
Code Pruning in Opportunistic Routing through
Bidirectional Coding Traffic Comparison

Weiping Wang, Xiaozhuan Chen, Mingming Lu, Jianxin Wang ∗,
Xi Zhang †, and Jie Wu ‡

Abstract
Opportunistic routing (OR) significantly improves transmission reliabil-

ity and network throughput in wireless mesh networks (WMNs) by utilizing
the broadcast nature of the wireless medium. Through the integration of
network coding (NC), the complicated coordination to select the best for-
warding node in OR can be bypassed. However, the introduction of NC
exacerbates the redundant-packet-transmission problem. To mitigate this is-
sue, existing coded OR protocols either adopt the loss-rate-based approach,
employ orthogonal vectors as coded feedback, or pursue the stream-based
coded OR model. However, these three solutions suffer inaccuracy and ob-
solescence of the loss-rate measurement, false-positive/false-negative prob-
lem, and unavailability of hop-by-hop stream-based OR, respectively. To
address the above problems, we propose a simple but practical coded feed-
back scheme, Cumulative Coding Coefficient ACKnowledgement (C3ACK),
based on the relevance between forward (coded packets received from up-
stream nodes) and backward coding traffic (coded packets overheard from
downstream nodes), and apply C3ACK to both batch-based and stream-based
coded OR models in order to prune redundant forward and backward coding
traffic. Both testbed evaluation and simulation study show that our code-
pruning schemes can outperform existing approaches in terms of expected
throughput and transmission count.

Keywords: Coded feedback, code pruning, networking coding, opportunistic rout-
ing, wireless mesh networks.

∗Weiping Wang, Xiaozhuan Chen, Mingming Lu, and Jianxin Wang are with the School of In-
formation Science and Engineering, Central South University, Hunan, China, 410083 P.R.C. E-mail:
{wpwang, xzchen, mingminglu, jxwang}@csu.edu.cn (see http://netlab.csu.edu.cn). Mingming Lu
is the corresponding author.

†Xi Zhang is with the Department of Electrical and Computer Engineering, Texas A&M Univer-
sity. E-mail: xizhang@ece.tamu.edu

‡Jie Wu is with the Department of Computer and Information Sciences, Temple University. E-
mail: jiewu@temple.edu

1

j

i

k

(1, 2, 1)
(1, 1, 1)

(1, 2, 1)
(1, 1, 1)

s

(1, 2, 3)
(1, 1, 1)

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

(1, 2, 3)

(2, 3, 4)

(2, 3, 2)

(2, 3, 4)
(2, 3, 2)

Send

or not

to send?

Figure 1: The illustration of the collective-space problem.

1 Introduction

Recently, OR has received an increasing amount of attention because OR, as a new
routing paradigm, can significantly improve transmission reliability and network
throughput in WMNs [4]. Compared to the single-path routing, instead of relying
on an intended receiver to forward a packet, OR utilizes a set of potential packet
receivers (candidates) to forward a packet. To reduce redundant-packet transmis-
sions, ExOR [4] exploits a time-consuming coordination mechanism among can-
didates to select the best forwarder. The relatively complicated coordination has
been bypassed through integrating network coding (NC) [7], where the forwarder
(source) randomly mixes received native packets, which refer to the original pack-
ets that have not been coded yet, before forwarding (sending) them. Once the des-
tination receives enough innovative packets, where a packet is innovative to a node
if it is linearly independent from its previously received packets, it can recover the
native packets from the source.

However, existing coded OR protocols, such as MORE [7], exacerbate the
problem of redundant-packet transmissions due to the collective-space problem [19],
as illustrated by the example shown in Fig. 1, where the source S has two for-
warders i and j. S has three native packets p1, p2, and p3, and generates three
coded packets p1+2p2+3p3, p1+2p2+p3 and p1+p2+p3 (abbreviated as their
corresponding coding vectors, i.e., the vector of coefficients that describes how to
express a coded packet from the native packets). As shown in Fig. 1, neither i
nor j has received enough innovative packets to cover S’ knowledge space, which
refers to the linear space spanned by the coding vectors, but the knowledge spaces
of i and j can collectively cover S’ knowledge space. Timely learning downstream
nodes’ knowledge spaces can help reduce redundant-packet transmissions in coded
OR protocols, which, however, is a non-trivial task.

MORE [7] reduces transmission redundancy by controlling the relative trans-
mission frequency of each forwarder through the transmission credits, which is

2

based on the expected transmission count (ETX) [9]. However, this transmission
control scheme relies on accuracy and freshness of the statistical link-loss-rate
measurements. To reflect the instantaneous channel condition, orthogonal vec-
tor [16, 17, 19] has been utilized as a compressed representation of the knowledge
space. However, because an orthogonal vector is a lossy compression, it imposes
the false-positive problem, which occurs when a node receives a feedback vector
orthogonal to its knowledge space, denoting the coverage of its knowledge space,
but the orthogonality is actually a coincidence. Although the false-positive problem
can be mitigated by reducing the probability of coincidental orthogonality [19], it
is at the expense of exacerbating the collective-space problem.

The false-positive problem motivates us to pursue an efficient coded feedback
scheme without relying on orthogonal vectors. By carefully examining the forward
and backward coding traffics through both theoretical analysis and simulation eval-
uation, we identify the relevance between forward and backward coding traffics,
and propose a simple but efficient coded feedback scheme, named C3ACK, that
helps prune redundant forward coding traffic.

C3ACK utilizes the observed relevance, appending an additional vector of cod-
ing coefficients, which, together with the coding vector, serves as coding feedback,
to each node. Surprisingly, one additional vector can achieve approximately the
same performance as the optimal solution (i.e., appending all vectors of coding co-
efficients), with less overheads than that of the orthogonal coded feedback schemes.

Furthermore, as stream-based coded OR protocols [8, 23, 27], which relax the
constraint of coding within a batch (a fundamental property of the batch-based
coded OR [7, 19]), can reduce the end-to-end transmission delay, and in turn im-
prove transmission throughput, we extend our code-pruning scheme to stream-
based OR models by pruning packets covered by downstream nodes so that the
covered packets will no longer be used for generating new coded packets. Note
that a packet is covered by downstream nodes if the coding vector used to express
the packet can be linearly expressed by the coding vectors in the collective knowl-
edge spaces of downstream nodes.

The rest of this paper is organized as follows. Section 2 analyzes the false-
negative problems associated with the existing orthogonal-vector-based coded feed-
back schemes. Section 3 motivates, develops, and analyzes our proposed C3ACK
scheme. Section 4 proposes the code-pruning schemes for both the batch-based and
stream-based coded OR models. Section 5 compares our code-pruning schemes
with MORE, CCACK [19], the ideal scheme, and SlideOR [23] in NSclick [25].
Section 6 further evaluates our code-pruning schemes in a testbed. Section 7 sum-
marizes the related works in this area. Section 8 concludes this paper and discusses
future works.

3

2 The false-negative Issues of Existing Orthogonal-vector-
based Feedback Schemes

The simplest orthogonal-vector-based coded feedback scheme is the null-space-
based (NSB) coded feedback scheme [19], where each node directly uses orthog-
onal vectors to acknowledge received coded packets. Take Fig. 1 for example:
the vector (x, y, z) orthogonal to node i’s knowledge space should be of the form
(z,−2z, z), as the orthogonal vector should satisfy (1, 2, 3) · (x, y, z) = 0 and
(1, 1, 1) · (x, y, z) = 0, i.e., x + 2y + 3z = 0 and x + y + z = 0. Similarly, the
vector (x′, y′, z′) orthogonal to node j is of the form (−z′, 0, z′). Let z = 1, then,
orthogonal vectors (1,−2, 1) is orthogonal to (1, 2, 3), (1, 1, 1) at node s, because
1−4+3 = 0 and 1−2+1 = 0. Similarly, let z′ = 1, then, (−1, 0, 1) is orthogonal
to (1, 2, 1), (1, 1, 1).

2.1 The false-negative issue of the NSB scheme

As a preparation for further analysis, we first analyze the false-negative probability
of the NSB scheme. First of all, we give formal definitions of false-negative and
false-positive.

Definition 1 (False negative) A false-negative event occurs, when downstream
nodes of a node have collectively covered the node’s knowledge space, while the
node believes its knowledge space has not been covered yet.

Definition 2 (False positive) A false-positive event occurs, when downstream nodes
of a node have not covered the node’s knowledge space, while the node believes its
knowledge space has been covered.

Without loss of generality, consider node i with l downstream nodes i1, · · · , il.
Let Si denote node i’s knowledge spaces and R(Si) denote its rank. We first ob-
serve that the occurrence of the collective-space problem depends on two premises:
(1) node i’s knowledge space Si can be collectively covered by downstream nodes;
(2) any single downstream node alone cannot cover its knowledge space.

We then analyze the false-negative probability when receiving an orthogonal
vector zij from a downstream node ij with the premises of the collective-space
problem satisfied, and have the following theorem concerning the false-negative
probability of the NSB scheme.

Theorem 1 If the premises of the collective-space problem are satisfied, in NSB
scheme, for any feedbacked orthogonal vector, the false-negative event occurs with
a probability more than 1− 1

256 , assuming that the size of the Galois Field is 28.

