, FedDAC can determine
the fluctuations in training based on the similarity between
clients and the server, thereby adjusting the sparsity ratio
flexibly. To alleviate the reduction in model accuracy caused
by lossy compression, we introduce residual updates in the local
computation and global aggregation phases to maintain model
accuracy. Experiment results show that compared with one-way
compression methods NAGC and AdaQuantFL, FedDAC can
maintain comparable accuracy while the accumulated commu-
nication volume is reduced by about 29.6 times, and 22.8 times,
respectively. Moreover, the global model accuracy of FedDAC
surpasses the two-way compression method T-FedAvg by about
2.4%, and the accumulated communication volume is about 2.5
times lower than T-FedAvg.

Index Terms—federated learning, communication efficiency,
data heterogeneity, adaptive compression.

I. INTRODUCTION

With the rapid development of technologies such as 5G,
the Internet of Things (IoT) is gradually being applied in
real-world applications [1]. Based on the collected data and
computational power of IoT edge devices (smartphones [2],
wireless cameras [3], drones [4], IoT sensors [5], etc.), deep
neural networks can be trained in a distributed manner. In
order to protect data privacy, federated learning [6] is usually
utilized to organize edge devices for distributed training. In
federated learning, the model updates transmitted between
clients and the server lead to significant communication costs,
especially when it involves large-scale models. Exchanging
model updates with a large number of parameters in each
round of communication will put great pressure on the net-
work channel. It also exacerbates the waiting latency of the
training process and results in the underutilization of edge
devices.

Fig. 1. The extensive single-round communication volume in federated
learning

Fig. 1 illustrates the extensive single-round communication
volume in federated learning when training the Transformer
[7] and Bert [8], respectively. Assuming that each parameter
is represented in 64-bit and the network bandwidth is 100
Mbps. The Transformer contains 65 million parameters, the
client-server communication volume is 65million∗64bit∗2 =
991.8Mb in each round of training, and the transmission time
is 991.8Mb/100Mbps ≈ 10s. The number of parameters in
the Bert is about 5 times more than that of the Transformer,
resulting in unacceptable transmission delay. For this reason,
it is necessary to reduce the single-round communication
volume thus optimizing the communication efficiency in fed-
erated learning.

Related studies compress the single-round communication
volume to reduce the high communication costs. The com-
munication volume refers to the model updates transmitted
between clients and the server. As typical model compression
techniques, quantization [9] and sparsification [10] are com-
monly utilized in distributed machine learning for efficient
communication. However, quantization and sparsification can-
not be directly employed in federated learning. On the one
hand, lossy compression in quantization or sparsification leads
to a decline in model accuracy, it is challenging to strike a
balance between communication efficiency and model accu-
racy. On the other hand, in heterogeneous federated learning,
employing the same and fixed quantization or sparsification
coefficients for all clients with different data distributions
will exacerbate gradient conflict [11] and gradient drift [12],



leading to degradation of global model accuracy.
In order to deploy suitable compression methods for het-

erogeneous federated learning, adaptive compression is intro-
duced by related studies. For example, NAGC [13] defines loss
queues for all clients to save the historical loss during local
training. With the perception of the training state, NAGC can
dynamically adjust the compression ratio to achieve adaptive
sparsification. To alleviate the high error floor caused by quan-
tization, AdaQuantFL [14] utilizes the initial loss and the cur-
rent loss to dynamically determine the quantization coefficient.
Furthermore, it introduces the variable learning rate to mitigate
the excessive change in quantization coefficients. The above
methods adjust the compression ratio to improve the global
model accuracy while optimizing communication efficiency.
However, these methods only consider the compression in
the upstream communication phase, and the communication
efficiency needs to be further optimized.

To reduce both the upstream and downstream single-round
communication volume, Sattler et al. [15] propose a sparse
ternary compression method STC. Combined with sparsifica-
tion and ternary quantization, STC can greatly compress the
model updates and reduce communication costs in federated
learning. Drawing on Sattler’s work, Xu et al. [16] propose
a ternary compression method T-FedAvg. T-FedAvg quan-
tizes the local updates and sparsifies global updates during
training, achieving bidirectional compression for upstream
and downstream communication. However, both STC and T-
FedAvg adopt a fixed compression ratio in compressing the
single-round communication volume, which does not take
into account the difference in data distribution among clients
and cannot be directly employed in heterogeneous federated
learning.

