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Abstract—Voice-based input is usually used as the primary input method for augmented reality (AR) headsets due to immersive AR
experience and good recognition performance. However, recent researches show that attackers can inject inaudible voice commands
to the devices that lack voice verification. Even if we secure voice input with voice verification techniques, attackers can record the
victim’s voice and replay it. To defend against voice-spoofing attacks, AR headsets should be able to determine whether the voice is
from the person who is using the AR headsets. Existing voice-spoofing defense systems are designed for smartphone platforms and
usually fail to work due to the special locations of microphones and loudspeakers on AR headsets. To address this challenge, in this
paper, we propose a voice-spoofing defense system for AR headsets by leveraging both the internal body propagation and the air
propagation of human voices. Experimental results show that our system can successfully accept normal users with average accuracy
of 97% and defend against two basic types of attacks with average accuracy of at least 98%. More importantly, even if the attackers can
fool our line-fitting model by manipulating special voice signals, our MCD-SVDD model can still reject them with accuracy of 100%.

Index Terms—AR headsets, voice spoofing attack, liveness detection.
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1 INTRODUCTION

Augmented reality (AR) applications that overlay a
user’s perception of the real world with digitally generated
information are on the cusp of commercial viability. To pro-
vide better user experiences, AR experiences are primarily
delivered to AR users via wearable glass devices and head-
mounted devices. For example, Microsoft, Google Vuzix,
and other companies have been working on bringing AR to
us in the eyeglass form. Moreover, different from traditional
human-computer interactions, most existing interactivity
technologies (e.g. typing, tapping, clicking, and swiping)
have become irrelevant and obsolete in the AR world.
Because of the real-world interaction of AR experiences, the
input methods for AR headsets should fit what a human
can understand. Therefore, most AR headsets adopt voice,
eye gaze, and gestures as input methods. Among these
three input methods, voice-based input is usually used as
the primary input method for three reasons: 1) Voice is
the primary way to deliver information in daily life, so
voice-based input can provide immersive AR experiences; 2)
Many low-cost AR devices do not have capabilities to track
eye gaze and recognize gestures; 3) Most gesture and gaze
interfaces have problems with responsiveness and accuracy.

However, voice-based input suffers from various voice
spoofing attacks. Recent research [7], [29], [34] has shown
that an attacker can inject inaudible voice commands to the
devices that lack voice verification. Moreover, unlike other
human biometrics, the human voice is often exposed to
the public in many different scenarios, e.g., people making
a presentation in public. Even if we secure devices with
voice verification techniques, an attacker can easily steal the
victim’s voice using low-cast handy recorders and attack
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Fig. 1. The input voice of an AR headset can be from the normal user or
attackers.

voice-based applications with the help of state-of-the-art
voice synthesis/conversion software. Several security issues
are, therefore, caused by the leakage of people’s voices and
pose a severe threat to voice-based applications [18], [26],
[33]. For instance, with a replay device, an adversary could
impersonate the victim to spoof the Google Trusted Voice
once they acquire enough victim’s voice samples. Since
voice is considered as a unique biometric of a person, these
voice-spoofing attacks would result in severe consequences
harmful to victim’s safety, reputation, and property.

To defend against voice-spoofing attacks, the voice-
based systems need to determine whether the voice is
from the person who is using the AR headsets. To achieve
this goal, traditional systems primarily use two solutions:
1) Check the channel noises introduced by recording and
the replay devices (loudspeakers); 2) Analyze the rever-
beration of replaying far-field recordings. However, these
solutions have high false acceptance rates of up to 17% [36],
which makes them unsuitable to be used for commercial
systems. Recently, many liveness detection systems have
been proposed to fight against voice-spoofing attacks by
studying the differences between the human vocal system
and loudspeakers using phoneme location [36], articulatory
gestures [35], magnetic fields of loudspeakers [9], and throat
voice [24]. However, all of them are designed for smart-
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phones. Considering the special locations of microphones
and loudspeakers on AR devices, current liveness detec-
tion solutions cannot be implemented on AR headsets. For
example, the approach proposed in [35] can fight replay
attacks by reusing a pair of microphone and loudspeaker
as a Doppler radar. However, this system requires both the
loudspeaker and the microphone to be in front of the user’s
mouth during speech, which is hard to be ensured on AR
headsets.

