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Abstract—Voice-based input is usually used as the primary input method for augmented reality (AR) headsets due to immersive AR
experience and good recognition performance. However, recent researches show that attackers can inject inaudible voice commands
to the devices that lack voice verification. Even if we secure voice input with voice verification techniques, attackers can record the
victim’s voice and replay it. To defend against voice-spoofing attacks, AR headsets should be able to determine whether the voice is
from the person who is using the AR headsets. Existing voice-spoofing defense systems are designed for smartphone platforms and
usually fail to work due to the special locations of microphones and loudspeakers on AR headsets. To address this challenge, in this
paper, we propose a voice-spoofing defense system for AR headsets by leveraging both the internal body propagation and the air
propagation of human voices. Experimental results show that our system can successfully accept normal users with average accuracy
of 97% and defend against two basic types of attacks with average accuracy of at least 98%. More importantly, even if the attackers can
fool our line-fitting model by manipulating special voice signals, our MCD-SVDD model can still reject them with accuracy of 100%.

Index Terms—AR headsets, voice spoofing attack, liveness detection.
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1 INTRODUCTION

Augmented reality (AR) applications that overlay a
user’s perception of the real world with digitally generated
information are on the cusp of commercial viability. To pro-
vide better user experiences, AR experiences are primarily
delivered to AR users via wearable glass devices and head-
mounted devices. For example, Microsoft, Google Vuzix,
and other companies have been working on bringing AR to
us in the eyeglass form. Moreover, different from traditional
human-computer interactions, most existing interactivity
technologies (e.g. typing, tapping, clicking, and swiping)
have become irrelevant and obsolete in the AR world.
Because of the real-world interaction of AR experiences, the
input methods for AR headsets should fit what a human
can understand. Therefore, most AR headsets adopt voice,
eye gaze, and gestures as input methods. Among these
three input methods, voice-based input is usually used as
the primary input method for three reasons: 1) Voice is
the primary way to deliver information in daily life, so
voice-based input can provide immersive AR experiences; 2)
Many low-cost AR devices do not have capabilities to track
eye gaze and recognize gestures; 3) Most gesture and gaze
interfaces have problems with responsiveness and accuracy.

However, voice-based input suffers from various voice
spoofing attacks. Recent research [7], [29], [34] has shown
that an attacker can inject inaudible voice commands to the
devices that lack voice verification. Moreover, unlike other
human biometrics, the human voice is often exposed to
the public in many different scenarios, e.g., people making
a presentation in public. Even if we secure devices with
voice verification techniques, an attacker can easily steal the
victim’s voice using low-cast handy recorders and attack
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Fig. 1. The input voice of an AR headset can be from the normal user or
attackers.

voice-based applications with the help of state-of-the-art
voice synthesis/conversion software. Several security issues
are, therefore, caused by the leakage of people’s voices and
pose a severe threat to voice-based applications [18], [26],
[33]. For instance, with a replay device, an adversary could
impersonate the victim to spoof the Google Trusted Voice
once they acquire enough victim’s voice samples. Since
voice is considered as a unique biometric of a person, these
voice-spoofing attacks would result in severe consequences
harmful to victim’s safety, reputation, and property.

To defend against voice-spoofing attacks, the voice-
based systems need to determine whether the voice is
from the person who is using the AR headsets. To achieve
this goal, traditional systems primarily use two solutions:
1) Check the channel noises introduced by recording and
the replay devices (loudspeakers); 2) Analyze the rever-
beration of replaying far-field recordings. However, these
solutions have high false acceptance rates of up to 17% [36],
which makes them unsuitable to be used for commercial
systems. Recently, many liveness detection systems have
been proposed to fight against voice-spoofing attacks by
studying the differences between the human vocal system
and loudspeakers using phoneme location [36], articulatory
gestures [35], magnetic fields of loudspeakers [9], and throat
voice [24]. However, all of them are designed for smart-
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phones. Considering the special locations of microphones
and loudspeakers on AR devices, current liveness detec-
tion solutions cannot be implemented on AR headsets. For
example, the approach proposed in [35] can fight replay
attacks by reusing a pair of microphone and loudspeaker
as a Doppler radar. However, this system requires both the
loudspeaker and the microphone to be in front of the user’s
mouth during speech, which is hard to be ensured on AR
headsets.