To this end, this paper considers compressing each of the
upstream and downstream model updates, while achieving the
trade-off between communication efficiency and model accu-
racy in heterogeneous federated learning. A Dual Adaptive
Compression method (FedDAC) is proposed in this paper.
Specifically, in the local computation phase, FedDAC intro-
duces the loss queue to dynamically quantify model updates
among heterogeneous clients. In the global aggregation phase,
FedDAC adjusts the sparsity ratio based on the similarity
between the local and global updates. Furthermore, we em-
ploy local and global residual updates to improve the model
accuracy impaired by lossy compression. Generally speaking,
FedDAC can reduce communication costs while maintaining
global model accuracy in heterogeneous federated learning.

The main contributions of this paper include,
• In the local computation phase, the loss queue is adopted

to detect the convergence trends within each client.
FedDAC can then dynamically quantify model updates
and allow for various compression ratios among hetero-
geneous clients.

• In the global aggregation phase, FedDAC can determine
the fluctuations in training based on the similarity be-
tween the local and global updates, thereby adjusting the
sparsity ratio flexibly.

• To alleviate the reduction in model accuracy caused
by lossy compression, we introduce residual updates in
the local computation and global aggregation phases to
maintain model accuracy.

The remainder of this paper is organized as follows: section
II describes the related work of compressing the single-round
communication volume in federated learning. Section III
presents the system model of this paper. Section IV describes
the specific implementation of FedDAC. Experiment results
of FedDAC with other methods are analyzed in Section V. In
the end, Section VI concludes this paper.

II. RELATED WORK

To reduce the huge communication costs in federated
learning, a common way is to compress the single-round
communication volume. Specifically, the single-round com-
munication volume consists of the upstream and downstream
model updates. Most approaches employ gradient compression
methods to reduce the size of model updates, including gradi-
ent quantization [9] and sparsification [10], thereby optimizing
communication efficiency.

Bernstein et al. [17] propose a binary quantization mecha-
nism to utilize 1 bit to represent each gradient, greatly reduc-
ing communication costs. However, the extreme compression
impairs the model accuracy severely. To alleviate the problem
of low model accuracy caused by quantization, related studies
have investigated the variants of quantization, such as ternary
quantization [18], variance reduction quantization [19], and
gradient difference quantization [20].

The top-k method proposed by Aji et al. [10] is a typical
sparsification scheme. Top-k sparsification sorts the absolute
values of the gradients to choose the valid ones to be uploaded
to the server. To compensate for the degradation of the model
accuracy caused by sparsification, Lin [21] et al. sparse the
gradients only when the accumulation of the small gradients
exceeds a certain threshold. However, the above compression
scheme does not apply to heterogeneous federated learning.
Various compression ratios should be introduced to fit differ-
ent data distributions among clients. The unified compression
ratio employed in traditional quantization or sparsification ex-
acerbates problems such as gradient conflict [11] and gradient
drift [12], resulting in a decline in model accuracy.

In order to determine reasonable compression ratios for het-
erogeneous clients, researchers propose adaptive compression
methods to reduce the single-round communication volume.
Related methods employ the loss during local training which
reflects the convergence trend of the global model, to de-
termine the compression coefficients dynamically. For exam-
ple, NAGC [13] proposes an adaptive sparsification method.
Employed with the client loss queue which stores historical
loss over multiple rounds, NAGC can dynamically adjust
the sparsity ratio according to the difference between the
current and historical loss. AdaQuantFL [14] utilizes the initial
and current local loss to adjust the quantization coefficient,
mitigating the problem of high error floor due to quantization.



TABLE I
MAIN SYMBOLIC PARAMETERS IN THIS PAPER

Symbol Definition
M Number of clients
P Number of parameters in the model updates
S Number of clients participating in training
η Local learning rate
cm The m-th client participating in training
wr

m Local model of client cm in r-th iteration
wr Global model in r-th iteration

∆wr
m Local model updates of client cm in r-th iteration

∆wr Global model updates in r-th iteration
V r
m Single-round communication volume of cm

Han et al. [22] propose a FAB-top-k sparsification mechanism
with online learning. FAB-top-k predicts the fluctuation of the
loss function to adjust the sparsity ratio. However, these meth-
ods only reduce the upstream communication volume, and the
communication efficiency needs to be further optimized.

To reduce the single-round downstream communication
volume, Sattler et al. [15] propose the sparse ternary compres-
sion method STC. Combined with sparsification and ternary
quantization, STC can extremely reduce the communication
costs in federated learning. Drawing on Sattler’s work, Xu
[16] et al. propose a ternary compression method T-FedAvg.
T-FedAvg quantizes the local updates and sparsifies global
updates during training, achieving bidirectional compression
for upstream and downstream communication. However, the
above methods utilize the fixed compression ratio, which is
inapplicable to heterogeneous federation learning.

In general, existing methods either reduce only upstream
or downstream communication volume or ignore the effect of
heterogeneity on model accuracy. In this paper, we propose
a Dual Adaptive Compression method (FedDAC) to achieve
dynamic bidirectional compression while balancing the model
accuracy and communication efficiency in heterogeneous fed-
erated learning.