Considering the limitations of current solutions, we pro-
pose a voice-spoofing defense system for AR headsets by
leveraging the internal body propagation of human voices.
Our system determines whether the voice is from the person
who is using the AR headsets by leveraging: 1) Both the
internal body propagation and the air propagation of hu-
man voices; 2) A tiny and low-cost contact microphone to
collect internal body voice. First, human voices propagate
through both the air and the internal body (skull). If two
voices are from the same person, they should share common
features in the frequency bands of human voices. Second,
by attaching a contact microphone on the user’s head, we
are able to collect the voice propagating only through the
internal body. The small contact microphone can be easily
integrated into existing AR headsets. To achieve our goal,
we solve two challenges in the design of our system. First,
the signal-to-noise ratio (SNR) of the voice that propagates
through the internal body is still low, which makes it hard
to extract voice features from the raw time-domain signals.
To address this issue, we transform the signal from the
time domain to the time-frequency domain and leverage
spectrogram enhancement techniques to extract the voice
from raw signals. The second challenge is to measure the
correlation and similarity between the internal body voice
and the air voice of the user. In order to robustly measure the
correlation and similarity between the two voices, we match
high-energy blocks that exist in both spectrograms of two
voices. Compared with existing works, our system has three
major advantages. First, without changing the framework of
current headsets, our system can be directly implemented
on headset devices by attaching a low-cost and tiny contact
microphone. Second, our system does not need to collect
any data from attackers to build a classifier. Third, our
sytem does not need users’ extra effort in operating the AR
headsets, e.g., moving the device around the audio source.

We summarize our contributions as follows:

• We show it is feasible to capture the internal body
propagation of human voices using a low-cost con-
tact microphone. We also present an approach to
extract voice features from noisy internal body voice.

• We propose a robust and low-cost solution for de-
fending against voice-spoofing attacks on AR head-
sets with high accuracy. To the best of our knowl-
edge, our system is the first to protect the voice input
for AR headsets.

• We propose two different classification models with
different computation cost. The low-cost line-fitting
model can effectively defend against obstruction at-
tacks and replay attacks. The MCD-SVDD model can
further reject expert attacks with limited cost added.

• Our classification models do not need to collect any
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Fig. 2. Human vocal system and two propagation paths of the voice.

data from the attackers, which means our system can
be quickly launched for a new user.

• We develop a prototype and conduct comprehensive
evaluations. Experimental results show that our sys-
tem can successfully defend against obstruction and
replay attacks with an accuracy of at least 98%. More
importantly, even if the attackers can fool our line-
fitting model by manipulating special voice signals,
our MCD-SVDD model model can still reject them
with accuracy of 100%.

The remainder of this paper expands on the above
contributions. We first introduce our attack model and key
insights in Section 2 and present our solutions in Sections
3, 4, and 5. We conduct various experiments to evaluate
proposed solutions in Section 6 and discuss the usability
and limitations of our system and related work in Sections
7 and 8, respectively.

2 PRELIMINARY

In this section, we discuss the human voice production and
propagation system and the two types of attacks we con-
sider in this paper. Based on our preliminary experiments,
we show two key observations that enable us to defend
against voice-spoofing attacks on AR headsets.