Considering the limitations of current solutions, we pro-
pose a voice-spoofing defense system for AR headsets by
leveraging the internal body propagation of human voices.
Our system determines whether the voice is from the person
who is using the AR headsets by leveraging: 1) Both the
internal body propagation and the air propagation of hu-
man voices; 2) A tiny and low-cost contact microphone to
collect internal body voice. First, human voices propagate
through both the air and the internal body (skull). If two
voices are from the same person, they should share common
features in the frequency bands of human voices. Second,
by attaching a contact microphone on the user’s head, we
are able to collect the voice propagating only through the
internal body. The small contact microphone can be easily
integrated into existing AR headsets. To achieve our goal,
we solve two challenges in the design of our system. First,
the signal-to-noise ratio (SNR) of the voice that propagates
through the internal body is still low, which makes it hard
to extract voice features from the raw time-domain signals.
To address this issue, we transform the signal from the
time domain to the time-frequency domain and leverage
spectrogram enhancement techniques to extract the voice
from raw signals. The second challenge is to measure the
correlation and similarity between the internal body voice
and the air voice of the user. In order to robustly measure the
correlation and similarity between the two voices, we match
high-energy blocks that exist in both spectrograms of two
voices. Compared with existing works, our system has three
major advantages. First, without changing the framework of
current headsets, our system can be directly implemented
on headset devices by attaching a low-cost and tiny contact
microphone. Second, our system does not need to collect
any data from attackers to build a classifier. Third, our
sytem does not need users’ extra effort in operating the AR
headsets, e.g., moving the device around the audio source.

We summarize our contributions as follows:

� We show it is feasible to capture the internal body
propagation of human voices using a low-cost con-
tact microphone. We also present an approach to
extract voice features from noisy internal body voice.

� We propose a robust and low-cost solution for de-
fending against voice-spoofing attacks on AR head-
sets with high accuracy. To the best of our knowl-
edge, our system is the first to protect the voice input
for AR headsets.

� We propose two different classification models with
different computation cost. The low-cost line-fitting
model can effectively defend against obstruction at-
tacks and replay attacks. The MCD-SVDD model can
further reject expert attacks with limited cost added.

� Our classification models do not need to collect any

Vocal cords

Larynx

Tongue
Lips

Palate

(a) The human vocal system.

Internal body 
propagation

Air 
propagation

(b) Two propagation paths.

Fig. 2. Human vocal system and two propagation paths of the voice.

data from the attackers, which means our system can
be quickly launched for a new user.

� We develop a prototype and conduct comprehensive
evaluations. Experimental results show that our sys-
tem can successfully defend against obstruction and
replay attacks with an accuracy of at least 98%. More
importantly, even if the attackers can fool our line-
fitting model by manipulating special voice signals,
our MCD-SVDD model model can still reject them
with accuracy of 100%.

The remainder of this paper expands on the above
contributions. We first introduce our attack model and key
insights in Section 2 and present our solutions in Sections
3, 4, and 5. We conduct various experiments to evaluate
proposed solutions in Section 6 and discuss the usability
and limitations of our system and related work in Sections
7 and 8, respectively.

2 PRELIMINARY

In this section, we discuss the human voice production and
propagation system and the two types of attacks we con-
sider in this paper. Based on our preliminary experiments,
we show two key observations that enable us to defend
against voice-spoofing attacks on AR headsets.

2.1 Human voice production and propagation
In order to achieve robust liveness detection, we need to
understand the structural differences between the human
vocal system and loudspeakers. As shown in Fig. 2(a), the
mechanism for producing the human voice can generally be
divided into three parts: the lungs, the vocal cords, and the
articulators (e.g. lips and tongue). The lung first produces
adequate airflow and air pressure to vibrate vocal cords. The
vocal cords vibrate and chop up the airflow from the lungs
into audible pulses that form the laryngeal sound source.
Then, the length and tension of the vocal cords are adjusted
to produce ‘fine-tune’ pitch and tone. The articulators con-
sisting of tongue, palate, cheek, and lips further filter the
sound generated from the larynx to strengthen it or weaken
it. After the voices are produced by the human vocal system,
they mainly propagate through two media, as shown in Fig.
2(b). First, the voice propagates via the air and reaches the
microphone, which is common for the use case of current
voice input. Besides propagating through the air, the voice
can also propagate through the speaker’s internal body, and
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(a) Contact microphone. (b) Frequency response of contact micro-
phone [1].

