Blockchain Mining Game in Hierarchical Blockchain Mining Offloading

Jie Wu

Dept. of Computer and Information Sciences Temple University, USA

(Collaborator: Suhan Jiang)

Outline

- 1. Mobile Blockchain Mining
- 2. Offloading Mining Game
- 3. Theoretical Analysis
- 4. Extensions
- 5. Performance
- 6. Other Game Applications
- 7. Conclusions

1. Mobile Blockchain Mining

- PoW-based blockchain mining
 - Mining a block requires puzzle solving (Nakamoto protocol)
- Mining incentive
 - Each block will be rewarded
 - Prob . of winning a puzzle solving race

Mobile Devices Offloading

Mobile devices

- Blockchain smartphone: HTC, Samsung
- Mobile blockchain (with edge): limited computing power & energy

Solution: offloading

Offloading incurs delay (d) and cost (C) from SP

• A miner's utility
$$U_i = RW_i - C_i$$

• $W_i = (1 - \beta(d)) \times \text{computing rate}$

specific function of delay proportional to computing power

2. Offloading Mining Game

- Two SPs
 - A remote cloud computing service provider (CSP)
 - Large resource capacity, low price, long delay
 - A nearby edge computing service provider (ESP)
 - Limited resource capacity, high price, short delay
- Two operation modes
 - ESP is connected to CSP
 - Auto-transfer requests to CSP if overloaded (h: hit ratio)
 - ESP is standalone from CSP

Game Theory: Basic

- Basic Elements
 - Player, utility, strategy, and rationality (self-interested)
- Types of Games
 - Cooperative vs. non-cooperative games
 - Static vs. dynamic (sequential) games
 - Stackelberg game: leaders and followers
 - Stochastic game: stochastic transitions among states
- Types of Equilibrium
 - Nash equilibrium
 - Stackelberg equilibrium: backward induction
 - Markov equilibrium

Hierarchical Games

- Nash subgame of N miners that maximizes utility U_i
 Decide on shared resource from ESP (e_i) and CSP (c_i)
- 2. Nash subgame of ESP/CSP that maximizes revenue $V_e(V_c)$ • Decide on the resource unit price $P_e(P_c)$
- 3. Stackelberg game between miners and ESP/CSP
 - Interplay between leaders (ESP/CSP) and followers (miners).

Miners' Subgame

- Formulation of strategy and objective
 - Miner i determines e_i and c_i under budget limitation B_i to

maximize $U_i = RW_i - (P_e e_i + P_c c_i)$

- > ESP, charged at ESP price, that is
 - connected: if overflow, forwarded to CSP
 - standalone: if overflow, ESP rejected
- Winning probability W_i
 - d discounts W_i by $\beta(d)$

$$\beta(d) = 1 - e^{-\frac{d}{D}} \approx \frac{d}{D}$$

D: a system-defined parameter

Winning Probability

If miner i's edge request is satisfied by ESP

$$W_i^h = \frac{e_i}{E+C} \left(1 + \frac{\beta C}{E}\right) + \frac{c_i}{E+C} \left(1 - \beta\right)$$

- If miner i's edge request cannot be satisfied by ESP
 - Connected: Miner i's edge request is redirected to CSP

$$W_i^{1-h} = \frac{e_i + c_i}{E + C} (1 - \beta)$$

• Standalone: Miner i's edge request is completely rejected

$$W_i^{1-h} = \frac{c_i}{E + C - e_i} (1 - \beta)$$

Expected winning probability

$$W_i = hW_i^h + (1-h)W_i^{1-h}$$

SPs' Subgame

Formulation of strategy and objective

• ESF maximize
$$V_e = (P_e - C_e) \cdot E$$
 where $E = \sum_{i=1}^{N} e_i$
ESP unit cost ESP sold-out units
• CS maximize $V_c = (P_c - C_c) \cdot C$ where $C = \sum_{i=1}^{N} c_i$
CSP unit cost CSP sold-out units

Stackelberg Game

- A two-stage game
 - Stage 1 (leader): ESP/CSP subgame
 - ESP(CSP) optimizes its unit price $P_e(P_c)$ by predicting the miners' reactions, considering the rival's price strategy.
 - Stage 2 (follower): miner subgame
 - Each miner responds to the current prices, by sending requests to ESP/CSP, considering its budget and other miners' requests.
- Stackelberg equilibrium (SE)
 - Formed by the subgame perfect Nash equilibria (NE) in both the leader stage and the follower stage

3. Theoretical Analysis

Heterogenous: miners with different budgets

Theorem 1. A unique NE exists in the miner subgame.