2.1 Human voice production and propagation
In order to achieve robust liveness detection, we need to
understand the structural differences between the human
vocal system and loudspeakers. As shown in Fig. 2(a), the
mechanism for producing the human voice can generally be
divided into three parts: the lungs, the vocal cords, and the
articulators (e.g. lips and tongue). The lung first produces
adequate airflow and air pressure to vibrate vocal cords. The
vocal cords vibrate and chop up the airflow from the lungs
into audible pulses that form the laryngeal sound source.
Then, the length and tension of the vocal cords are adjusted
to produce ‘fine-tune’ pitch and tone. The articulators con-
sisting of tongue, palate, cheek, and lips further filter the
sound generated from the larynx to strengthen it or weaken
it. After the voices are produced by the human vocal system,
they mainly propagate through two media, as shown in Fig.
2(b). First, the voice propagates via the air and reaches the
microphone, which is common for the use case of current
voice input. Besides propagating through the air, the voice
can also propagate through the speaker’s internal body, and
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(a) Contact microphone. (b) Frequency response of contact micro-
phone [1].

Fig. 3. Contact microphone and its frequency response.

that is why a person’s voice sounds different to them when it
is recorded and played back. Although the tone of the voice
received through the internal body is lower than that of the
voice received through the air due to the special propagation
medium, the two voices should have a strong correlation
and share a lot of information. For the attacker who wants to
issue a fake voice command in order to obstruct the victim’s
experience, the attacker’s voice reaches the AR device only
through the air. Therefore, the internal body voice of the
victim should not have much-shared information with the
air voice.

Strong attackers can also use high-quality loudspeak-
ers and recorders to break voice-based authentication. The
loudspeakers usually use an electromagnet to translate an
electrical signal into an audible sound. The electromagnet
is a metal coil that creates a magnetic field when there is
an electric current flow through it. When electrical pulses
pass through the coil of the electromagnet, the direction
of the magnetic field is frequently changed. Also, there
is a permanent magnet fixed firmly into the loudspeaker.
With a rapidly changing magnetic field, the coil is attracted
to and repelled from the permanent magnet. As a result,
the cone attached on the coil will vibrate back and forth,
pumping sound waves into the surrounding air and the
smartphone’s speaker. Since the replay attacker can only
record and replay the air voice of the victim, there is no
internal body voice during the replay process. Moreover,
since the internal body voice of a person is different from
those of others even for the same word, a stronger replay
attacker cannot impersonate the victim’s internal body voice
by wearing the AR headset and saying the same words.

2.2 Piezo contact microphone
As shown in Fig. 3(a), contact microphone is a form of
microphone that senses audio vibrations through contact
with solid objects. Unlike normal air microphones, contact
microphones are almost completely insensitive to air vibra-
tions but transduce only structure-borne sound. Crystals in
Piezo contact microphones which demonstrate the piezo-
electric effect produce voltages when they are deformed.
The crystal microphone uses a thin strip of piezoelectric
material attached to a diaphragm. The two sides of the
crystal acquire opposite charges when the crystal is de-
flected by the diaphragm. The charges are proportional to
the amount of deformation and disappear when the stress
on the crystal disappears. By attaching a contact microphone
near the speaker’s temple, we are able to collect the voice

that propagates mainly through the body of the speaker.
In addition, contact microphones have a wide frequency
response, as shown in Fig. 3(b). Since the voiced speech of
a typical adult will have a fundamental frequency for up to
255Hz [3], the contact microphones have enough capability
to capture the internal body voice.

2.3 Attack model

In our attack models, a malicious user aims to either spoof
the voice verification system on the AR headset or obstruct
the normal use of voice-based input. The capability of the
attacker is limited in the sense of:

2.3.1 Obstruction attack for voice commands
In an obstruction attack, a malicious user who can show
up closely around the normal user aims to issue a voice
command with high volume. For example, the malicious
user can issue a ”remove” voice command to clear the
victim’s virtual objects. The malicious user can also issue
a voice command to display redundant information in the
field of vision of the normal user, which poses threats if the
normal user needs clear sight (e.g., when the normal user
is driving). In fact, this type of attack is feasible in practice
for three reasons. First, to defend against such attacks, the
device should know what signals are environmental noises.
Most existing headsets (e.g. Microsoft Hololens) solve this
problem by using a directional microphone to collect only
the user’s voice. However, a recent user study shows that
the Microsoft Hololens can still pick up environmental
noise as the voice commands sometimes, which means that
attackers still have chances to launch such attacks. Second,
recent research has shown that the attacker can even issue
malicious voice commands on inaudible channels. By doing
this, the legitimate user cannot notice the existence of such
attacks. Third, even if the legitimate user can hear the
malicious voice command, it is too late in some cases since
the device has already picked it up and follows the voice
commands.

2.3.2 Replay attack for voice-based authentication
In this type of attack, we assume that an attacker can
physically access the victim’s headset without being noticed.
Moreover, the attacker can record the victim’s voice and
replay it to voice-based authentication system using loud-
speakers. To achieve better attack performance, we assume
that the attack can produce the corresponding internal body
voice by shadowing the replayed voice of the victim.

2.4 Use case

In order to successfully defend AR users against the two
types of attacks, our system requires users to attach a contact
microphone around the temple. Since the AR users need to
wear the AR headset, this condition can be easily satisfied by
integrating the contact microphone into the frame of the AR
headset. We leverage the contact microphone to capture the
internal body voice and use the existing normal microphone
on current AR devices to collect the air voice. The distance
between the normal microphone and the user’s mouth is
about 10 centimeters. Since the distance is pretty short, the
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Fig. 4. The spectrograms of voices through air and internal body.

time delay between two audio signals is less than 13 samples
when the sampling rate is 44,100 samples per second. While
speaking, the user can be in any stationary posture, such as
sitting and standing.

2.5 Feasibility study and challenges

In order to defend against the two attacks we consider,
we need to fully leverage the relationship between voices
through the air and the skull. Fig. 4 shows the spectrograms
of two voices when the user says “Five.” We can observe
two facts: 1) There exists a strong correlation between two
voices on both the time and frequency domains. If a normal
user interacts with the headset using voices, we should
observe that a voice through the internal body is produced
at the same time. 2) The voice that propagates through the
internal body only reserves partial low-frequency features
(200 Hz to 2000 Hz). If we can see high-energy blocks in
the spectrogram of internal body voice, we should see high-
energy blocks at the same location in the spectrogram of the
air voice. These observations illustrate that it is feasible to
defend against two attacks by measuring the correlation and
similarity between two voices.

To achieve our goal, we solve two challenges in the
design of our system. First, even with amplifier, the SNR
of the voice that propagates through the internal body is
still low, which makes it hard to extract voice features
from the raw time-domain signals. To address this issue,
we transform the signal from the time domain to the time-
frequency domain and leverage spectrogram enhancement
techniques to extract the features of two voices from their
raw signals.

The second challenge is to measure the correlation and
the similarity between the internal body voice and the air
voice. This is difficult because both voices have different
capabilities for capturing users’ voices. More specifically,
the internal body voice only contains partial low-frequency
features, but it is nonsensitive to environmental noise. The
mouth voice reserves much more features, but it is easily
influenced by environmental noise. In order to robustly
measure the correlation between two voices, we first con-
vert the two voices to spectrograms on the time-frequency
domain of the three dimensions: time, frequency, and en-
ergy. The correlation and the similarity of two voices are
measured by matching high-energy blocks that exist in both
spectrograms.

Data Collection Spectrogram Generation and 
Enhancement

Liveness detection for a 
single word

Liveness detection 
for a sentence

…

Fig. 5. System pipeline.

3 SYSTEM DESIGN

In this section, we show the pipeline of our system and
describe our solutions in detail.