III. SYSTEM MODEL

The federated system consists of a clients set C =
{ci, c2, ..., cM} and a central server, where M is the number
of clients. The clients set S ⊂ C is selected for the r-th
iteration, and each client in S optimizes the local loss function
fm (wr) on its private dataset Dm, as shown in equation (1):

fm (wr) =

|Dm|∑
j=1

l
(
wr

(
xm
j

)
; ymj

)
, (1)

where wr is the initialized model of clients in the r-th
iteration, xm

j , ymj are the feature and label of the j-th sample
in Dm, respectively. l

(
wr

(
xm
j

)
; ymj

)
is the loss between

the prediction of wr on xm
j and ymj . The goal of federated

learning is to obtain a global model wg that minimizes the
average loss of each client, as shown in equation (2):

min
wg

1

|S|
∑
cm∈S

fm (wg). (2)

In the r-th iteration, each client cm ∈ S applies equation
(1) to calculate its local loss and then optimizes equation (2)
with stochastic gradient descent (SGD). The initialized model
wr of cm is updated as shown in equation (3):

wr
m = wr − η∇fm (wr) , (3)

where ∇fm (wr) is the gradient of the loss function fm (wr),
η represents the learning rate, and wr

m is the updated local
model of client cm. Subsequently, the local model updates of
client cm is computed as shown in equation (4):

∆wr
m = wr

m − wr. (4)

Each client cm ∈ S uploads its local model updates to the
central server for averaging and aggregating. The global model
is updated as shown in equation (5):

wr+1 = wr +
1

|S|
∑
cm∈S

∆wr
m, (5)

where wr+1 is the global model of the r+1-th iteration. The
central server distributes the global model updates ∆wr to all
clients, which is computed as shown in equation (6):

∆wr = wr+1 − wr. (6)

Each client computes its local initialized model of the r+1
-th iteration through wr+1 = wr +∆wr. The communication
volume between the client cm and the central server in the
r-th iteration is shown in equation (7):

V r
m = sizeof (∆wr

m) + sizeof (∆wr) , (7)

where sizeof (∆w) is used to compute the size of model
updates ∆w , as shown in equation (8):

sizeof (∆w) = P ∗ bitsp, (8)

where P is the number of parameters in the model updates
∆w and bitsp is the number of bits required to represent each
parameter. Our goal is to reduce the single-round communica-
tion volume V r

m while maintaining the global model accuracy.
The main symbolic parameters of FedDAC proposed in this
paper are shown in Table I.

IV. THE DESIGN OF FEDDAC

A. Overall Framework

Fig. 2 is the framework of FedDAC. In each round of iter-
ation, FedDAC consists of three phases: local updates quan-
tization, global updates sparsification, and local and global
residual updates. Combined with local updates quantization
and global updates sparsification, FedDAC can achieve dual
adaptive compression to optimize communication efficiency
with the consideration of data heterogeneity in federated
learning. Employed with the local and global residual updates,
FedDAC can mitigate the degradation of global model accu-
racy caused by lossy compression.



Fig. 2. The framework of FedDAC

B. Adaptive Local Updates Quantization

In the local computation phase, in order to enable each
client to determine the various compression ratios with the
consideration of its own training state and data distribution,
an adaptive local updates quantization scheme based on the
loss of clients is proposed. Specifically, a loss queue Queuem
of capacity µ is defined for each client cm, which is utilized
to store the local loss of client cm. In the r-th iteration, the
client cm computes the historical average loss, which can be
formulated as equation (9):

lrhistory = sum (Queuem) /len (Queuem) , (9)

where sum (Queuem) is the sum of the losses stored in the
loss queue, and len (Queuem) is the length of the loss queue.

When the client obtains the historical average loss lrhistory,
it calculates the local loss in the current iteration according
to equation (1) and stores the updated loss in its loss queue.
Before depositing the loss into the queue, the first loss in the
queue needs to be discharged if len (Queuem) = µ, and then
the updated loss is inserted. The current average loss of cm is
calculated after the loss queue Queuem is updated, as shown
in equation (10):

lrcurrent = sum (Queuem) /len (Queuem) . (10)

The quantization coefficient of client cm in the r-th iteration
is determined based on the ratio of the current average loss
and historical average loss, as shown in equation (11):

Fig. 3. The illustration of the adaptive local updates quantization

qrm =

{
q0 , if r = 1√

lrcurrent

lrhistory
qr−1
m , otherwise

, (11)

where q0 is the initial quantization coefficient. The random
uniform quantizer [23] is then utilized to compress local model
updates ∆wr

m of client cm, as shown in equation (12):

∆w̃r
m = Q (∆wr

m, qrm) = ∥γr
m∥2sign (∆wr

m) ζm (γr
m, qrm) ,

(12)
where γr

m is the vector of local model updates ∆wr
m after

flattening, sign () is the symbolic function, and ζm (γr
m, qrm)

is the random variable determined by the quantization coeffi-
cient qrm. Fig. 3 is the illustration of the adaptive local updates
quantization.