4

Proof: If the premises are satisfied, at least one packet qi exists, which is innovative
to any single downstream node’s knowledge space, i.e., ∃qi s.t. ∀ij , qi ̸∈ Sij , but
not innovative to the collective knowledge space of all downstream nodes, i.e.,
qi ∈ ∪l

j=1Sij .
Upon receiving a zij , node i will determine that its knowledge space has not

been covered as long as qi is not orthogonal to zij , which will incur the false-
negative event. Note that the probability of qi orthogonal to zij is actually equal to
the false-positive probability according to Definition 2, because qi is not covered
by Sij , while the orthogonality falsely denotes the coverage. As the false-positive
probability is approximately 1

256 [19], the false-negative probability is about 1− 1
256

based on the above discussion.
If more than one such qi exists, the false-negative probability further increases

to 1−(1
256)

♯qi , where ♯qi denotes the number of such qi, as the false-negative event
occurs only when none of such qi is orthogonal to zij . �

Anyway, it is almost for sure that the false-negative event will occur if the
premises of the collective-space problem satisfy. Thus, the false-negative proba-
bility can be approximated as the occuring probability of the collective-space prob-
lem.

2.2 The false-negative issue of the CCACK scheme

As previously mentioned, CCACK [19] is actually an extension of NSB. The ex-
tension is twofold. On one hand, to address the collective-space problem, two
additional buffers are introduced to record the coding vectors associated with the
received and transmitted packets, respectively. As a node’s received packets are
from its upstream nodes, a feedback vector generated through the received packets
must be orthogonal to certain transmitted packets from the upstream nodes. Hence,
it can mitigate the collective-space problem to some extent. On the other hand,
CCACK adopts M random hash matrices to simulate the effect of M independent
orthogonal vectors. As each independent orthogonal vector incurs a false-positive
probability of 1

28
, the false-positive probability of M independent orthogonal vec-

tors can reduce to (1
28
)M .

In the case that all packets received and transmitted by an upstream node are
received by its downstream nodes, CCACK can solve the collective-space problem.
However, CCACK still has a serious false-negative problem, because the above
case does not occur so often and the hash matrices have a side effect of increasing
the false-negative probability.

In the following, we use M i
rx and M i

tx to denote the sets of coding vectors
associated with the received and transmitted coded packets, respectively. M i

v is

5

used to denote the set of coding vectors extracted from M i
rx with only innovative

packets included. R(·) is used to represent the rank of a matrix or a set. Note that
R(M i

rx) = R(M i
v) = R(Si), and |M i

tx| ≤ R(Si).
We can analyze the false-negative issue from two perspectives. First of all,

even though each vector in M i
tx is the same as a certain vector in M

ij
rx, it is not

necessary that each feedback vector from downstream node ij will be H-orthogonal
to a vector in M i

tx. Thus, we have the following lemma.

Lemma 1 For any packet at node i, i.e., ∀qi ∈ M i
tx ∪M i

rx, if it has been received
by a certain downstream node ij , i.e., qi ∈ M

ij
rx, the probability that it can be

acknowledged by a feedback vector zij from ij is
min(R(Sij

),xN−1
M

y)
R(Sij

) .

Proof: Since at most xN−1
M y vectors can be H-orthogonal to a selected feedback

vector zij , if R(Sij) ≤ xN−1
M y, every vector in downstream node ij will be se-

lected, and the corresponding probability is
R(Sij

)

R(Sij
) = 1; otherwise, a vector will be

selected with a probability xN−1
M

y
R(Sij

) . In a word, a vector will be selected with a prob-

ability
min(R(Sij

),xN−1
M

y)
R(Sij

) . As zij is definitely orthogonal to the selected vectors, qi

will be acknowledged by zij with the probability
min(R(Sij

),xN−1
M

y)
R(Sij

) . �

The above lemma discusses the false-negative probability in the case that pack-
ets in an upstream node are exactly the same as those from downstream nodes.
However, it is more general that packets in upstream nodes are not the same as
those from downstream nodes. The following lemma will discuss the false-negative
probability of the latter case.

Lemma 2 For any packets at node i, i.e., ∀qi ∈ M i
tx ∪ M i

rx, if it has not been
received by any downstream node, i.e., qi ̸∈ ∪l

j=1M
ij
rx, but it can be linearly ex-

pressed by the collective knowledge space S from downstream nodes, then the
probability that it can be acknowledged by a feedback orthogonal vector zij from

downstream nodes is ω + (1− ω)× (1
256)

M , where ω =
∑l

j=1 256
R(Sij

)

256R(S) .

Proof: Without loss of generality, assume packet qi satisfies the premise of this
lemma. Two cases exist that qi can be acknowledged by a zij : (1) qi can be linearly
expressed by (the knowledge space of) a certain downstream node alone; (2) case
(1) does not satisfy, but qi is acknowledged by a feedback vector zij due to the
false-positive possibility.

6

The probability that qi can be linearly expressed by downstream node ij is
256

R(Sij
)

256R(S) , as the total number of vectors that can be linearly expressed by the col-

letive knowledge space S is 256R(S), from which only 256
R(Sij

) can be linearly ex-
pressed by knowledge space Sij . As case 1 satisfies if any downstream node alone

can linearly express qi, case 1 holds with the probability of ω =
∑l

j=1 256
R(Sij

)

256R(S) .
Straightforwardly, the probability that qi cannot be linearly expressed by any

single downstream node alone is 1 − ω. In case 2, the probability of qi being
orthogonal to zij is actually equal to the false-positive probability, according to
Definition 2. Thus, case 2 holds with the probability (1−ω)× (1

256)
M . Therefore,

a packet satisfying the premise of this lemma will be acknowledged by a feedback
orthogonal vector with the probability ω + (1− ω)× (1

256)
M . �

From Lemma 1 and Lemma 2, we can observe that the false-negative issue of
CCACK occurs with a non-negligible probability. Thus, we have the following
theorem concerning the false-negative probability.

Theorem 2 CCACK has a non-negligible false-negative probability.

Proof: First, we need to notice that a packet is not innovative to downstream nodes
only if it has either been received by downstream nodes directly, or it can be linearly
expressed by downstream nodes. If the packet has been received by downstream
nodes, according to Lemma 1, it will not be acknowledged with the probability

1−
min(R(Sij

),xN−1
M

y)
R(Sij

) , which is non-negligible when R(Sij) is larger than xN−1
M y.

For example, in CCACK’s setting, N = 32 and M = 4, thus, xN−1
M y = 7. Then,

the false-negative probability is at least 1
8 when R(Sij) > 7.

If the packet has not been received by downstream nodes, but it can still be
linearly expressed by a single downstream node alone, according to Lemma 2, it
will not be acknowledged with the probability 1 − ω − (1 − ω) × (1

256)
M , which

is still non-negligible when the number of downstream nodes is much less than the

size of Galois Field. Note that ω ≤ l·maxj 256
R(Sij

)

256R(S) ≤ l × 1
256 . For example, if

l = 5 and M = 4, the false-negative probability is approximately 0.98. �

3 Cumulative Coding Coefficient Acknowledgments

3.1 Motivation

The false-positive/negative issue inherent in the orthogonal-vector based feedback
schemes motivates us to pursue an efficient feedback scheme independent of or-
thogonal vectors. We first observe that the false-positive problem originates from

7

the fact that an orthogonal vector is just a lossy compression of a node’s knowledge
space. A straightforward approach to this false-positive problem is to feedback all
coding vectors instead of the single orthogonal vector, which, however, will incur
enormous overheads proportional to the number of innovative packets, and thus
reduce effective throughput instead.

Fortunately, the story does not end here. From a macro point view in terms of
the knowledge space, it requests all coding vectors to be feedbacked. However, a
further investigation of the forward/backward traffic in finer granularity can iden-
tify that, statistically, only one innovative feedback coding vector is required for
each individual received innovative packet, because all innovative packets are in-
terchangeable in terms of decoding. Moreover, in wireless networks, nodes need to
compete for the wireless communication medium. Therefore, it is rare that an up-
stream node transmits all coded packets and then waits for feedbacks. In general,
upstream nodes and downstream nodes will obtain the medium in turn, to forward
coded packets and feedback coding vectors, respectively.

However, the existing coded OR models are designed to guarantee the forward
traffic with little attention to the backward traffic. Thus, for each received inno-
vative packet, it may be the case that, on average, less than one innovative coding
vector will be feedbacked. The above argument is verified through our theoretical
analysis and simulation evaluation, as shown in Fig. 2, where η denotes the ratio of
forward and backward traffics. Fig. 2 illustrates that in more than 70% of all cases,
no less than one innovative feedback coding vector will be overheard for each re-
ceived innovative packets, while in more than 90% of all cases, no less than one
innovative feedback coding vector will be overheard for every two received innova-
tive packets. (The details about the theoretical analysis and simulation evaluation
will be shown in Section 3.2.) It is actually an encouraging result, as imbedding
two coding vectors in a packet will be sufficient to convey feedback acknowledge-
ment information to upstream nodes in most cases.

The above observation motivates us to design a novel coded-feedback scheme
based on piggyback coding vectors, which is fundamentally different from existing
orthogonal-vector based schemes in that it exploits the relevance of the forward and
backward traffics in the coded OR models. Before formally presenting C3ACK,
we first present our theoretical analysis and simulation evaluation about the result
shown in Fig. 2.

3.2 The relevance analysis

In this section, we formally analyze the forward and backward traffic relevance in
the coded OR models, so as to derive the expected number of innovative feedback
coding vectors for each forwarded innovative packet. For each innovative packet

8

0 2 4 6 8 10 12 14 16

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Theoretical results

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 o

f
N

o
d

e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Simulation results

C
u
m

u
la

ti
v
e

 F
ra

c
ti
o
n
 o

f
N

o
d

e
s

The Ratio

Figure 2: The illustration of the relevance of forward and backward coding traffics.

to be delivered to the destination, the coded OR models [6, 11, 24] analyzed the
expected number of packets needed to be forwarded (Lj), and the corresponding
ETX (Tj) by each node j, as follows,

Lj =
∑
i>j

(Ti × (1− εij)Πk<jεik) (1)

Tj =
Lj

(1−Πk<jεjk)
(2)

Chachulski [6], Dubois-Ferriere [11], and Lu [24] have proved that, in the coded
OR models, all nodes can be prioritized based on ETX. Thus, all nodes can be
labeled from the lowest ID (the destination) to the highest ID (the source) in the
ascending value of the ETX metric. Therefore, i < j (i > j) can be used to denote
that node i is closer (farther) to the destination than node j in terms of ETX.