3.1 System overview

The key idea underlying our system is to fully leverage two
propagation paths of the human voices. When the AR user
says a voice command, the normal microphone will capture
the user’s voice that propagates through the air, and the
contact microphone on the user’s head can record the voice
that only propagates through the user’s body. By comparing
the information in the two voices, our system can determine
whether the voice is from the normal user or from two types
of attackers. For a new AR user, there are two stages to use
the system. In the training stage, the new user is asked to say
a few words using our system. These training instances are
used to quickly build a classifier. After the training stage, the
system is ready to be used. In the testing stage, our system
will check whether the command is from the normal user
who is using the AR headset using the trained classifier. If
the voice is from the normal user, the user can interact with
the AR headset normally. Otherwise, the voice command
will not be parsed to the AR headset for further verification.

The pipeline of data collection and processing is shown
in Fig. 5. After collecting the user’s voices at two channels,
we first segment the voice for each word to remove the
internal between neighboring words. For the voice signals
of each pair of words, we transform the signals from the
time domain to the time-frequency domain. Since both raw
voice signals contain background noise, we further leverage
spectrogram enhancement techniques to remove the noise
and extract the information of the voices. Then, we measure
the correlation between two enhanced spectrograms of each
pair of words. If the correlation exceeds a threshold, the pair
of signals is further checked for the second round. In the
second round, we measure the similarity between two spec-
trograms. Here the similarity is defined as the proportion of
shared information between two voices. If the proportions
of shared information fit the trained classifier, the word is
regarded to be from the normal user. To tolerate wrong
classification results, the final detection result of a sentence



5

(voice command) is determined by a voting procedure of all
words in it. Only if the number of votes that represent the
voices from the normal user exceeds the voting threshold, is
the voice source regarded as the normal user.

3.2 Word segmentation and spectrogram generation
Each audio signal includes two parts: the voice and back-
ground noise. The voice contains abundant features of the
user’s voice, while the noise part only records the acoustic
noise in the background. In our system, we only focus on the
user’s voice in order to reduce the influence of the acoustic
noise in the background. Since the voice recorded by the
normal microphone has much more features of the user’s air
voice, we segment each audio sample into different words
by performing Hidden Markov Model (HMM) based word
segmentation techniques [23] on the air voice.

Also, we need to find features to measure the relation-
ship and differences between two voices collected from two
microphones to distinguish whether the voice is from a
normal user. In order to capture features on time-frequency
domain, we perform short-time Fourier transform (STFT)
on each word and each audio sample with a window size of
about 22 ms based on:

X(τ, ω) =
n=te∑
n=ts

x[n]w[n− τ ]e−jωn (1)

where τ is the time axis, ω is the frequency axis, x[n] is an
audio signal in the time range (ts, te), w[n] is the window,
and X(τ, ω) is a complex function representing the phase
and magnitude of the signal over time and frequency. Then,
for each time and frequency frame, the spectrogram of the
complex function X(τ, ω) is computed based on:

E[f, t] = |X(τ, ω)|2 (2)

where E[f, t] is the power of f th frequency band and tth

time frame. f and t are positive integers with range 1 ≤ f ≤
M and 1 ≤ t ≤ N . M is the number of frequency frames in
generated spectrogram, andN is the number of time frames.
In our system, we further convert power measurements to
decibels for data processing.

3.3 Spectrogram enhancement
In real usage scenarios, the contact microphone cannot touch
the skull directly, which leads to low SNR of recorded
internal body voice even with an amplifier. The air voice
is also influenced by background noise. To extract features
from both voices, we leverage spectrogram enhancement
techniques to extract high-energy clusters that are only pro-
duced by the user’s voice on the generated spectrograms.
After obtaining the spectrogram of each word, we first apply
the frequency domain denoising method by subtracting the
noise floor (non-voice part) from the spectrogram. Since
the microphone of the AR headset is close to the user’s
mouth, most power should be distributed on the voice part
as shown in Fig. 6(a). Therefore, the noise floor is set to
80% of the power in the spectrogram of each word. If the
resulting magnitude becomes negative after subtraction, we
set it to zero. Second, since the internal body voice collected
from the contact microphone contains strong noise under

(a) Raw internal body voice. (b) Enhenced spectrogram.