Considering the different data distributions among hetero-
geneous clients, FedDAC can detect the convergence trends
of the local model based on the loss queue, thereby assigning
various quantization coefficients to each client. With the
adaptive local updates quantization, FedDAC can alleviate the
degradation of global model accuracy caused by unreasonable
compression.

C. Dynamic Global Updates Sparsification

In the initial stage of training, the data distribution among
heterogeneous clients leads to a large difference between local
and global updates. A smaller compression ratio should be
employed to maintain the integrity of the model updates,
thereby improving the training effect in the initial stage. When
the global model tends to converge, the difference between
local and global updates becomes smaller. The compression
ratio can be scaled up to further optimize the communication
efficiency with the global model accuracy not being impaired.
Based on the above analysis, we propose the dynamic global
updates sparsification with the similarity between local and



Fig. 4. The illustration of the dynamic global updates sparsification

global updates. The similarity between ∆wr
m and ∆wr in the

r-th iteration is defined in equation (13):

Simr
m =

1

P

P∑
p

I (sign ({∆wr
m}p) = sign ({∆wr}p)),

(13)
where P is the number of parameters in model updates,
{∆w}p represents the p-th parameter of model updates ∆w,
and sign () is the symbolic function. The update direction of
the p-th parameter between ∆wr

m and ∆wr is identical if I ()
equals to 1. In the global aggregation phase, the average local-
global similarity is calculated as shown in equation (14):

SimAvgr =
1

|S|
∑
cm∈S

Simr
m, (14)

where S is the clients involved in the r-th iteration. The
sparsity ratio is defined with the current and previous average
local-global similarity, as shown in equation (15):

sr =

{
s0, if r = 1√

SimAvgr

SimAvgr−1 s
r−1, otherwise

, (15)

where s0 is the initial sparsity ratio. After determining the
sparsity ratio, FedDAC specifies the global model updates to
reduce the single-round downstream communication volume,
as shown in equation (16):

∆w̃r = Spa (∆wr, sr) , (16)

where ∆w̃r is the sparsified global model updates. During
sparsification, the absolute values of the parameters in the
global model updates are sorted in descending order. The
smallest sr ∗ P parameters in the global model updates are

Algorithm 1 Dual Adaptive Compression for Efficient Com-
munication in Heterogeneous Federated Learning (FedDAC)
1 Input: initial global model w1, learning rate η, number of
iterations R, number of clients M , capacity of loss queue µ
Output: the global model wR+1

1: Define a Queue of capacity µ for each client
2: for r = 1, 2, · · · , R do
3: Clients:
4: for Client cm ∈ S do
5: Download sparsified model updates ∆w̃r−1

6: wr
m = wr−1

m +∆w̃r−1

7: lrhistory = sum (Queuem) /len (Queuem)
8: if len(Queuem) = µ then
9: Remove the first loss in Queuem

10: end if
11: Add fm(wr) to Queuem
12: lrcurrent = sum (Queuem) /len (Queuem)

13: qrm =

{
q0 , if r = 1√

lrcurrent

lrhistory
qr−1
m , otherwise

14: ∆wr
m = ur−1

m − η∇fm (wr)
15: ∆w̃r

m = Q (∆wr
m, qrm)

16: ur
m = ∆wr

m −∆w̃r
m

17: Communicate ∆w̃r
m to Server

18: end for
19: Server:
20: ∆wr = ur−1 +

∑
cm∈S

1
|S|∆w̃r

m

21: for Client cm ∈ S do
Simr

m = 1
P

∑P
p I (sign ({∆w̃r

m}p) = sign ({∆wr}p))
22: end for
23: SimAvgr = 1

|S|
∑

cm∈S Simr
m

24: sr =

{
s0, if r = 1√

SimAvgr

SimAvgr−1 s
r−1, otherwise

25: ∆w̃r = Spa (∆wr, sr)
26: ur = ∆wr −∆w̃r

27: Communicate ∆w̃r to all the clients
28: end for
29: Return wR+1

set to 0, indicating that these parameters are not distributed
to the clients.

D. Local and Global Residual Updates

To alleviate the impairment of global model accuracy
caused by quantization and sparsification, FedDAC introduces
the residual updates on both local computation and global
aggregation phases. The residual refers to the difference
between the full precision model and the lossy compressed
model.