Intuitively, a node closer to the destination should have a higher priority to
forward an innovative packet, as it incurs less cost. According to Equation (1), Lj

denotes the expected number of packets received by node j from upstream nodes,
which are meanwhile not received by its downstream nodes. As those packets are
innovative to node j alone, Lj actually reflects the expected number of innovative
packets to be forwarded by node j.

A calculation similar to Equation (1) can be used to analyze the backward
traffic as follows

Rj =
∑
k<j

(Tk × (1− εkj)Πi>jεki) (3)

9

where Rj reflect the expected number of innovative feedback coding vectors over-
heard by node j alone.

Thus, the ratio ηj = Lj/Rj de facto reflects the relative information-flow rate
of the forward traffic against the backward traffic at node j. Intuitively, for each
node, the ratio should be approximately equal to 1, because, on average, the vol-
ume of the forward traffic should be equal to the volume of the backward traffic.
If that is the case, on average, one innovative coded packet in forward traffic can
be effectively acknowledged by one coding vector in backward traffic. Thus, no
additional effort should be taken to acknowledge packets already covered by down-
stream nodes.

However, our numeric analysis and simulation evaluation reveal that the ratio
is larger than 1 on average, which means overheard coding vectors from backward
traffic are insufficient to acknowledge forward traffic. In this case, the value of η
reflects the required number of imbedded coding vectors in a coded packet.

To verify the above analysis, we randomly generate 110 different topologies,
each of which consists of 50 static nodes randomly distributed within an area of
1000m×1000m, calculate the η value for each node in all topologies based on Eqs.
(1) ∼ (3), and plot the cumulative distribution function (CDF) of all η values as the
theoretical result shown in Fig. 2. We also simulate MORE (with the same simu-
lation environment described in Section 5) by letting the source send batches (32
packets/batch) to the destination. For each node, the numbers of packets delivered
from upstream nodes and overheard from downstream nodes are recorded, and the
corresponding η value for each node is calculated accordingly. The CDF of η is
plotted in Fig. 2 as the simulation result. Both theoretical and simulation results
reveal that imbedding two coding vectors in a coded packet will be sufficient to
convey feedback information in over 90% of all cases.

As mentioned in the previous section, the fundamental reason for this phe-
nomenon of unequal forward and backward traffics is that the coded OR paradigm [7]
was proposed to utilize neighbor nodes’ idle transmission capability opportunisti-
cally to improve transmission throughput along the forwarding traffic. It has been
proved [6, 11, 24] that each node in the coded OR will forward packets along an
optimal routing plan to the destination.

3.3 C3ACK formulation

Based on the above analysis, we can insert an additional innovative coding vector,
named backward coding vector, into the packet header so that the backward coding
vector, together with the native coding vector, which refers to the coding vector
attached in a coded packet as packet overhead in order to express the coded packet
from the native packets, form the feedback coding vectors. Once a node receives

10

sufficient innovative feedback coding vectors to cover its knowledge space, it will
stop packet transmission.

Formally, we use coding matrices1 M i
rx and M i

tx to represent coded packets
received and transmitted by node i in forward traffic, respectively, and also adopt
coding matrices M i

ox and M i
bx to denote feedback coding vectors overheard and

transmitted by node i in backward traffic, respectively, as shown in Fig. 3, where
intermediate node i, j, and k help source s forward packets. In Fig. 3, the white
arrow below M i

tx represents forward traffic transmitted by node i, the gray arrow
below M i

bx represents the backward traffic transmitted by node i, and the dotted
(dashed) arrow denotes received packets in the forward (backward) traffic.

Note that M i
tx is generated from M i

rx, while M i
bx is generated from M i

rx∪M i
ox,

because all the innovative packets a node should take responsibility to transmit is
from its received packets in the forward traffic, while innovative feedback coding
vector can be not only from what it received in forward traffic, but also from what
it overheard in backward traffic.

We also introduce an operational matrix M i
op, defined as M i

rx ∪M i
ox, to sim-

plify the description. By comparing R(M i
ox) with R(M i

op), the stopping rule of
C3ACK, which decides whether to stop transmission, can be conveniently de-
scribed as follows: 1) if R(M i

ox) = R(M i
op), node i stops transmission, 2) if

R(M i
ox) < R(M i

op), node i continues transmission. Simply comparing R(M i
ox)

with R(M i
rx) does not work, as M i

ox may contain innovative-packet information
directly transmitted from upstream nodes to downstream nodes that does not reach
node i. The correctness of the stopping rule will be discussed in Section 3.4.

Although our C3ACK is simple, it is practical and efficient. From the point
of view of practicality, simple is good. We illustrate our coded feedback scheme
through the example in Fig. 3. Although node s overheard 4 feedback coding
vectors, it still decides to continue transmission, as R(M s

ox) = 2 < R(M s
op) = 3.

As for nodes i and j, since R(M i
ox) = R(M i

op) = 2 and R(M j
ox) = R(M j

op) = 2,
both of them will stop transmission until receiving innovative packets.

3.4 False-positive and false-negative analysis

In this section, we will first prove that C3ACK is false-positive free, and then dis-
cuss the false-negative issue. Before that, we need to give the following definitions
and lemmas.

1A coding matrix is the matrix formed by a set of coding vectors. In the case of no confusion,
with somewhat notation abuse to reduce the number of notations, we also use the coding matrix to
represent the set of coding vectors that form the coding matrix. Moreover, a coding matrix can be
compressed by keeping only the innovative coding vectors to reduce storage overhead.

11

j

i

ks

(3, 1, 2)
Mrx

j

(1, 2, 1) (5, 5, 4)
Mtx

j

(6, 7, 5)

(8, 11, 7)
Mox

j

(18, 26, 16)

(1, 2, 1)
Mrx

i

(2, 4, 2)
Mtx

i

(10, 15, 9)
Mox

i

(6, 7, 5)
Mrx

k

(2, 4, 2) (8, 11, 7)
Mtx

k

(10, 15, 9)

(1, 0, 0)
Mrx

s

(0, 1, 0)
(0, 0, 1) (3, 1, 2)

Mtx
s

(1, 2, 1)

(5, 5, 4)
Mox

s

(9, 8, 7)
(2, 4, 2)

(2, 4, 2)
Mbx

i

(12, 19, 11)

(8, 11, 7)
Mbx

k

(18, 26, 16)

(16, 27, 15)

(12, 19, 11)

(5, 5, 4)
Mbx

j

(9, 8, 7)
(6, 7, 5)

(11, 12, 9)

(10, 15, 9)
(16, 27, 15)

Figure 3: The cumulative coding coefficient acknowledgement scheme in unreli-
able multicast.

Definition 3 (Set linear expression) Given two coding vector sets A and B, if
∀a ∈ A can be linearly expressed by B, we say that A can be linearly expressed
by B.

The reason that the stopping rule of C3ACK can be used to reflect the knowl-
edge space coverage is illustrated through the following lemma concerning the set
linear expression.

Lemma 3 Let A and B be two coding vector sets; if A can be linearly expressed
by B, then R(B ∪ A) = R(B), and if A cannot be linearly expressed by B, then
R(B ∪A) > R(B).

Proof: If A can be linearly expressed by B, all vectors in A can be linearly ex-
pressed by B. Hence, R(B ∪ A) (the rank of the coding matrix associated with
B ∪ A) is equal to R(B). If A cannot be linearly expressed by B, at least one
coding vector in A cannot be linearly expressed by B. Thus, R(B ∪ A) > R(B).
�
Lemma 4 Linear expression of the coding vector set is transitive, i.e., if R(B ∪
A) = R(B) and R(C ∪B) = R(C), then R(C ∪A) = R(C).

Proof: Without loss of generality, let A :{a1, a2, · · · , al}, B :{b1, b2, · · · , bm},
and C :{c1, c2, · · · , cn}. Based on the assumption, for any ai, we have ai =∑m

j=1 αijbj , where i = 1, · · · , l and αij is an coefficient, and bj =
∑n

j=1 βjkck,
where j = 1, · · · ,m and βjk is an coefficient. We can derive ai =

∑m
j=1 αij

(
∑n

j=1 βjkck) =
∑n

j=1(
∑m

j=1 αijβjk)ck. Therefore, A can be linearly expressed
by C. By Lemma 3, R(C ∪A) = R(C) holds. �

12

Lemma 5 If R(B1 ∪ A1) = R(B1) and R(B2 ∪ A2) = R(B2), then R((B1 ∪
B2) ∪ (A1 ∪A2)) = R(B1 ∪B2).

Proof: Since A1 can be linearly expressed by B1 and A2 can be linearly expressed
by B2, each element of A1 and A2 can be linearly expressed by B1 and B2, re-
spectively. Therefore, A1 ∪A2 can be linearly expressed by B1 ∪B2 according to
Definition 3. According to Lemma 3, R((B1 ∪ B2) ∪ (A1 ∪ A2)) = R(B1 ∪ B2)
satisfies. �

Lemma 6 If R(B ∪A) = R(B), then R((B ∪A) ∪ C) = R(B ∪ C).