Theorem 2. Stackelberg game has a unique SE.

A best response algorithm to find the unique SE point in the Stackelberg game.

Homogenous: miners with identical budgets (connected mode)

Theorem 3. If all miners have identical budgets B, each miner's request in NE can be expressed as

$$\begin{cases} e_i^* = \frac{B\beta h}{(1-\beta+h\beta)(P_e-P_c)}, \\ c_i^* = \frac{B\left[(1-\beta)(P_e-P_c) - P_c\beta h\right]}{P_c(1-\beta+h\beta)(P_e-P_c)} \end{cases}$$

Best Response Algorithm

Algorithm 1 Best Response Algorithm

Output: $j, j \in \{e, c\}$ Input: Initialize k as 1 and randomly pick a feasible $P_j^{(0)}$ 1: for iteration k do 2: Receive the miners' request vectors $\mathbf{r}^{(k-1)}$ 3: Predict the strategy of the other SP 4: Decide $P_j^{(k)} = P_j^{(k-1)} + \Delta \frac{\partial V_j \left(P_j, P_{-j}^{(k-1)}, \mathbf{r}^{(k-1)}\right)}{\partial P_j}$ 5: if $P_j^{(k)} = P_j^{(k-1)}$ then Stop 6: else send $P_j^{(k)}$ to miners and set $k \leftarrow k + 1$

SPs use a gradient ascent process to maximize their utilities.

4. Extensions: Proof of Capacity (PoC)

PoC-based blockchain mining

- Mining is a deadline-finding race on miners' storage
- Sysems: Burst, Storj, Chia, SpaceMint, Steps: plotting and mining
- Probability of finding the smallest deadline

storage fraction = $\frac{\text{individual storage space}}{\text{network-wide storage space}}$

Self-Mining vs. Cloud-Mining

Tradeoff between delay and cost

- Cloud-mining (1)
 - Employ VMs provided by CSP
 - Eliminate download delay
 - Increase cost on VM employment
- Self-mining (2)
 - Download scoops and compute locally
 - Avoid extra cost
 - Incur download delay (d)
- Mixed strategy

Problem Formulation

• Nash game of n miners that maximizes utility U_i

- Decide on how many storage units to buy from the CSP
- Decide on the ratio between cloud-mining (x_i) and self-mining (y_i)

Miner objective

• Determine x_i and y_i under budget limitation b_i to

maximize $U_i = RP_i - C_i$

- Winning probability: $P_i = (1 \beta(d, Y)) \times \text{storage fraction}$
 - $\beta(d, X) = 1 (1 \frac{d}{D})^{Y}$
 - d: uniform distribution of hash on [0, D], D difficulty level, $Y = \sum_{I=1}^{n} y_i$

Winning Probability and Cost

 P_i combines winning both in cloud-mining and self-mining

•
$$P_i = P_i^c + P_i^s$$

• $P_i^c = \frac{x_i}{S} + \frac{x_i}{X} \frac{Y}{S} \beta$, and $P_i^s = \frac{y_i}{S} - \frac{y_i}{Y} \frac{Y}{S} \beta$
where $X = \sum_{i=1}^n x_i$ and $Y = \sum_{i=1}^n y_i$

Offloading cost, with price p_s and p_c , for storage and computation

$$C_i = p_s(x_i + y_i) + p_c x_i$$
storage computation

Game Analysis

Theorem 1'. A unique NE exists in a miner game.

A best-response algorithm to find the unique NE point.

Theorem 3'. If all miners have identical budgets b, each miner's request in NE can be expressed as

$$\begin{aligned} x_i^* &= \frac{b\beta(n-1)}{p_c(n-\beta)}, \\ y_i^* &= \frac{b[(1-\beta)np_c - \beta(n-1)p_s]}{p_sp_c(n-\beta)}, \\ \text{where} \quad \beta &= 1 - (1 - \frac{d}{D})^{nx_i^*} \end{aligned}$$

Extensions: Variable Delay

Different network settings

- Uniform delay
 - All miners experience an identical download delay
- Non-uniform delays
 - Miners use different network settings, e.g. 5G, 4G, or 3G

Theorem 4'. Given a price set (p_s, p_c) , there exists at least one NE in the miner game.

A best response algorithm with guaranteed convergence is used to find one NE point.