In the local computation phase, each client cm ∈ S
calculates the local residual between ∆w̃r

m and ∆wr
m, as

shown in equation (17):

ur
m = ∆wr

m −∆w̃r
m. (17)



TABLE II
EXPERIMENTAL ENVIRONMENT DETAILS

Central Server
CPU Intel Xeon Platinum 8369B@2.4 GHz 8 cores
RAM 16GB

Client
Name Hardware Specifications Num

Jetson Orin Nano Ampere CUDA 1024 cores GPU 8G RAM 5
Jetson Orin NX Ampere CUDA 1024 cores GPU 8G RAM 5

Jetson TX2 Maxwell CUDA 128 cores GPU 4G RAM 10
Jetson Orin Nano Ampere CUDA 512 cores GPU 4G RAM 10

12500 Docker Node 4 cores Intel i5-12500H@2.5GHz 4G RAM 30
13400 Docker Node 4 cores Intel i5-13400@2.5GHz 4G RAM 40

The local residual in the r − 1-th iteration is added into
equation (4) for obtaining the local updates ∆wr

m, as shown
in equation (18):

∆wr
m = ur−1

m − η∇fm (wr) . (18)

In the global aggregation phase, the server computes the
global residual between ∆w̃r and ∆wr, as shown in equation
(19):

ur = ∆wr −∆w̃r. (19)

After the server aggregates the local model updates, the
global residual of r − 1-th round of training is introduced as
shown in equation (20):

∆wr = ur−1 +
∑
cm∈S

1

|S|
△ w̃r

m. (20)

Employed with the local and global residual updates, Fed-
DAC can fill in the missing information, thereby accelerating
the convergence speed of the global model and improving the
global model accuracy.

E. Algorithm Design
In the local computation phase, the clients calculate the

historical and current average loss to determine the quanti-
zation coefficient. Then the residual of the local updates is
computed and the quantified updates is uploaded to the server.
In the global aggregation phase, the server averages the local
updates to obtain the global updates. The average similarity
between local updates and global updates is computed to
determine the sparsity ratio. The sparsified model updates is
then distributed to the clients, and the residual of the global
updates is computed. Algorithm 1 shows the detailed steps of
FedDAC.

V. PERFORMANCE EVALUATION

A. Experiment Setup
1) Experimental environment: In this paper, we adopt an

Alibaba cloud server as the central server in federated learn-
ing. Clients consist of 30 jetson development boards and 70
docker nodes on different workstations. Clients are in the same
LAN and communicate with the central server through the
network gateway. The experimental environment details are
shown in Table II.

2) Federated datasets and models: The public datasets
MNIST and CIFAR-10 are chosen for our experiments. In
order to simulate the non-IID data in federated learning, the
Dirichlet distribution is employed to generate datasets with
different degrees of heterogeneity. The α in Dirichlet distri-
bution determines the degree of heterogeneity. The smaller α
is, the more heterogeneous the data distribution among clients
is.

Since the CIFAR-10 dataset is more complex compared to
the MNIST dataset in terms of categories and RGB channels,
models with different architectures are chosen for the two
datasets. Specifically, Logistic Regression and AlexNet are
employed for the MNIST dataset and CIFAR-10 dataset,
respectively, thereby evaluating the performance of FedDAC
on both convex and non-convex models.

3) Baselines and parameter settings: We choose NAGC
[13], AdaQuantFL [14], and T-FedAvg [16] as the base-
lines against FedDAC. NAGC and AdaQuantFL are one-way
compression methods considering variable compression ratios.
T-FedAvg is a two-way compression method with a fixed
compression coefficient.

For the MNIST dataset, the number of iterations R is set
to 200, the learning rate η is set to 0.1, the number of clients
M is set to 100, and randomly select 10 clients to participate
in each round of training. The initial quantization coefficient
q0 is set to 64 and the initial sparsity ratio s0 is set to 0.2.

For the CIFAR-10 dataset, the learning rate η is set to 0.01,
the initial quantization coefficient q0 is set to 128 and the
initial sparsity ratio s0 is set to 0.1. The other parameters
remain the same with the MNIST dataset.

The accumulated communication volume for evaluating the
methods refers to the total communication volume between
clients and the server when the global model reaches specific
accuracy.

B. Analysis of hyperparameter selection for FedDAC

The capacity µ of the loss queue in FedDAC determines
how close the client quantization coefficients are among each
iteration. The larger µ is, the smaller the difference between
the historical average loss and the current average loss is,
and the smaller the change in quantization coefficients is. In
order to choose reasonable µ for the subsequent experiments,
we conduct experiments on MNIST and CIFAR-10 datasets
under different values of µ with the introduction of different
degrees of heterogeneity. The experiment results are shown in
Table III to Table IV.