Proof: R(B∪A) = R(B) denotes that A can be linearly expressed by B. R((B∪
C)∪A) = R(B∪C) directly follows because A can also be linearly expressed by
B ∪C. Since R((B ∪A)∪C) = R((B ∪C)∪A), R((B ∪A)∪C) = R(B ∪C)
can be easily derived. �

Lemma 7 For any node j, its overheard coding vectors are covered by its down-
stream nodes’ knowledge space, i.e. R(∪k<jM

k
rx ∪M j

ox) = R(∪k<jM
k
rx).

Proof: We prove this lemma by induction on the closeness to the destination. Be-
cause no downstream nodes exist for the destination, the inductive basis is trivial
as R(∪k<dM

k
rx∪Md

ox) = R(∪k<dM
k
rx) = 0. For the inductive steps, assume that,

for any k < j, R(∪k′<kM
k′
rx ∪Mk

ox) = R(∪k′<kM
k′
rx).

Then, consider node j. Since its overheard coding vectors are from its down-
stream nodes with possible packet loss, we have M j

ox ⊆ ∪k<jM
k
bx, which infers

R(∪k<jM
k
bx ∪M j

ox) = R(∪k<jM
k
bx) (4)

For any node k, since Mk
bx is generated from Mk

op, we obtain R(Mk
op∪Mk

bx) =

R(Mk
op) by Lemma 3. Then, applying Lemma 5 can derive

R((∪k<jM
k
op) ∪ (∪k<jM

k
bx)) = R(∪k<jM

k
op) (5)

As Mk
op = Mk

ox ∪Mk
rx, ∪k<jM

k
op can be written as (∪k<jM

k
rx)∪ (∪k<jM

k
ox),

which is equal to ∪k<j(∪k′<kM
k′
rx ∪ Mk

ox) because Mk′
rx ∪ Mk′

rx = Mk′
rx. Hence,

R(∪k<jM
k
op) = R(∪k<j(∪k′<kM

k′
rx∪Mk

ox)). The inductive hypothesis, R(∪k′<kM
k′
rx∪

Mk
ox) = R(∪k′<kM

k′
rx), can infer R(∪k<j(∪k′<kM

k′
rx∪Mk

ox)) = R(∪k<j(∪k′<kM
k′
rx))

by applying Lemma 5. Hence,

R(∪k<jM
k
op) = R(∪k<j(∪k′<kM

k′
rx)) = R(∪k<jM

j
rx) (6)

13

Also, since Mk
op = Mk

rx ∪Mk
ox, it directly follows Mk

op ∪Mk
rx = Mk

op, which
infers R(Mk

op∪Mk
rx) = R(Mk

op). It further derives R((∪k<jM
k
rx)∪(∪k<jM

k
op)) =

R(∪k<jM
k
op) by apply Lemma 5. Together with Equation (6), it can derive

R((∪k<jM
k
rx) ∪ (∪k<jM

k
op)) = R(∪k<jM

j
rx) (7)

R(∪k<jM
k
rx ∪M j

ox) = R(∪k<jM
k
rx) can be inferred by applying Lemma 4 to

Equations (4), (5), and (7). �
Now, we are ready to prove the following theorem concerning the false-positive

free property.

Theorem 3 C3ACK is false-positive free.

Proof: This theorem is proved through contradiction. Assume false-positive pos-
sibility exists in C3ACK. Then, a node j exists, s.t. R(∪k<jM

k
rx ∪ M j

rx) >

R(∪k<jM
k
rx), and R(M j

op) = R(M j
ox). According to Lemma 7, we have R(∪k<jM

k
rx∪

M j
ox) = R(∪k<jM

k
rx), which derives R(∪k<jM

k
rx∪M j

op) = R(∪k<jM
k
rx∪M j

rx)

by applying Lemma 6. In turn, it derives R(∪k<jM
k
rx ∪ M j

op) > R(∪k<jM
k
rx)

based on the inequality in the assumption. By applying Lemma 6 to the equation in
the assumption, we can obtain R(∪k<jM

k
rx∪M j

op) = R(∪k<jM
k
rx∪M j

ox), which
infers R(∪k<jM

k
rx ∪ M j

op) = R(∪k<jM
k
rx) according to Lemma 7. By com-

paring with the previously derived inequality, we can conclude R(∪k<jM
k
rx) >

R(∪k<jM
k
rx), a contradiction. Therefore, C3ACK is false-positive free. �

Before discussing the false-negative issue, we first analyze the relationship
between C3ACK and the collective-space problem. A thorough examination of
CCACK can identify the essence of the collective-space problem, where feedbacks
from downstream nodes cannot construct a collective knowledge space of all down-
stream nodes. The fundamental reason is that two orthogonal vectors from differ-
ent downstream nodes are not complementary to each other, because an orthogonal
vector generated from a node is usually just one of the plausible vectors orthogonal
to the node’s knowledge space. Due to the uncertainty, an orthogonal vector cannot
uniquely determine its corresponding knowledge space. Thus, two orthogonal vec-
tors cannot infer a collective knowledge space and, hence, are not complementary.

On the contrary, we have the following lemma concerning the complementarity
among feedbacks in C3ACK.

Lemma 8 If the knowledge spaces of two downstream nodes ij and ik of a given
node i are not inclusive to each other, i.e., Sij−Sik ̸= ∅ and Sik−Sij ̸= ∅, then the
coded feedback from one downstream node can convey information complementary
to the knowledge space of the other downstream node.

14

Proof: Without loss of generality, consider any coded feedback from node ik,
which contains two coding vectors q1ik q2ik generated from M ik

rx and M ik
bx, respec-

tively. Consider q1ik , which can be linearly expressed by the vectors in M ik
rx. We can

conclude q1ik ̸∈ Sij . Otherwise, a contradiction can be derived as follows. From the
assumption of this lemma, we can infer that at least one vector qik ∈ M ik

rx exists,
s.t. qik ̸∈ Sij . Otherwise, Sik − Sij = ∅, which contradicts the assumption. Since
q1ik can be linearly expressed by the vectors in M ik

rx, which includes qik , the only
vector in M ik

rx but not in Sij , we can easily derive qik ∈ Sij , a contradiction. There-
fore, since q1ik ̸∈ Sij denotes the coded feedback from ik containing information
complementary to Sij , the lemma is proved. �

Theorem 4 C3ACK is free from the collective-space problem.

Proof: According to Lemma 8, in C3ACK, the coded feedbacks from downstream
nodes with complementary information are also complementary to each other.
Thus, those coded feedbacks from downstream nodes can accumulate coding infor-
mation to build up a collective knowledge space of all downstream nodes. There-
fore, C3ACK is free from the collective-space problem. �

Although C3ACK is free from the collective-space problem, it still suffers from
the false-negative issue, as each coded feedback can only contain two coding vec-
tors. If the rank of downstream nodes’ collective knowledge space is 32, a node
needs to receive 16 coded feedbacks to construct the collective space. However,
the false-negative problem associated with C3ACK is not so bad as it seems to be
at the first glance, because most of the coded feedback from downstream nodes are
overheard by upstream nodes as downstream nodes forward packets to their down-
stream nodes. As shown in Section 3.2, for every two packets forwarded, a coded
feedback will be overheard with a probability over 90%.

Moreover, the false-negative problem can be further mitigated by the following
two design considerations in C3ACK. First, the backward coding vectors are gener-
ated from both received coded packets and overheard coding vectors, as compared
with the forward coded packets, which are generated from received coded packets
alone. This will potentially increase the complementarity among overheard coding
vectors, which in turn mitigates the false-negative problem. Second, downstream
nodes will explicitly send acknowledge packets with two coding vectors, named
LACK, upon receiving non-innovative packets from upstream nodes. The LACK
packet can further mitigate the false-negative problem.

It has been discussed in CCACK [19], in the coded OR models, cost of a false-
positive event is considerably higher than that of a false-negative event, because
the latter simply causes redundant packet transmission, while the former causes

15

the failure of decoding at the destination node, due to insufficient coded packets.

4 Code Pruning in Coded OR Models

In this section, we propose our code-pruning schemes for both batch-based and
stream-based coded OR models.

4.1 Code pruning in the batch-based coded OR model

For the batch-based coded OR model, we implement code pruning by imbedding
our C3ACK into existing batch-based OR protocols, such as MORE [7]. A batch-
based OR protocol usually splits a large file into a bunch of batches, each of which
consists of N native packets. It requires the source to generate coded packets
from native packets within the current batch until the source receives an end-to-
end ACK from the destination. Correspondingly, every coded packet generated at
any forwarder is, in fact, a linear combination of native packets within the current
batch. Upon receiving the end-to-end ACK, the source will proceed to the next
batch. Forwarders will stop transmitting coded packets from the current batch
upon receiving the end-to-end ACK or coded packets from the next batch. Upon
receiving innovative packets, forwarders re-encode received packets and forward
them. Forwarder sets are selected based on ETX metric.

During packet transmission, the source and forwarders adopt C3ACK to deter-
mine whether their knowledge spaces have been covered or not. C3ACK maintains
three coding matrices Mrx, Mox and Mop for each flow, as shown in Fig. 3. Note
that C3ACK does not have to maintain Mtx and Mbx, which are listed just for il-
lustration. C3ACK also maintains two states: STATE TX (transmission state) and
STATE IDLE (idle state). Upon receiving an innovative packet, a forwarder checks
its state. If its state is STATE IDLE, it will change state to STATE TX, and save
the native coding vector into both Mrx and Mop. When overhearing an innovative
backward coding vector, it saves the vector into both Mox and Mop, and compares
R(Mox) and R(Mop). If R(Mox) < R(Mop), the state sets to STATE TX. If
R(Mox) = R(Mop), the state sets to STATE IDLE.