Fig. 3. Contact microphone and its frequency response.

that is why a person’s voice sounds different to them when it
is recorded and played back. Although the tone of the voice
received through the internal body is lower than that of the
voice received through the air due to the special propagation
medium, the two voices should have a strong correlation
and share a lot of information. For the attacker who wants to
issue a fake voice command in order to obstruct the victim’s
experience, the attacker’s voice reaches the AR device only
through the air. Therefore, the internal body voice of the
victim should not have much-shared information with the
air voice.

Strong attackers can also use high-quality loudspeak-
ers and recorders to break voice-based authentication. The
loudspeakers usually use an electromagnet to translate an
electrical signal into an audible sound. The electromagnet
is a metal coil that creates a magnetic field when there is
an electric current flow through it. When electrical pulses
pass through the coil of the electromagnet, the direction
of the magnetic field is frequently changed. Also, there
is a permanent magnet fixed firmly into the loudspeaker.
With a rapidly changing magnetic field, the coil is attracted
to and repelled from the permanent magnet. As a result,
the cone attached on the coil will vibrate back and forth,
pumping sound waves into the surrounding air and the
smartphone’s speaker. Since the replay attacker can only
record and replay the air voice of the victim, there is no
internal body voice during the replay process. Moreover,
since the internal body voice of a person is different from
those of others even for the same word, a stronger replay
attacker cannot impersonate the victim’s internal body voice
by wearing the AR headset and saying the same words.

2.2 Piezo contact microphone
As shown in Fig. 3(a), contact microphone is a form of
microphone that senses audio vibrations through contact
with solid objects. Unlike normal air microphones, contact
microphones are almost completely insensitive to air vibra-
tions but transduce only structure-borne sound. Crystals in
Piezo contact microphones which demonstrate the piezo-
electric effect produce voltages when they are deformed.
The crystal microphone uses a thin strip of piezoelectric
material attached to a diaphragm. The two sides of the
crystal acquire opposite charges when the crystal is de-
flected by the diaphragm. The charges are proportional to
the amount of deformation and disappear when the stress
on the crystal disappears. By attaching a contact microphone
near the speaker’s temple, we are able to collect the voice

that propagates mainly through the body of the speaker.
In addition, contact microphones have a wide frequency
response, as shown in Fig. 3(b). Since the voiced speech of
a typical adult will have a fundamental frequency for up to
255Hz [3], the contact microphones have enough capability
to capture the internal body voice.

2.3 Attack model

In our attack models, a malicious user aims to either spoof
the voice verification system on the AR headset or obstruct
the normal use of voice-based input. The capability of the
attacker is limited in the sense of:

2.3.1 Obstruction attack for voice commands
In an obstruction attack, a malicious user who can show
up closely around the normal user aims to issue a voice
command with high volume. For example, the malicious
user can issue a ”remove” voice command to clear the
victim’s virtual objects. The malicious user can also issue
a voice command to display redundant information in the
field of vision of the normal user, which poses threats if the
normal user needs clear sight (e.g., when the normal user
is driving). In fact, this type of attack is feasible in practice
for three reasons. First, to defend against such attacks, the
device should know what signals are environmental noises.
Most existing headsets (e.g. Microsoft Hololens) solve this
problem by using a directional microphone to collect only
the user’s voice. However, a recent user study shows that
the Microsoft Hololens can still pick up environmental
noise as the voice commands sometimes, which means that
attackers still have chances to launch such attacks. Second,
recent research has shown that the attacker can even issue
malicious voice commands on inaudible channels. By doing
this, the legitimate user cannot notice the existence of such
attacks. Third, even if the legitimate user can hear the
malicious voice command, it is too late in some cases since
the device has already picked it up and follows the voice
commands.

2.3.2 Replay attack for voice-based authentication
In this type of attack, we assume that an attacker can
physically access the victim’s headset without being noticed.
Moreover, the attacker can record the victim’s voice and
replay it to voice-based authentication system using loud-
speakers. To achieve better attack performance, we assume
that the attack can produce the corresponding internal body
voice by shadowing the replayed voice of the victim.

