Boundary Helps: Efficient Routing Protocol using Directional Antennas in Cognitive Radio Networks

Ying Dai and Jie Wu

Computer and Information Sciences
Temple University
Roadmap

1. Introduction
2. Problem Formulation
3. Boundary Nodes
4. Piggyback
5. Route Selection
6. Simulation
7. Extensions
8. Conclusion
1. Introduction

- A real life scenario:
 - Privileged User
 - Road blocked
 - Avoid in advance?
Similar situation in Cognitive Radio Networks (CRNs):

- Primary User
- Secondary User

Channel m

PU

Channel m
Primary users’ (PUs’) activities are unpredictable.
Routes selected by traditional algorithms are unreliable.

Q: What if we can select routes that avoid those “restricted areas” in advance?
Intuition

- *Answer*: Make use of boundary nodes.
- Also, we need the help of directional antennas.
- Benefits: 1) tell the direction of PUs; 2) increase the space reuse ratio.
2. Problem Formulation

- **Objective: Route selection**
 - Delay
 - Reliability
 - SINR requirements of PUs and SUs

Unpredictable PUs’ activities \rightarrow No optimal solution

We propose an efficient solution, with the help of boundary nodes!
3. Boundary Nodes

- How does a node know if it is a boundary node itself?

Answer: By the variance of its sensing results in different directions!

- We use USRPs to show the properties of a boundary node.
 - **USRP:** Universal Software Radio Peripheral
3. Boundary Nodes

- 5 USRP N200s
 - One PU; Others simulate a four-directional SU.
 - Central frequency: 1.3005GHz
3. Boundary Nodes

- **Sector I:** -50dB; **Sector II:** -87dB

Receiving results at sector I.

Receiving results at sector II.
Routing Overview

Overview:
- Route Discovery;
- Piggyback;
- Route Selection
4. Piggyback

- Route discovery: traditional ways
- Piggyback: What kind of information?

Non Boundary Node: (IN, OUT, -, -)

A: (I, III, -, -)

Boundary Node: (IN, OUT, m, μ)

μ = 1: ENTER
μ = 0: EXIT

C: (IV, II, m, 0)
B: (I, II, m, 1)
Link Information

- Based on piggyback information, for a link, we can know:
 - If the link is inside or outside a PU area;
 - How many PU areas the link is located inside.

- Then, we define the link length based on the above information.
 - A larger value for link length will show that the link is within more PU areas.
Four Cases

Four cases to identify if a link \((AB)\) is within a PU area, given the piggyback information:

Case 1: Neither \(A\) nor \(B\) is a boundary node, but the closest boundary node on the route indicates the entering into a PU area.

- \(C\): (I, III, m, 1)
- \(A\): (I, II, - , -)
- \(B\): (IV, II, - , -)

\(C\) and \(A\) are on channel \(m\) and entering into PU area.
Case 2: A is a boundary node and B is not. In addition, A indicates the entering into a PU area.

A: (I, II, m, 1)
B: (IV, II, -, -)
Case 3: B is a boundary node and A is not. In addition, B indicates the exiting from a PU area.

A: (I, II, -, -)
B: (IV, II, m, 0)
Four Cases

Case 4: Both A and B are boundary nodes. In addition, A indicates the entering into a PU area and B indicates the exiting from the PU area.

A: \((I, II, m, 1)\)

B: \((I, III, m, 0)\)
Special Case

Special case: if a link is within multiple PU areas, we can still detect it.

\(M \): (IV, II, \(m_2 \), 1)
\(N \): (IV, II, \(m_1 \), 1)
\(A \): (IV, II, -, -)
\(B \): (IV, III, -, -)

The previous boundary nodes both have \(\mu = 1 \). Link \(AB \) are in two PU areas, occupying \(m_1 \) and \(m_2 \) when active.
5. Route Selection

Intuitively, we can select the route:

- with less links that pass through a PU area;
- with less links that are within multiple PU areas.

We need to define the route length!
First, we define the length of link AB, denoted as (L_{AB}):

- $L_{AB} = 1$, if link AB is not in any of the PUs’ areas;

- $L_{AB} = |M|/(|M| - C(m))$, if AB is within the PUs’ areas.

- $|M|$ is the total number of channels in the network;
- $C(m)$ is the counter of how many PU areas AB is in.
The route length is defined as the sum of the link length on the route: $\Sigma(L_{AB})$

- The route with more links in a PU area will have a larger value of route length.

- The route that passes through more PU areas will have a larger value for route length.
Route Length

An example:

1. Route R’ has more links in the PU area.

2. Some links of R’ are in multiple PU areas.

3. These properties can be shown by the value of route length.
Route Length

Calculate route length:

Example of Weighted Route Length

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Sc</td>
<td>ci</td>
<td>ij</td>
<td>jg</td>
<td>gh</td>
<td>hD</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R'</td>
<td>Sc</td>
<td>cd</td>
<td>de</td>
<td>ef</td>
<td>fD</td>
<td></td>
</tr>
<tr>
<td>$\frac{19}{2}$</td>
<td>1</td>
<td>$\frac{3}{2}$</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

The route with smaller route length will be chosen.

- In this example, R will be chosen since $7 < \frac{19}{2}$.
Supplementary Information

- Our route length calculation is based on the simplified SINR model:
 - It aims at showing the influence of PU areas;
 - It can also be easily extended to other routing algorithms using real SINR models.

- Our model also assumes the accuracy of boundary node detections:
 - It can be extended to consider the misdetection of boundary nodes.
6. Simulation

Simulation Settings

- Network Area: 2,000 X 2,000
- Number of nodes: [100, 300]; Approximate range: [30, 50]; Number of channels:[10, 25];
- Number of PUs: [10, 50]; Operation range of each PU: [300, 500]; Active probability: 0.5
- Number of sectors: 4; Delay for one channel switch: 0.1s.
6. Simulation

- Simulation Results
 - Performance metrics: average number of channel switches.
6. Simulation

Simulation Results

- Performance metrics: total delay
Missing boundary node

Neither A nor B is a boundary node.

However, by the sensing result variance, we can detect the entering of the PU area.

Like a virtual boundary node..
7. Extension2 - Imperfect Information

Imperfect Information

Link AB located at the boundary area.

Whether to count link AB as in the PU area is decided by a predefined threshold.
7. Conclusion

- Directional antenna + boundary nodes.
- Detect if a link is outside PU areas, inside a single PU area, or inside multiple PU areas.
- Define the link length and route length.
- Our algorithm can be easily applied or extended in other models.