When the MAC layer protocol allows a node to transmit, it generates a coded
packet from received coded packets and forwards it if the state is STATE TX and
the credit counter [7] (the transmission condition in MORE) is positive. Once the
destination can decode the received coded packets within the current batch, it sends
an ACK packet, feed-backed through a predetermined shortest path, to the source
to inform of the successful delivery of the batch.

Algorithm 1 provides a packet processing procedure at an intermediate node.

16

Algorithm 1 Packet processing procedure at forward node i

1: //sending a coded packet P at intermediate node i
2: if tx state = STATE TX then
3: construct a coded packet P by random linearly combining of all received

coded packets;
4: construct an ACK vector by random linearly combining of all vectors in

M i
op and embed it in packet P ;

5: end if

6: //upon receiving an ACK at intermediate node i
7: stop transmitting packets from batch k;
8: forward it to upstream nodes on the shortest path;
9:

10: //upon receiving an LACK at intermediate node i
11: if LACK comes from downstream nodes then
12: store the LACK vectors of the LACK in M i

ox and M i
op;

13: if R(M i
ox) = R(M i

op) then
14: set tx state = STATE IDLE;
15: end if
16: end if

17: //upon receiving a data packet P at intermediate node i
18: if P comes from upstream nodes then
19: if P is innovative then
20: store the coding vector of the packet in M i

rx and M i
op;

21: set tx state = STATE TX;
22: else
23: discard the packet and send a LACK for batch k;
24: end if
25: else
26: store both the coding vector and the ACK vector of the packet in M i

ox and
M i

op;
27: if R(M i

ox) = R(M i
op) then

28: set tx state = STATE IDLE;
29: end if
30: end if

17

4.2 Code pruning in the stream-based coded OR model

Compared to the batch-based OR, which codes packets separately within batches,
the stream-based OR allows coded packets to be transmitted over WMNs as coding
streams. More specifically, stream-based OR protocols [8,23,27] need to maintain
an additional native-packet queue and a coding window at the source. The coding
window stores the coding basis, i.e., the native packets used to generate coded
packets, and the queue contains a stream of native packets waiting to be put into
the coding window. Upon receiving a feedback from the destination containing the
acknowledgements of the decoded or seen native packets [23], the source will slide
the coding window by removing the acknowledged native packets and filling the
coding window with the native packets from the queue.

However, existing stream-based coded OR implementations only support end-
to-end coding stream, which does not fully utilize the benefit of stream-based cod-
ing. In this work, we design a hop-by-hop stream-based coded OR protocol, named
StreamOR, which extends our batch-based OR protocol, C3ACK, by allowing in-
termediate nodes to remove individual coded packets that have been covered by
downstream nodes.

Compared to C3ACK, StreamOR requires the source and forwarders to main-
tain an additional coded-packet queue and a coding window. During packet trans-
mission, the source and forwarders need to determine whether each individual
packet is covered by downstream nodes. If yes, covered packets will be removed
from the coding window and new coded packets (if any) will be fetched from the
queue to fill the coding window. Note that the coded-packet queue and coding win-
dow collectively replace the role of the coding matrix Mrx to store the receiving
coding vectors. The size of the coding window has a maximum limit. If the incom-
ing coding stream overwhelms the coding window, overflowed coded packets will
be saved in the coded packet queue in the manner of FIFO.

For the backward traffic, each overheard innovative coding vector, will be saved
to Mox. The novelty of each individual coded packet in the coding window and the
coded-packet queue will be evaluated as follows. For any packet q in the coding
window or the coded-packet queue, if R(Mox ∪ {q}) = R(Mox), the packet will
be considered obsolete and will be removed from the coding window, and a new
coded packets will be put into the coding window from the queue.

Note that orthogonal vectors can also be used as feedback for the hop-by-hop
stream-based OR model. However, the orthogonal vector suffers from both false-
positive and false-negative problems. First, the false-positive problem can be prop-
agated back to upstream nodes, which may finally cause the source to believe that
certain packets (not received by the destination) have been delivered to the destina-
tion. This will incur serious end-to-end transmission delay, canceling the benefit of

18

the stream-based coded OR. Second, the false-negative problem can also be propa-
gated back to upstream nodes, which in turn incurs significant unnecessary packet
transmissions.

5 Simulation Evaluations

As the size of a testbed is usually limited, which cannot evaluate large-scale WMNs,
and the ideal coded feedback scheme (the straightforward approach mentioned in
Section 3.1) cannot be implemented in the testbed, we first evaluate our coding
pruning schemes in Nsclick [25] with the Madwifi extension [21]. The nsclick
simulator embeds the Click modular router architecture [18] into the ns2 simula-
tor [1], such that the routing protocols are developed with Click, while the physical
(wireless) medium is simulated using ns2. The advantage of using nsclick is that
we can easily transplant our code developed for the simulator to the testbed.

5.1 Simulation environment

The physical wireless medium is simulated through the lognormal shadowing prop-
agation model adopted in ns2 [1]. Let dij and pij denote the distance and the
delivery probability for the link from node i to node j, respectively. pij can be
represented approximately as a function of dij , as follows:

pij =

1− ((

dij
R)2β)× 1/2, if dij ≤ R

((
2R−dij

R)2β)× 1/2, if R < dij ≤ 2R
0, otherwise

Here, β is the power attenuation factor ranging from 2 to 6, which is set as β = 2
in our simulation, and R is defined as the distance satisfying pij(R) = 0.5.

If not specified otherwise, the simulation topology is a network of 50 static
nodes randomly deployed in a 1000m × 1000m area. Our simulation environment
in ns2 is based on the 802.11b standard. The transmission range and the carrier-
sensing range are the default values 250m and 550m, respectively. We set R =
125m, as pij = 0 when dij = 2R. All routing protocols operate under the fixed
bit-rate 11Mb/s. We set the payload size to 1.4KB, while the size of the packet
header depends on the routing protocols. The batch size is set to 32 packets for
MORE, CCACK, OPTACK and C3ACK. Also, we have the RTS/CTS handshake
disabled, as most operational networks do. In each simulation, the source transmits
17MB of file to the destination as fast as possible. In our simulation, two nodes are
regarded as neighbors to each other if the link quality between them is sufficient to
achieve a transmission success probability higher than 0.1.

19

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
u

n
m

u
la

ti
v
e
F

ra
c
ti
o

n
 o

f
fl
o
w

s

Throughtput(KBps)

 CCACK

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 C
3
ACK

C
u
n

m
u
la

ti
v
e
F

ra
c
ti
o
n

 o
f
fl
o
w

s

Throughtput(KBps)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 MORE

C
u

n
m

u
la

ti
v
e

F
ra

c
ti
o

n
 o

f
fl
o

w
s

Throughtput(KBps)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 OPTACK

C
u

n
m

u
la

ti
v
e

F
ra

c
ti
o

n
 o

f
fl
o

w
s

Throughtput(KBps)

Figure 4: CDF of throughputs achieved with MORE, CCACK, OPTACK, and
C3ACK.

5.2 The analysis of simulation results

The simulations are executed on 110 different randomly generated topologies, and
each protocol runs 12 times on every topology. In each scenario, every source sends
a 17MB file, consisting of 1400-byte packets. Fig. 4 plots the CDF of the through-
puts of the 110 topologies achieved with MORE, CCACK, C3ACK, and OPTACK,
which allows any node to directly access the knowledge space of its downstream
nodes [19]. Although the OPTACK is impractical, it can serve as a benchmark.
To maintain fairness, data packets in OPTACK are imbedded with a 32-bit ACK
vector, the same size of CCACK and C3ACK. The direct access of downstream
nodes’ knowledge space is implemented through shared memory in the simula-
tor. As OPTACK does not have the false-positive and false-negative problems, it
should have the best performance. The result in Fig. 4 shows that C3ACK outper-
forms both MORE and CCACK. More specifically, there are about 15% topolo-
gies with throughputs greater than 100KBps, and about 20% in CCACK, while
there are about 40% in C3ACK. The average throughputs with MORE, CCACK
and C3ACK are 63.77KBps, 72.51KBps and 103.40KBps, respectively. More-
over, the OPTACK’s expected throughput is 112.49 kb/s, only 9.37% higher than
C3ACK. This result illustrates that C3ACK can effectively handle the false-positive
and false-negative problems with little performance loss.

Fig. 5 gives the CDF of the relative throughput improvement ratio for C3ACK

20

0 10 20 30 40 50 60 70 80 90 100 110

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

 C
3
ACK vs CCACK()

R
e
la

ti
v
e
 T

h
ro

u
g
h

p
u
t
Im

p
ro

v
e
m

e
n

t

Scenario ID

0 10 20 30 40 50 60 70 80 90 100 110

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

 C
3
ACK vs MORE (!)

R
e
la

ti
v
e

 T
h
ro

u
g

h
p
u
t
Im

p
ro

v
e

m
e
n
t

Scenario ID

Figure 5: Relative throughput improvement of C3ACK over CCACK, and C3ACK
over MORE on each topology.

over CCACK, and C3ACK over MORE on 110 different topologies. To eval-

uate the throughput gain, we defined αi =
T i
C3ACK

−T i
CCACK

T i
CCACK

× 100% , βi =

T i
C3ACK

−T i
MORE

T i
MORE

× 100% , where T i
MORE , T i

CCACK and T i
C3ACK are the through-

puts of different protocols on topology i, respectively. Fig. 5 shows the value of
α and β on 110 different topologies, and Fig. 6 plots the responding CDF of α
and β. We observe that C3ACK achieves a higher throughput than both CCACK
and MORE in 107 topologies out of 110. The average throughput gain of C3ACK
over CCACK and MORE are 72.2% and 98.7%, respectively. For some chal-
lenged topologies with the mutil-hops and mutil-path from the source to the desti-
nation, the throughput achieved with C3ACK is 2-3x higher than CCACK. Further-
more, for some challenged topologies with mutil-hops extremely far away from the
source to the destination, the throughput of C3ACK is 2-4x higher than MORE.