Fig. 6. Spectrogram enhancement.

𝑆𝑆2

𝑆𝑆1

(𝐼𝐼, 𝐽𝐽)

(𝑀𝑀,𝑁𝑁)

0

Fig. 7. Illustration of correlation calculation.

800 Hz, we only reserve the spectrograms from 800 Hz to
2000 Hz for the following analysis. As shown in Fig. 6, most
of the noise is removed from the spectrogram, and only the
information of the voice is reserved.

3.4 Feature extraction
Since two voices are generated from the same vocal system
at the same time, we should be able to observe strong
correlations between them for a normal user. Ideally, the
subtraction of two spectrograms should be zero. In our sys-
tem, we measure the correlation between two spectrograms
instead of directly calculating the differences between them
for two reasons. First, both voices have different capabilities
for capturing users’ voices. More specifically, the internal
body voice only contains partial low-frequency features, but
it is nonsensitive to environmental noise. The mouth voice
reserves much more features, but it is easy to be influenced
by environmental noise. Second, even if two microphones
are synchronized, there may still exist small synchronization
bias in the collected voices. In our solutions, we consider
the two spectrograms (S1 and S2) as two pictures in two-
dimensional hyperplane, as shown in Fig. 7. Both S1 and
S2 are of the same size (M × N ). If we fix the position of
S1 and move S2, two spectrograms must have overlapped
area as long as the point (I, J) is within the gray area. Sim-
ilar to one-dimension cross-correlation measurement, given
two spectrograms S1 and S2, we measure the correlation
between S1 and lagged copies of S2 as a function of i and j.
For this copy, if we assume that S1 and the lagged copies of
S2 have an overlapped area of size M ′ ×N ′, the correlation
coefficient of the specific shift is:

Corr[i, j] =

k=M ′, l=N ′∑
k=1, l=1

Oi,j1 [k, l]×Oi,j2 [k, l] (3)

where O1 is the overlapped part of S1, and O2 is the
overlapped part of S2. The point (i, j) represents the pos-
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Fig. 8. Correlation matrix for two voices from the same user.

sible postions of (I, J). Hence, the positive integer i is
from 1 to 2M − 1, and the positive integer j is from 1 to
2N − 1. The best matching of two spectrograms is found
if the corresponding correlation coefficient is maximal. In
our system, two voices are highly correlated, so the highest
correlation coefficient must appear around the center of
correlation matrix Corr, as shown in Fig. 8. Based on this
observation, a word is detected to be from a live user if

|J −M |
2M

< λ and
|I −N |
2N

< λ (4)

where λ is the decision threshold.
A pair of spectrograms that satisfy Equation 4 cannot

ensure that two voices are from the normal user. Although
we know the two spectrograms are highly correlated from
Equation 4, it is not clear how much information or features
are shared between two spectrograms. Therefore, we further
measure the similarity between two voices by finding the
proportion of shared information. Based on our observa-
tions, the amount of shared information should make up a
large proportion of either of two voices. In other words, if an
entry is non-zero in the spectrogram of internal body voice,
it is very likely to be non-zero in that of the mouth voice,
and vice versa. To quantitatively describe how similar two
spectrograms are, we first calculate the lags using the values
of i, j, M , and N . After that, we use the measured lags to
calibrate our synchronization to get the best match. For each
word, the proportion of the shared information that is in S1

is defined as:

P1 =
Sizeof({(i, j)|S1[i, j] > 0 & S2[i, j] > 0})

Sizeof({(i, j)|S1[i, j] > 0})
(5)

Similarly, the proportion of the shared information that is in
S2 is defined as:

P2 =
Sizeof({(i, j)|S1[i, j] > 0 & S2[i, j] > 0})

Sizeof({(i, j)|S2[i, j] > 0})
(6)