1) Analysis of the communication volume with different
µ : Columns 2 to 4 in Table III show the accumulated
communication volume of FedDAC on the heterogeneous
MNIST dataset. Under the condition of weak heterogeneity
(α = 10), the minimum accumulated communication volume
is 1.4MB when µ = 10, and as µ becomes larger, the
accumulated communication volume significantly increases.
Under strong heterogeneity (α = 0.5, α = 1), the accumulated
communication volume of FedDAC is minimal when µ = 20.



TABLE III
ACCUMULATED COMMUNICATION VOLUME (MB) WITH µ

µ

Dataset
MNIST CIFAR-10

α = 0.5 α = 1 α = 10 α = 0.5 α = 1 α = 10
10 12.0 11.3 1.4 215.0 163.8 153.6
20 10.8 8.9 1.5 225.3 184.3 163.8
30 16.9 16.1 3.2 245.8 225.3 204.8
40 32.3 29.0 5.7 358.4 317.4 256.0
50 63.2 59.6 11.9 409.6 389.1 378.9

Columns 5 to 7 in Table III show the accumulated com-
munication volume on the heterogeneous CIFAR-10 dataset.
Under all degrees of data heterogeneity (α = 0.5, α = 1,
α = 10), the communication costs of FedDAC is minimal
when µ = 10, with accumulated communication volume of
215.0MB, 163.8MB, and 153.6MB, respectively. The accu-
mulated communication volume of FedDAC on the CIFAR-10
dataset significantly increases as the value of µ increases.

The above analysis reveals that FedDAC can achieve the
smallest accumulated communication volume when µ = 10
under different degrees of data heterogeneity.

As µ increases, the communication efficiency of FedDAC
greatly drops. This is because the value of µ affects the quan-
tization coefficients of the clients. As µ increases, the change
in the quantization coefficient becomes smaller, leading to
the increment in the single-round upstream communication
volume.

2) Analysis of the global model accuracy with different µ:
To achieve a trade-off between communication efficiency and
model accuracy, we analyze the global model accuracy of
FedDAC under various conditions. The results of the global
model accuracy on heterogeneous MNIST dataset under dif-
ferent values of µ are shown in columns 2 to 4 in Table
IV. FedDAC achieves the best global model accuracy with
86.88%, 90.15%, and 90.41% respectively under all degrees
of data heterogeneity (α = 0.5, α = 1, α = 10) when µ = 50.

The results of the global model accuracy on the heteroge-
neous CIFAR-10 dataset are shown in columns 5 to 7 in Table
IV. Under the condition of weak heterogeneity (α = 10), Fed-
DAC achieves the highest global model accuracy of 63.33%
when µ = 10. Under the degrees of high data heterogeneity
(α = 0.5, α = 1), FedDAC achieves the highest global model
accuracy of 52.91% and 60.26% respectively when µ = 50.

The above analysis shows that FedDAC can achieve the
smallest accumulated communication volume when µ = 10
and obtains the best global model accuracy when µ = 50.
To balance the communication efficiency and global model
accuracy, we choose µ = 10 for the subsequent experiments.
Therefore, the highest communication efficiency can be ob-
tained with a slight decrease in global model accuracy.

C. Analysis of the accumulated communication volume

1) Experiment results on MNIST: Under the above experi-
mental environment and hyperparameter settings, we compare

TABLE IV
GLOBAL MODEL ACCURACY (%) WITH µ

µ

Dataset
MNIST CIFAR-10

α = 0.5 α = 1 α = 10 α = 0.5 α = 1 α = 10
10 86.84 90.09 90.37 52.86 60.19 63.33
20 86.87 90.10 90.36 52.90 60.22 63.30
30 86.86 90.12 90.35 52.84 60.21 63.28
40 86.86 90.13 90.38 52.87 60.23 63.32
50 86.88 90.15 90.41 52.91 60.26 63.31

the accumulated communication volume of FedDAC with
NAGC, AdaQuantFL, and T-FedAvg. Fig. 5 shows the ex-
periment results on the heterogeneous MNIST dataset.

As shown in Fig. 5 (a), under the strong data heterogeneity
situation (α = 0.5), FedDAC achieves the smallest accu-
mulated communication volume with 10.36MB, 10.48MB,
and 11.46MB respectively when the global model accu-
racy reaches 76%, 80%, and 84% Compared with NAGC,
AdaQuantFL, and T-FedAvg, the accumulated communication
volume of FedDAC is reduced by about 16.7 times, 13.2 times,
and 2.8 times, respectively when the global model accuracy
reaches 76%. Combined with adaptive local updates quan-
tization and dynamic global updates Sparsification, FedDAC
can greatly reduce the single-round upstream and downstream
communication volume. T-FedAvg quantizes the local updates
and sparsifies global updates during training. However, T-
FedAvg adopts a fixed compression ratio, resulting in subop-
timal accumulated communication volume. The accumulated
communication volume of AdaQuantF is smaller than NAGC
due to the decaying learning rate scheme for further adjust-
ing the quantization ratios. However, both AdaQuantFL and
NAGC only compress the upstream communication volume
and the communication efficiency can be further optimized.