We observe that most of the throughput improvement of C3ACK over CCACK
distribution is at about 70% on 110 topologies. Only in three topologies, the
throughput improvements are negative. The underlying reason is that only one
single path exists in these topologies, and the single path has a very limited hop
count. CCACK will not have the false-negative problem in a single-path topology,
where CCACK will outperform C3ACK, because one orthogonal vector can con-
vey more coding information than two ordinary coding vectors. Thus, in that case,

21

-50% 0% 50% 100% 150% 200% 250% 300% 350% 400% 450% 500%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 C
3
ACK vs CCACK()

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 o

f
F

lo
w

s

Relative Throughput Improvement

-50% 0% 50% 100% 150% 200% 250% 300% 350% 400% 450% 500%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 C
3
ACK vs MORE (!)

C
u

m
u
la

ti
v
e
 F

ra
c
ti
o
n

 o
f
F

lo
w

s

Relative Throughput Improvement

Figure 6: CDF of relative throughput improvement of C3ACK over CCACK, and
C3ACK over MORE.

the throughput of C3ACK is slightly worse than that of CCACK. In the worst case,
α = −11.2%.

Similarly, in certain scenarios, the values of β are relatively low, 3 out of which
are even negative. In the worst case, β = −4.94%. The underlying reason is that
only short paths exist in those scenarios, which has a very limited hop count. In
such a short-path topology, an ACK packet in MORE will be delivered to the source
quickly. In that case, C3ACK has no advantage to utilize the delay-bandwidth
product as the ACK feedbacked towards the source. Moreover, the packet overhead
of C3ACK is slightly larger than that of MORE. Thus, in those cases, MORE will
perform slightly better than C3ACK.

To identify where the gain for C3ACK comes from, we count the number of
packet transmissions associated with MORE, CCACK, C3ACK, respectively, for
every node on all the 110 randomly generated topologies. We also calculate the
predicted number of transmissions obtained from the offline ETX-based credit cal-
culation [7] as a baseline because it reflects the ideal case when the online channel
can be accurately reflected by the offline measurement, under which MORE can
minimize its packets transmissions.

Fig. 7 plots the total number of packet transmissions associated with MORE,
CCACK, and C3ACK, respectively, on all the 110 randomly generated topologies.
Note that the total number of transmissions actually reflects the overall overheads

22

0 10 20 30 40 50 60 70 80 90 100 110

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

N
u

m
b
e

r
o

f
to

ta
l
D

a
ta

 T
ra

n
s
m

is
s
io

n
s

Scenario ID

 CCACK

0 10 20 30 40 50 60 70 80 90 100 110

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

 C
3
ACK

N
u

m
b
e
r

o
f
to

ta
l
D

a
ta

 T
ra

n
s
m

is
s
io

n
s

Scenario ID

0 10 20 30 40 50 60 70 80 90 100 110

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

 Predicted
N

u
m

b
e
r

o
f
to

ta
l
D

a
ta

 T
ra

n
s
m

is
s
io

n
s

(X
1

0
0

0
)

Scenario ID

0 10 20 30 40 50 60 70 80 90 100 110

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

 MORE

Figure 7: Total number of data transmissions per scenario.

when data can be successfully delivered. The smaller the total number of transmis-
sions, the better the performance. From Fig. 7, we can observe that nodes running
MORE and CCACK intend to transmit more packets than the predicted number in
most topologies. The actual number is often twice more than the predicted num-
ber, and even up to 7-8x and 6-7x the predicted number concerning MORE and
CCACK, respectively, in some scenarios.

The much higher volume of packet transmissions associated with CCACK ver-
ifies our analysis concerning the false-negative issue of CCACK (refer to Sec-
tion 2.2). As CCACK has a non-negligible false-negative probability, it will cause a
large number of unnecessary packet transmissions, which in turn greatly increases
the total number of packet transmissions associated with CCACK. In addition,
nodes running CCACK cannot stop transmitting in time when the destination node
has already received enough packets, due to intense channel competition, which
delays the arrival of ACK and wastes partial wireless bandwidth. Moreover, the
source running CCACK cannot stop transmitting packets in a timely manner. With
long paths, this may result in a large number of unnecessary transmissions, as the
ACK travels towards the source.

As for MORE, compared with the predicted number, the rather higher volume
of packet transmissions is mainly due to the prediction inaccuracy of the offline
ETX measurement, which can hardly reflect the randomness of the online chan-
nel status. Even in the case of the absence of background traffic, based on the

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

20

40

60

80

100

120

140

160

180

N
u

m
b

e
r

o
f
D

a
ta

 T
ra

n
s
m

is
s
io

n
s

(X
1

0
0

0
)

Node ID

 Predicted

 MORE

 CCACK

 C
3
ACK

Figure 8: Total number of packet transmissions per node for one scenario.

offline ETX measurements, MORE usually incurs twice the predicted number, and
even up to 7-8x the predicted number in some scenarios. Moreover, the source in
MORE keeps transmitting packets until it receives an ACK from the destination.
In the topologies of long paths, this may result in a large number of unnecessary
transmissions during the period of the ACK traveling from the destination to the
source.

As a comparison, the number of data transmissions associated with C3ACK is
much lower than that of MORE and CCACK in all scenarios. In most scenarios, it
is close to the predicted number, and even lower in certain scenarios. Bandwidth
is typically the scarcest resource in a wireless network. Thus, the natural approach
to increasing wireless throughput is to decrease the number of transmissions nec-
essary to deliver a packet from the source to the destination [9, 10, 13]. Compared
with MORE and CCACK, C3ACK can greatly reduce the number of redundant
packet transmissions and increase the effective throughput accordingly. The fun-
damental reason is that the double coding-coefficient feedback scheme adopted by
C3ACK improves the accuracy of knowledge space coverage, which can greatly
reduce the redundant transmissions. Therefore, C3ACK outperforms both MORE
and CCACK in terms of throughput.

To further illustrate the advantage of C3ACK, we compare it with CCACK
and MORE in a finer granularity, as shown in Fig.8, which compares the num-
ber of packet transmissions of individual nodes associated with MORE, CCACK,

24

0 10 20 30 40 50 60 70 80 90 100 110

0

20

40

60

80

100

120

140

160

180

200

T
h

ro
u
g
h
p

u
t(

K
B

p
s
)

Scenario ID

 SlideOR

0 10 20 30 40 50 60 70 80 90 100 110

0

20

40

60

80

100

120

140

160

180

200

 StreamOR

T
h

ro
u
g
h
p

u
t(

K
B

p
s
)

Scenario ID

Figure 9: StreamOR Throughput.

and C3ACK, respectively, in a certain scenario. Nodes are sorted with respect to
their ETX distance to the destination, i.e., node 1 is the source and node 19 is the
forwarding node closest to the destination. Overall, C3ACK still produces signifi-
cantly fewer transmissions than those of MORE and CCACK, respectively.

To evaluate our stream-based coded OR protocol, StreamOR, we compare it
to the most cited stream-based OR protocol, SlideOR [23]. Fig. 9 and Fig. 10
plot the throughputs, and the throughput CDFs of the 110 topologies achieve with
StreamOR and SlideOR, respectively. The simulation results illustrate that StreamOR
outperforms SlideOR, as the expected throughputs of StreamOR and SlideOR are
66.81kb/s and 51.43kb/s, respectively, with average throughput improvement 32.64%.

5.3 C3ACK’ overhead

Finally, we would like to estimate C3ACK’s overhead compared to CCACK. Sim-
ilar to [19], we discuss three types of overhead: coding calculation, buffer require-
ment, and packet header overhead.

(a) Coding Cost of Calculation: Apparently, CCACK’s coding calculation is
much more complicated than C3ACK’s, because the construction of orthogonal
vector in CCACK is far more complicated than the construction of coding vector
in C3ACK. To verify it, we measured the calculation cost for various operations
needed during the processing of one packet delivered from source to destination
on 110 different topologies. Table 1 provides the average value and the standard

25

0 20 40 60 80 100 120 140 160 180 200

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
u

n
m

u
la

ti
v
e

F
ra

c
ti
o

n
 o

f
fl
o

w
s

Throughtput(KBps)

 SlideOR

0 20 40 60 80 100 120 140 160 180 200

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 StreamOR
C

u
n

m
u

la
ti
v
e

F
ra

c
ti
o

n
 o

f
fl
o

w
s

Throughtput(KBps)

Figure 10: StreamOR Throughput CDF.

deviation of calculation cost for each operation. The costs are estimated in terms
of GF(28) multiplications, which are the most expensive operations involved in
coding/decoding [7].

From Table 1, we can observe that the most significant difference between
CCACK and C3ACK is the different costs to construct an orthogonal vector and
a coding vector. The construction of an orthogonal vector in CCACK requires
11,464 multiplications on average, while construction of a coding coefficient vec-
tor in C3ACK requires only 598 multiplications. Thus, the overhead on packet
transmission of C3ACK is significantly less than that of CCACK.