2.4 Use case

In order to successfully defend AR users against the two
types of attacks, our system requires users to attach a contact
microphone around the temple. Since the AR users need to
wear the AR headset, this condition can be easily satisfied by
integrating the contact microphone into the frame of the AR
headset. We leverage the contact microphone to capture the
internal body voice and use the existing normal microphone
on current AR devices to collect the air voice. The distance
between the normal microphone and the user’s mouth is
about 10 centimeters. Since the distance is pretty short, the
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Fig. 4. The spectrograms of voices through air and internal body.

time delay between two audio signals is less than 13 samples
when the sampling rate is 44,100 samples per second. While
speaking, the user can be in any stationary posture, such as
sitting and standing.

2.5 Feasibility study and challenges

In order to defend against the two attacks we consider,
we need to fully leverage the relationship between voices
through the air and the skull. Fig. 4 shows the spectrograms
of two voices when the user says “Five.” We can observe
two facts: 1) There exists a strong correlation between two
voices on both the time and frequency domains. If a normal
user interacts with the headset using voices, we should
observe that a voice through the internal body is produced
at the same time. 2) The voice that propagates through the
internal body only reserves partial low-frequency features
(200 Hz to 2000 Hz). If we can see high-energy blocks in
the spectrogram of internal body voice, we should see high-
energy blocks at the same location in the spectrogram of the
air voice. These observations illustrate that it is feasible to
defend against two attacks by measuring the correlation and
similarity between two voices.

To achieve our goal, we solve two challenges in the
design of our system. First, even with amplifier, the SNR
of the voice that propagates through the internal body is
still low, which makes it hard to extract voice features
from the raw time-domain signals. To address this issue,
we transform the signal from the time domain to the time-
frequency domain and leverage spectrogram enhancement
techniques to extract the features of two voices from their
raw signals.

The second challenge is to measure the correlation and
the similarity between the internal body voice and the air
voice. This is difficult because both voices have different
capabilities for capturing users’ voices. More specifically,
the internal body voice only contains partial low-frequency
features, but it is nonsensitive to environmental noise. The
mouth voice reserves much more features, but it is easily
influenced by environmental noise. In order to robustly
measure the correlation between two voices, we first con-
vert the two voices to spectrograms on the time-frequency
domain of the three dimensions: time, frequency, and en-
ergy. The correlation and the similarity of two voices are
measured by matching high-energy blocks that exist in both
spectrograms.

Data Collection Spectrogram Generation and 
Enhancement

Liveness detection for a 
single word

Liveness detection 
for a sentence

…

Fig. 5. System pipeline.

3 SYSTEM DESIGN

In this section, we show the pipeline of our system and
describe our solutions in detail.

3.1 System overview

The key idea underlying our system is to fully leverage two
propagation paths of the human voices. When the AR user
says a voice command, the normal microphone will capture
the user’s voice that propagates through the air, and the
contact microphone on the user’s head can record the voice
that only propagates through the user’s body. By comparing
the information in the two voices, our system can determine
whether the voice is from the normal user or from two types
of attackers. For a new AR user, there are two stages to use
the system. In the training stage, the new user is asked to say
a few words using our system. These training instances are
used to quickly build a classifier. After the training stage, the
system is ready to be used. In the testing stage, our system
will check whether the command is from the normal user
who is using the AR headset using the trained classifier. If
the voice is from the normal user, the user can interact with
the AR headset normally. Otherwise, the voice command
will not be parsed to the AR headset for further verification.

The pipeline of data collection and processing is shown
in Fig. 5. After collecting the user’s voices at two channels,
we first segment the voice for each word to remove the
internal between neighboring words. For the voice signals
of each pair of words, we transform the signals from the
time domain to the time-frequency domain. Since both raw
voice signals contain background noise, we further leverage
spectrogram enhancement techniques to remove the noise
and extract the information of the voices. Then, we measure
the correlation between two enhanced spectrograms of each
pair of words. If the correlation exceeds a threshold, the pair
of signals is further checked for the second round. In the
second round, we measure the similarity between two spec-
trograms. Here the similarity is defined as the proportion of
shared information between two voices. If the proportions
of shared information fit the trained classifier, the word is
regarded to be from the normal user. To tolerate wrong
classification results, the final detection result of a sentence
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(voice command) is determined by a voting procedure of all
words in it. Only if the number of votes that represent the
voices from the normal user exceeds the voting threshold, is
the voice source regarded as the normal user.