Best Response Algorithm

Algorithm 1 Best Response Algorithm

Output: $r = \{r_1, \dots, r_n\}$ where $r_i = (x_i, y_i), i \in \{1, n\}$ **Input:** Initialize *k* as 1 and pick a feasible starting point $r^{(0)}$

(1, 1)

1: for round k do

3: Decide
$$r_i^{(k)} = r_i^{(k-1)} + \Delta \frac{\partial U_i(r_i, r_{-i}^{(k-1)})}{\partial r_i}$$

4: Send the request
$$r_i^{(k)}$$
 to CSP

5: CSP collects the request profile
$$r^{(k)}$$

6: if
$$r^{(k)} = r^{(k-1)}$$
 then Stop

7: **else** set
$$k \leftarrow k + 1$$

5. Simulation

Simulation setting

- \circ A small network of 5 miners with identical budgets B = 200
- Each experiment is averaged over 50 rounds
- Miner subgame equilibrium
 - \circ Influences of communication delay ($P_e=5$)
 - Longer delay (higher CSP price) promotes ESP's revenue but reduces CSP's

Miner Subgame Equilibrium

- Influences of operation modes
 - NEP (connected mode) and NEP' (standalone mode)
 - Miners tend to buy more units from ESP in standalone mode as CSP price increases
 - Longer communication delay (higher CSP price) means a lower the number of units sold by ESP and CSP.

Population Uncertainty

- RL will learn the population uncertainty (Gaussian distribution)
- $P_e = 5, P_c = 4$
- The higher ESP capacity, the more sold units in ESP
- The higher uncertainty, the more units required from ESP

Experiment

- Testbed setting for storage offloading
 - Plotting: Google Cloud
 - Mining: Burstcoin, a PoC-based blockchain application
 Average block generation interval: 4 min
 Mining over a plot file of 18 TB: 30s to 60s
- Miners' optimal strategies
 - Unique equilibrium in uniform delay networks
 - Equilibrium in variable delay networks

Equilibrium in Variable Delay

Influences of delay ratio

- Settings:
 - 3 types of networks with a delay of $\theta_i d$, i = 1, 2, 3
 - Each network is used by 20 miners
 - Each miner has an identical budget 200, $(p_s, p_c) = (1, 12)$
- Units sold (x, y), based on delay ratio, i.e., θ_1 : θ_2 : θ_3

Miners' strategy profiles under different delay ratios.

	Ty	Type1		Type2		Туре3	
$\theta_1: \theta_2: \theta_3$	x	y	x	y	x	y	
3:4:5	7.3	88.9	11.8	0	16.8	0	
4:5:6	12	31.7	13	0	14.8	0	
5:6:7	12.3	4.4	13.3	0	14.2	0	

miners with longer delays invest more on cloud mining

Equilibrium in Variable Delay (cont'd)

Influences of the CSP prices

- Settings:
 - 3 types of networks (5G, 4G, and 3G), where θ_1 : θ_2 : $\theta_3 = 3:20:500$
 - Type i network is used by 1 miner
 - Each miner has an identical budget 200
- \circ Units sold, based on CSP prices (p_s, p_c)

Miners' strategy profiles	under different	price	sets.
---------------------------	-----------------	-------	-------

	5	G	4	G	3G	
(p_s, p_c)	x	y	x	y	x	y
(5, 15)	0	40	10	0	10	0
(5, 20)	0	40	6.25	8.75	8	0
(5, 25)	0	40	2.5	24.7	6.7	0
(5, 30)	0	40	0.3	37.8	5.7	0

miners invest more on self mining as Pc cost increases

6. Other Game Applications

Different attacks

Selfish mining attack: block withholding

Denial of Service (DoS) attack

- Mining management
 - Transaction selection
 - Computational power allocation
 - Fork chain selection
 - Transactions fees
 - Pool selection

Game in Topology Design

Topology design in P2P

- Propagation delay vs. fork rate
 - Will node c benefit from setting a new connection to node a?

7. Conclusion

- Blockchain Mining Offloading
 - Miners offloading to service providers (SPs): edge/cloud
- Hierarchical Games
 - Nash games among miners and among SPs
 - Stackelberg game between miners and SPs
- Equilibrium
 - Existence vs. explicit expression
- Challenges
 - Mechanism design and incentive
 - Heterogenous settings: mean field games (aggregate effect)

S. Jiang and J. Wu, "<u>Bitcoin Mining with Transaction Fees: A Game on</u> the Block Size," Proc. of IEEE Blockchain, 2019.

S. Jiang, X. Li, and J. Wu, "<u>Hierarchical Edge-Cloud Computing for</u> <u>Mobile Blockchain Mining Game</u>," *Proc. of IEEE ICDCS*, 2019.

S. Jiang and J. Wu, "<u>A Game-theoretic Approach to Storage Offloading</u> in PoC-based Mobile Blockchain Mining," Proc. of ACM MobiHoc, 2020.