(b) Buffer size Requirement: Compared to CCACK, nodes in C3ACK need to
maintain two additional buffers for coding-coefficients. One buffer is named M i

ox,
which stores overheard coding coefficients from downstream nodes. The other
buffer is M i

op, which is an operational buffer used to store coding coefficients from
both forward and backward traffic (i.e. M i

rx ∪ M i
ox). In our implementation, the

total size of M i
ox and M i

op is 2× 32× 32 = 2KB.
(c) Header Overhead: Both CCACK and C3ACK add a K-byte ACK vector

in packet header, where N (N = 32 in our experiments) is the batch size. Thus,
C3ACK’s header is the same as CCACK’s in our implementation.

26

Table 1: The coding overhead of C3ACK and CCACK in
terms of GF(28) multiplication. Operations in packet trans-
mission and reception are marked with ∗ and > respectively.

Operation Avg. Std. Dev
(CCACK/C3ACK) (CCACK/C3ACK)

Coded pkt construction on src* 45824/45824 0/0
Coded pkt construction on FNs* 29119/26752 16924/15146
Orthogonal vector construction* 11464/- - 3381/- -
ACK vector construction* - -/598 - -/338
Independence check> 401/407 286/273
H tests> 435/- - 267/- -
Rank of H pkts in M i

rx ∪M i
tx

> 314/- - 269/- -
Rank of M i

ox
> - -/345 - -/257

Rank of M i
op

> - -/362 - -/264

6 IMPLEMENTATION AND TESTBED EVALUATIONS

Since the NS2 network simulator cannot reflect the computational complexity, in
order to verify the performance of C3ACK in a real wireless network, we build
up a testbed of wireless mesh networks, named CSU-Mesh, which is described as
follows.

6.1 Testbed description

Our CSU-Mesh consists of 10 wireless mesh routers deployed on the second floor
of the Computer Building at Central South University, as shown in Fig. 11. Each
router in CSU-Mesh is a DELL PC equipped with a wireless network card (Atheros
5212) attached to an omni-directional antenna and operating in 802.11b ad hoc
mode. Routers run Ubuntu 9.04 (Linux kernel version 2.6.28) and the Click toolkit [18].
Wireless cards are enabled by the open-source Madwifi driver. CSU-Mesh exe-
cutes OR protocols as user daemon programs. All coded OR implementations in
CSU-Mesh are based on MORE’s implementation [2], which implements MORE
at layer-2.5, called OR layer (ORL) in this work, as a shim between the IP and the
MAC layer.

6.2 Implementation details

We implement three batch-based coded OR protocols, MORE, CCACK, which is a
typical orthogonal-vector based coded OR, and C3ACK, which imbeds our coded
feedback scheme into MORE. All three OR protocols implemented in CSU-Mesh
handle only synthetic traffic, i.e., data packets are generated within Click, similarly

27

Figure 11: CSU-Mesh testbed deployment.

MAC Header MORE/CCACK/C
3
ACK Header Data MAC TailIP Header

Figure 12: MORE, CCACK and C3ACK header.

to MORE’s implementation [7]. The ORL header of MORE , CCACK or C3ACK
is added between the IP header and the MAC header, as shown in Fig. 12. The
implementation of the packet format, the credit counter, the pre-code packet, and
the end-to-end ACK are based on MORE’s implementation. The implementation
of the pre-code packet for C3ACK is slightly different, as C3ACK needs to handle
not only the innovative coded packets in the forward coding traffic, but also the
innovative backward coding vectors in the backward coding traffic. To keep the
backward coding vectors up-to-date, the pre-code backward coding vectors need
to be updated by multiplying the newly received and overheard coding vectors
from the forward and backward coding traffics, respectively.

In MORE’s implementation, ACK reliability is achieved through the shortest
ETX path and the adoption of 802.11 unicast mode, which provides a reliability
mechanism through acknowledgments and retransmissions. Unfortunately, there is
an upper limit to the number of times a packet can be retransmitted at the MAC
layer. For the Atheros wireless cards used in CSU-Mesh, the retransmission upper-
bound is 11, which may not always be sufficient to deliver the packet to the next
hop in our experiments, especially under heavy traffic. Since Atheros wireless
cards do not allow changing this upper-bound through iwconfig, we implemented
an additional ACK-retransmission scheme at the ORL. Since we have no control
over a packet once it leaves the ORL, we have to guarantee that an ACK packet
will never be dropped if an Atheros wireless card’s queue is full of data packets.

28

0 2 4 6 8 10 12 14 16 18 20 22 24

0

10

20

30

40

50

60

70

80

90

100

110

120

T
h
ro

u
g
h

p
u
t(

K
B

/s
)

Scensrio ID

 C
3
ACK

0 2 4 6 8 10 12 14 16 18 20 22 24

0

10

20

30

40

50

60

70

80

90

100

110

120

 CCACK

T
h
ro

u
g
h

p
u
t(

K
B

/s
)

Scensrio ID

0 2 4 6 8 10 12 14 16 18 20 22 24

0

10

20

30

40

50

60

70

80

90

100

110

120

 MORE

T
h
ro

u
g
h

p
u
t(

K
B

/s
)

Scensrio ID

Figure 13: Throughput gain of C3ACK over MORE and CCACK in CSU-Mesh.

6.3 Experimental setup

In all the experiments, the batch size is set to 32 packets, the size of the Galois field
used to generate coding coefficients is set to 28, the bit rate is set to 2 Mb/s, and the
transmission power is set to 18 dBm. RTS/CTS is disabled for unicast frames, as
most operational networks are. With these settings, the length of the shortest ETX
paths between different nodes is 1-4 hops in length, and the loss rates of the links
vary from 0% to 86.9%, with an average value of 28.5%. We experimented with 24
single-flow scenarios (i.e., randomly selected source-destination pairs). For each
scenario, the ETX module is executed first to collect the pairwise loss rates and
calculate the corresponding ETX metrics accordingly. Then the three coded OR
protocols, MORE, CCACK and C3ACK, are executed in sequence. The source
sends a 10-MB file consisting of 1500-B packets to the destination, using these
three protocols. For each topology, the experiments repeat five times.

6.4 Experimental results

The experiments mainly evaluate the throughput gain of C3ACK over MORE and
CCACK. Fig. 13 plots the expected throughputs of MORE, CCACK and C3ACK in
each topology. We can observe that C3ACK outperforms both MORE and CCACK
in most scenarios. Specificially, the average throughputs of MORE, CCACK and
C3ACK of all 24 topologies are 55.529KBps, 61.775KBps and 71.233KBp, re-

29

0 10 20 30 40 50 60 70 80 90 100 110 120

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
u

n
m

u
la

ti
v
e

F
ra

c
ti
o

n
 o

f
fl
o

w
s

Throughtput(KBps)

 C3ACK

0 10 20 30 40 50 60 70 80 90 100 110 120

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 CCACK

C
u

n
m

u
la

ti
v
e

F
ra

c
ti
o

n
 o

f
fl
o

w
s

Throughtput(KBps)

0 10 20 30 40 50 60 70 80 90 100 110 120

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 MORE
C

u
n

m
u

la
ti
v
e

F
ra

c
ti
o

n
 o

f
fl
o

w
s

Throughtput(KBps)

Figure 14: Throughput gain CDF of C3ACK over MORE and CCACK in CSU-
Mesh.

spectively. Fig. 14 plots the CDF of the throughput, which also shows that C3ACK
outperforms both CCACK and MORE. For example, with MORE, CCACK, and
C3ACK, about 30%, 50%, and 75% of topologies have throughput greater than
60KBps, respectively.

Fig. 15 plots the relative throughput improvement of C3ACK over MORE and
CCACK in all 24 topologies. Most throughput improvements in 24 topologies of
C3ACK over CCACK are at about 15%. However, in three topologies, the through-
put improvements are negative. The reason is that these three topologies are all of
the single path scenario, with a few hops from the source to the destination. The
false-negative problem does not exist in the above simple scenario, and the false-
positive problem is not significant, with a limited number of hops. Moreover, as
an orthogonal vector contains more information than an ordinary coding vector,
CCACK will outperform C3ACK in the single path scenarios.

The relative throughput improvements of C3ACK over MORE in most topolo-
gies are about 30%. Similarly, 3 out of 24 topologies show negative improvement,
as the three topologies all have single paths with a few hops, which means fast
end-to-end ACK for MORE. This, in turn, greatly reduces the redundant-packet
transmissions. As for C3ACK, its overhead in the packet header is higher than that
of MORE, because it embeds an additional coding vector in each coded packet.
Therefore, the performance of MORE is slightly better in these simple topologies.

30

0 2 4 6 8 10 12 14 16 18 20 22 24

-20%

0%

20%

40%

60%

80%

100%

120%

140%

R
e
la

ti
v
e

 T
h
ro

u
g

h
p
u
t
Im

p
ro

v
e

m
e
n
t

Scensrio ID

 C
3
ACK vs CCACK

0 2 4 6 8 10 12 14 16 18 20 22 24

-20%

0%

20%

40%

60%

80%

100%

120%

140%

 C
3
ACK vs MORE

R
e
la

ti
v
e

 T
h
ro

u
g

h
p
u
t
Im

p
ro

v
e

m
e
n
t

Scensrio ID

Figure 15: Relative throughput gain of C3ACK over MORE and CCACK in CSU-
Mesh.

-20% 0% 20% 40% 60% 80% 100% 120% 140%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
u

m
u
la

ti
v
e
 F

ra
c
ti
o
n

 o
f
F

lo
w

s

Relative Throughput Improvement(%)

 C
3
ACK vs CCACK

-20% 0% 20% 40% 60% 80% 100% 120% 140%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 C
3
ACK vs MORE

C
u

m
u
la

ti
v
e
 F

ra
c
ti
o
n

 o
f
F

lo
w

s

Relative Throughput Improvement(%)

Figure 16: Relative throughput gain CDF of C3ACK over MORE and CCACK in
CSU-Mesh.