Fig. 5 (b) shows the accumulated communication volume of
four methods when α = 1. FedDAC achieves the best commu-
nication efficiency compared with NAGC, AdaQuantFL, and
T-FedAvg. The accumulated communication volume of Fed-
DAC reaches 8.25MB, 9.73MB, and 10.75MB, respectively
when different model accuracies are obtained, surpassing the
suboptimal method T-FedAvg by about 2.8 times, 2.7 times,
and 2.6 times.

The accumulated communication volume of the four meth-
ods under the weak data heterogeneity situation (α = 0.5) is
shown in Fig. 5 (c). The accumulated communication volume
of the four methods reduces as the data heterogeneity be-
comes weak. FedDAC still achieves the smallest accumulated
communication volume with 0.99MB, 1.17MB, and 1.32MB,
respectively when the global model accuracy reaches 76%,
80%, and 84%.

2) Experiment results on CIFAR-10: Fig. 6 illustrates the
accumulated communication volume of the four methods on
the heterogeneous CIFAR-10 dataset. As the model adopted
for CIFAR-10 becomes complex, the accumulated communi-
cation volume greatly increases under all situations. Similar



Fig. 5. Accumulated communication volume on the heterogeneous MNIST dataset for NAGC, AdaQuantFL, T-FedAvg, and FedDAC

Fig. 6. Accumulated communication volume on the heterogeneous CIFAR-10 dataset for NAGC, AdaQuantFL, T-FedAvg, and FedDAC

to the results on the MNIST dataset, FedDAC outperforms
the other three methods on communication efficiency. Under
the strong data heterogeneity situation (α = 0.5), FedDAC
surpasses NAGC, AdaQuantFL, and T-FedAvg by about 27.2
times, 23.3 times, and 2.5 times when the global model
accuracy reaches 45%.

The above analysis reveals that compared with the one-
way compression methods NAGC and AdaQuantFL, FedDAC
can greatly reduce communication costs with the introduction
of bidirectional compression. Employed with dual adaptive
compression, FedDAC can also perform the two-way com-
pression method T-FedAvg. Generally speaking, FedDAC can
significantly optimize the communication efficiency in hetero-
geneous federated learning.

D. Analysis of the global model accuracy

Table V shows the results of the global model accuracy
experiments of NAGC, AdaQuantFL, T-FedAvg, and FedDAC
on different heterogeneous datasets under the above experi-
mental environments and hyperparameter settings.

1) Experiment Results on MNIST: The results on the
MNIST dataset are shown in columns 2 to 4 of Table V.
Under the condition of weak heterogeneity (α = 10), the
method AdaQuantFL with training loss and decaying learning
rate obtains the highest global model accuracy of 91.55%,

outperforming FedDAC by about 1.18%. As the degree of
data heterogeneity increases (α = 1, α = 0.5), FedDAC
achieves the best global model accuracy of 90.09% and
86.84%, respectively, surpasses the suboptimal AdaQuantFL
by about 0.74% and 0.58%, respectively.

2) Experiment Results on CIFAR-10: Columns 5 to 7 of Ta-
ble V show the experimental results of the four methods on the
CIFAR-10 dataset with different degrees of data heterogeneity.
The increase in model and dataset complexity leads to large
differences in global model accuracy results. Specifically,
FedDAC obtains the optimal global model accuracy of 63.33%
when α = 10. As the degree of data heterogeneity increases
(α = 1 and α = 0.5), the global model accuracy of FedDAC
becomes lower than that of AdaQuantFL by approximately
2.1% and 2.2%, respectively. Although FedDAC introduces
residual updates to improve the model accuracy impaired by
quantization and sparsification, its global model accuracy still
needs improvement compared to the one-way compression
method AdaQuantFL. Moreover, the global model accuracy
of FedDAC is significantly higher than those of T-FedAvg
and NAGC, where T-FedAvg obtains the worst global model
accuracy due to the fixed bidirectional compression ratio.