3.2 Word segmentation and spectrogram generation
Each audio signal includes two parts: the voice and back-
ground noise. The voice contains abundant features of the
user’s voice, while the noise part only records the acoustic
noise in the background. In our system, we only focus on the
user’s voice in order to reduce the influence of the acoustic
noise in the background. Since the voice recorded by the
normal microphone has much more features of the user’s air
voice, we segment each audio sample into different words
by performing Hidden Markov Model (HMM) based word
segmentation techniques [23] on the air voice.

Also, we need to find features to measure the relation-
ship and differences between two voices collected from two
microphones to distinguish whether the voice is from a
normal user. In order to capture features on time-frequency
domain, we perform short-time Fourier transform (STFT)
on each word and each audio sample with a window size of
about 22 ms based on:

X(�; !) =
n=teX
n=ts

x[n]w[n� � ]e�j!n (1)

where � is the time axis, ! is the frequency axis, x[n] is an
audio signal in the time range (ts; te), w[n] is the window,
and X(�; !) is a complex function representing the phase
and magnitude of the signal over time and frequency. Then,
for each time and frequency frame, the spectrogram of the
complex function X(�; !) is computed based on:

E[f; t] = jX(�; !)j2 (2)

where E[f; t] is the power of f th frequency band and tth

time frame. f and t are positive integers with range 1 � f �
M and 1 � t � N . M is the number of frequency frames in
generated spectrogram, andN is the number of time frames.
In our system, we further convert power measurements to
decibels for data processing.

3.3 Spectrogram enhancement
In real usage scenarios, the contact microphone cannot touch
the skull directly, which leads to low SNR of recorded
internal body voice even with an amplifier. The air voice
is also influenced by background noise. To extract features
from both voices, we leverage spectrogram enhancement
techniques to extract high-energy clusters that are only pro-
duced by the user’s voice on the generated spectrograms.
After obtaining the spectrogram of each word, we first apply
the frequency domain denoising method by subtracting the
noise floor (non-voice part) from the spectrogram. Since
the microphone of the AR headset is close to the user’s
mouth, most power should be distributed on the voice part
as shown in Fig. 6(a). Therefore, the noise floor is set to
80% of the power in the spectrogram of each word. If the
resulting magnitude becomes negative after subtraction, we
set it to zero. Second, since the internal body voice collected
from the contact microphone contains strong noise under

(a) Raw internal body voice. (b) Enhenced spectrogram.

Fig. 6. Spectrogram enhancement.
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Fig. 7. Illustration of correlation calculation.

800 Hz, we only reserve the spectrograms from 800 Hz to
2000 Hz for the following analysis. As shown in Fig. 6, most
of the noise is removed from the spectrogram, and only the
information of the voice is reserved.

3.4 Feature extraction
Since two voices are generated from the same vocal system
at the same time, we should be able to observe strong
correlations between them for a normal user. Ideally, the
subtraction of two spectrograms should be zero. In our sys-
tem, we measure the correlation between two spectrograms
instead of directly calculating the differences between them
for two reasons. First, both voices have different capabilities
for capturing users’ voices. More specifically, the internal
body voice only contains partial low-frequency features, but
it is nonsensitive to environmental noise. The mouth voice
reserves much more features, but it is easy to be influenced
by environmental noise. Second, even if two microphones
are synchronized, there may still exist small synchronization
bias in the collected voices. In our solutions, we consider
the two spectrograms (S1 and S2) as two pictures in two-
dimensional hyperplane, as shown in Fig. 7. Both S1 and
S2 are of the same size (M � N ). If we fix the position of
S1 and move S2, two spectrograms must have overlapped
area as long as the point (I; J) is within the gray area. Sim-
ilar to one-dimension cross-correlation measurement, given
two spectrograms S1 and S2, we measure the correlation
between S1 and lagged copies of S2 as a function of i and j.
For this copy, if we assume that S1 and the lagged copies of
S2 have an overlapped area of size M 0 �N 0, the correlation
coefficient of the specific shift is:

Corr[i; j] =

k=M 0; l=N 0X
k=1; l=1

Oi;j1 [k; l]�Oi;j2 [k; l] (3)

where O1 is the overlapped part of S1, and O2 is the
overlapped part of S2. The point (i; j) represents the pos-