31

Fig. 16 plots the CDF of the relative throughput. Out of all 24 topologies, C3ACK
outperforms CCACK in 21 topologies, and also outperforms MORE in 21 topolo-
gies. The average gain of C3ACK over CCACK and MORE are 16% and 33%,
respectively.

7 Related Works

MORE [7] is the first coded OR protocol, which adopts the transmission credit
to control the relative transmission frequencies, and thus, reduce the redundant
packet transmission. As the transmission credit is calculated according to the ETX
metic, which expresses the expected behavior, it cannot efficiently reduce redun-
dant packet transmission due to the randomness of wireless channel. Numerous
works [12, 14, 22, 23] have been proposed to deal with the redundant-packet trans-
mission problem in order to enhance the throughput. CodeOR [22] proposed to
transmit multiple batches in a pipeline fashion, so as to reduce the end-to-end ACK
delay. However, CodeOR also faces the same fundamental difficulty as MORE,
since it still adopts the batch-based NC.

SlideOR [23] extends CodeOR to adopt packet as a pipeline unit instead of
batch, through combining online NC, called stream-based coding in this work, with
TCP Vegas [5]. However, SlideOR only supports end-to-end stream-based cod-
ing. SlideOR has been further extended [8, 27]. Chen et al. [8] improved SlideOR
by restricting the number of injected innovative packets at the source node. Xia
and Chen [27] extended SlideOR by adopting a variable length network coding
scheme. However, both of the mentioned extensions of SlideOR still adopt end-
to-end stream-based coding. To the best of our knowledge, none of existing coded
OR protocols have implemented hop-by-hop stream-based coding.

Inspired by the observation that the error probability of symbols is much lower
than that of packets on a wireless link, MIXIT [15] extends MORE by operat-
ing NC on symbols rather than on packets. With such a simple modification,
MIXIT can utilize correct symbols in a corrupted packet, and therefore attains
higher throughput than MORE. The improvement achieved by the symbol-level
coding is complementary to the enhancement made through our approach. We will
incorporate the symbol-level coding in our future work.

The transmission-credit based redundancy reduction method heavily depends
on the accuracy and freshness of the loss rate measurements, which are obtained
through periodic probing, and are propagated from all nodes to the source. Appar-
ently, the higher the probing frequency, the higher the accuracy, which, however,
also imposes higher overhead. To reduce this overhead, MORE collects the loss
rates and calculates the credits only in the beginning of each experiment. How-

32

ever, studies [3,28] have shown that, although link metrics remain relatively stable
for long intervals in a quiet network, they are very sensitive to background traffic.
Hence, the transmission-credit based method cannot reflect the online channel and
network status.

To reflect the online network status, numerous works propose hop-by-hop feed-
back schemes [16,19,20,26]. Among them, SOR [20] associates each packet with
a packet sequence number (PSN), which combines ACKMap to achieve hop-by-
hop feedback. However, coded packet is randomly mixed with many packets, so
that the linear relationship of coded packets is hard to infer through PSN. More-
over, the false-negative problem exists in SOR, which results in unnecessary packet
transmissions. Orthogonal vector [16, 19, 26] has been utilized as a compressed
representation of the knowledge space. However, because an orthogonal vector
is a lossy compression, it incurs the false-positive problem, which occurs when a
node receives a feedback vector orthogonal to its knowledge space, denoting the
coverage of its knowledge space; however, the orthogonality is actually a coin-
cidence. Although the false-positive problem can be mitigated by reducing the
probability of coincidental orthogonality [19], it is at the expense of exacerbating
the collective-space problem.

8 Conclusion and Future Works

This work first identifies the relevance between forward and backward coding
traffics, through both theoretical analysis and simulation evaluation. Based on
these oblivious characteristics, a simple but efficient code-pruning scheme, called
C3ACK, is proposed to reduce redundant-coded-packet transmissions. The effec-
tiveness of C3ACK is illustrated through both theoretical proof and experiment
evaluation. Theoretically, C3ACK is proved to be false-positive free and free from
the collective-space problem, which do not hold for the existing orthogonal-vector-
based coded feedback schemes. Both testbed and simulation experiments have
been conducted to verify that C3ACK significantly outperforms existing code-
pruning schemes in the batch-based coded OR model. C3ACK is further extended
to the stream-based coded OR model, and the designed stream-based OR, called
StreamOS, is the first hop-by-hop stream-based OR protocol, which is superior to
the existing end-to-end stream-based OR protocols through simulation study.

This work focuses on intra-flow NC in unicast scenarios. In the future, we
would like to extend our work to include multicast, broadcast, inter-flow network
coding, and XOR coding. We also plan to integrate link and path correlation to
further reduce redundant-coded-packet transmissions.

33

Acknowledgment

This work was partially supported by Project No 61232001, No 61173169, and No
60903222 supported by NSFC.

References

[1] Network simulator -ns-2. http://www.isi.edu/nsnam/ns/.

[2] More source code. http://people.csail. mit.edu/szym/more, 2009.

[3] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture and evaluation
of an unplanned 802.11b mesh network. In Proc. of ACM MOBICOM, 2005.

[4] S. Biswas and R. Morris. ExOR: Opportunistic multi-hop routing for wireless
networks. In Proceedings of ACM SIGCOMM’05, pages 133–144, 2005.

[5] L.S. Brakmo and L.L. Peterson. TCP vegas: end to end congestion avoidance
on a global internet. IEEE Journal on Selected Areas in Communications,
13(8):1465–1480, 1995.

[6] S. Chachulski. Trading structure for randomness in wireless opportunistic
routing. Master’s thesis, MIT, 2007.

[7] S. Chachulski, M. Jennings, Sachin K., and D. Katabi. Trading structure
for randomness in wireless opportunistic routing. In Proceedings of ACM
SIGCOMM’07, pages 169 – 180, 2007.

[8] C. Chen, C. Dong, F. Wu, H. Wang, L. Peng, and J. Nie. Improving un-
segmented network coding for opportunistic routing in wireless mesh net-
work. In Proc. of IEEE Wireless Communications and Networking Confer-
ence (WCNC), pages 1847 –1852, 2012.

[9] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput
path metric for multi-hop wireless routing. In Proceedings of ACM MOBI-
COM’03, 2003.

[10] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio multi-hop wireless
mesh networks. In Proc. of ACM MOBICOM, 2004.

[11] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli. Valuable detours: least-
cost anypath routing. IEEE/ACM Transactions on Networking, 19(2):333–
346, 2011.

34

[12] Euhanna Ghadimi, Olaf Landsiedel, Pablo Soldati, Simon Duquennoy, and
Mikael Johansson. Opportunistic routing in low duty-cycled wireless sensor
networks. ACM Transactions on Sensor Networks, 10(4), 2014.

[13] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Performance
anomaly of 802.11b. In Proc. of IEEE INFOCOM, 2003.

[14] W. Hu, J. Xie, and Z. Zhang. Practical opportunistic routing in high-speed
multi-rate wireless mesh networks. In Proc.of 13th ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHoc’13), 2013.

[15] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbol-level network
coding for wireless mesh networks. In Proc. of ACM SIGCOMM, 2008.

[16] A. Khreishah, I. M. Khalil, and J. Wu. Distributed network coding based
opportunistic routing for multicast. In Proc.of 13th ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHoc’12), 2012.

[17] A. Khreishah, I. M. Khalil, and J. Wu. Universal opportunistic routing scheme
using network coding. In Proc. of the IEEE Communications Society Confer-
ence on Sensor, Mesh and Ad Hoc Communications and Networks (SECON),
2012.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular router. ACM Transactions on Computer Systems, 18(3):263–297,
2000.

[19] D. Koutsonikolas, C.-C. Wang, and Y. C. Hu. Efficient network coding
based opportunistic routing through cumulative coded acknowledgments.
IEEE/ACM Transactions on Networking, 19(5):1368 – 1381, 2011.

[20] Patrick P. C. Lee, V. Misra, and D. Rubenstein. On the robustness of wire-
less opportunistic routing toward inaccurate link-level measurements. In the
Second International Conference on Communication Systems and Networks
(COMSNETS), 2010.

[21] N. Letor, P. De Cleyn, and C. Blondia. Enabling cross layer design: Adding
the madwifi extensions to nsclick. In Proceedings of the First International
Workshop on Network Simulation Tools, 2007.

[22] Y. Lin, B. Li, and B. Liang. CodeOR: opportunistic routing in wireless mesh
networks with segmented network coding. In Proceedings of IEEE ICNP’08,
pages 13–22, 2008.

35

[23] Y. Lin, B. Liang, and B. Li. SlideOR: oline opportunistic network coding in
wireless mesh networks. In Proc. of IEEE INFOCOM’10 (MiniConference),
2010.

[24] M. Lu and J. Wu. Opportunistic routing algebra and its applications. In
Proceedings of IEEE INFOCOM, 2009.

[25] M. Neufeld, G. Schelle, and D. Grunwald. Nsclick user manual. Technical
report, University of Colorado, 2003.

[26] J. Wu and I. Khalil. Universal network coding-based opportunistic rout-
ing for unicast. IEEE Transactions on Parallel and Distributed Systems,
99(PrePrints):1, 2014.

[27] Z. Xia and Z. Chen. The research of variable length network coding based on
opportunistic routing in streaming meida WMN. Journal of Computational
Information Systems, 8(4):1723–1731, 2012.

[28] X. Zhang and B. Li. Dice: a game theoretic framework for wireless multipath
network coding. In Proc. of ACM MobiHoc, 2008.

36