The above analysis of the experimental results shows that
NAGC and T-FedAvg have worse global model accuracy in
heterogeneous federated learning. NAGC adjusts the compres-



TABLE V
GLOBAL MODEL ACCURACY OF DIFFERENT APPROACHES

Comparison
approaches

Dataset
MNIST CIFAR-10

α = 0.5 α = 1 α = 10 α = 0.5 α = 1 α = 10
NAGC 84.20 87.78 88.82 49.41 57.39 61.25

AdaQuantFL 86.34 89.42 91.55 53.02 61.47 62.32
T-FedAvg 84.29 88.17 89.37 46.76 54.29 60.88
FedDAC 86.84 90.09 90.37 51.86 60.19 63.33

sion ratio based on the change of loss without considering
the trade-off between the model accuracy and communication
efficiency. T-FedAvg adopts the fixed compression coefficient
to reduce upstream and downstream communication volume,
resulting in serious degradation of global model accuracy
under strong heterogeneity. AdaQuantFL introduces the dy-
namic compression ratio to fit the heterogeneous data, thereby
realizing a better global model accuracy.

In general, the global model accuracy of FedDAC is
comparable to AdaQuantFL and outperforms the other two
methods. Combined with adaptive local updates quantization
and dynamic global updates sparsification, FedDAC can adjust
the upstream and downstream compression ratio to maintain
the global model accuracy with heterogeneous data. With the
introduction of local and global residual updates, FedDAC
can further improve the global model accuracy impaired by
the dual lossy compression.

VI. CONCLUSIONS

In order to reduce the significant communication costs in
heterogeneous federated learning while achieving the trade-off
between communication efficiency and global model accuracy,
a Dual Adaptive Compression method (FedDAC) is proposed
in this paper. In the local computation phase, FedDAC can
detect the convergence trend with the introduction of the local
loss queue to justify the upstream quantization ratio. In the
global aggregation phase, FedDAC can determine the fluctu-
ations in training based on the similarity between clients and
the server, thereby adjusting the downstream sparsity ratio.
Employed with local and global residual updates, FedDAC
can mitigate the degradation of global model accuracy due
to lossy compression. Experiment results show that compared
with one-way compression methods NAGC and AdaQuantFL,
FedDAC can maintain comparable model accuracy and greatly
optimize communication efficiency. Compared with two-way
compression methods T-FedAvg, FedDAC can further com-
press the single-round communication volume while achieving
better global model accuracy.
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optimization: Distributed machine learning for on-device intelligence”,
arXiv:1610.02527, 2016.

[7] A. Vaswani et al., “Attention is All you Need,” in Advances in
Neural Information Processing Systems, Curran Associates, Inc., 2017.
Accessed: Dec. 07, 2023.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understand-
ing.” arXiv, May 24, 2019.

[9] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in Interspeech 2014, ISCA, pp. 1058–1062, Sep. 2014.

[10] A. F. Aji and K. Heafield, “Sparse Communication for Distributed
Gradient Descent,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 440–445, 2017.

[11] H. Yu, S. Yang, and S. Zhu, “Parallel Restarted SGD with Faster Conver-
gence and Less Communication: Demystifying Why Model Averaging
Works for Deep Learning,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, Art. no. 01, Jul. 2019.

[12] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic Federated Learning,” in
Proceedings of the 36th International Conference on Machine Learning,
PMLR, pp. 4615–4625, May 2019.

[13] W. Yang, Y. Yang, X. Dang, H. Jiang, Y. Zhang, and W. Xiang, “A Novel
Adaptive Gradient Compression Approach for Communication-Efficient
Federated Learning,” in 2021 China Automation Congress (CAC), pp.
674–678, Oct. 2021.

[14] D. Jhunjhunwala, A. Gadhikar, G. Joshi, and Y. C. Eldar, “Adaptive
Quantization of Model Updates for Communication-Efficient Federated
Learning,” in ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3110–3114, Jun.
2021.

[15] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
Communication-Efficient Federated Learning From Non-i.i.d. Data,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 31,
no. 9, pp. 3400–3413, Sep. 2020.

[16] J. Xu, W. Du, R. Cheng, W. He, and Y. Jin, “Ternary Compression
for Communication-Efficient Federated Learning,” IEEE Trans. Neural
Netw. Learning Syst., vol. 33, no. 3, pp. 1162–1176, Mar. 2022.

[17] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signSGD: Compressed Optimisation for Non-Convex Problems,” in
Proceedings of the 35th International Conference on Machine Learning,
PMLR, pp. 560–569, Jul. 2018.

[18] W. Wen et al., “TernGrad: Ternary Gradients to Reduce Communication
in Distributed Deep Learning,” in Advances in Neural Information
Processing Systems, Curran Associates, Inc., 2017.

[19] H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang, “ZipML:
Training Linear Models with End-to-End Low Precision, and a Little Bit
of Deep Learning,” in Proceedings of the 34th International Conference
on Machine Learning, PMLR, pp. 4035–4043, Jul. 2017.
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