The similarity between two voices is defined as the smaller
one of P1 and P2. The reason why we use this fraction
expression is that we want the final results of P1 and
P2 to be a ratio. The ratio representation is necessary be-
cause this can eliminate the negative impacts of absolute
values. Since the energy distribution of different words is
diverse, the absolute values of sizeof((i, j)|S1[i, j] > 0)
and sizeof((i, j)|S2[i, j] > 0) vary in a wide range. If we
feed this absolute range to the classifiers, the classification
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Fig. 9. Feature analysis.

performance will degrade a lot since the features are not
well normalized. Therefore, the ratio representation here is
a form of normalization.

4 LINE-FITTING MODEL

4.1 Liveness detection for a single word

Fig. 9(a) shows the values of the proportion of the shared in-
formation for both the normal user and the attacker. Ideally,
the proportion of the shared information should be high for
normal users. However, since different users have different
speaking habits (e.g. different speeds of speech and different
accents), the proportions of shared information may not al-
ways be a high value. Also, unpredictable noise during data
collection may also influence the final results. Therefore, it
is hard to determine the legitimacy of the speaker using a
fixed threshold on each dimension. By studying the data
distribution on a 2-dimension feature hyperplane, we find
that data of normal users lies on a straight line, while that
of attackers is far away from the line. Fig. 9(b) shows the
distribution of distances from the data point to the straight
line that is fitted using the normal user’s training data. We
can see that over 95% of the normal user’s data points have
a distance less than 2, while over 85% of the attacker’s data
points have a distance larger than 2. This fact enables us
to detect the legitimacy of the speaker by calculating the
distance from the data point to the line that fits the training
data. After collecting several training data from the user, we
first fit a straight line using least squares, as the yellow line
in Fig. 9(a). A word is considered to be from the normal user
if

|aP1 + bP2 + c|√
a2 + b2

< γ (7)

where P1 and P2 are the features calculated using Equations
5 and 6, and a, b, and c are coefficients of a straight line
ax+ by + c = 0. γ is the decision threshold and is set to the
95% largest distance of normal user’s training data. A word
is considered to be from a normal user if and only if both of
Equations 4 and 7 are satisfied.

4.2 Liveness detection for a passphrase

AR users usually speak a sentence or passphrase that con-
sists of multiple words to AR headsets. For example, the
general voice authentication systems ask the user to speak
a 6-digit passphrase. In order to give an accurate detection
result for each sentence, we need to combine the results of
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Fig. 10. A special case where an attacker can still break the system
without having the victim’s internal body voice.

multiple words after getting the correlation and similarity
measurement of each of them. In a voting procedure, three
questions need to be answered. 1)Who should be eliminated
from voting; 2)What is the weight of each player; 3) What
is the minimum number of votes needed to pass a vote?
To answer the first question, the voter whose data cannot
satisfy either of Equations 4 or 7 is eliminated from voting.
Second, since both P1 and P2 reflect the propagations of
shared information between two voices, the word with high
values of P1 and P2 should have a higher weight for voting.
Therefore, for each word in the voting procedure, we let
the smaller value of its P1 and P2 be its weight. Third, to
accurately reject the attacker and accept the normal user, for
a sentence or a voice command with n words, the minimal
number of votes is set to 0.2× n. If there is no result whose
number of votes exceeds 0.2×n, the user is regarded as the
attacker.

5 EXTENSIONS

In this section, we will state the limitations of line-fitting
model. To address these limitations, we propose a new
classification model by combining the results of two weak
classifiers. Finally, we will analyze the computation cost of
the new model.

5.1 Problem statement
Although the line-fitting model proposed in Section 4 can
recognize two types of attackers with high accuracy, it
can still be broken if the attacker knows all details (e.g.
feature extraction and classification methods) of the liveness
detection system. The reason is that the decision boundary
of the line-fitting model covers much larger areas than those
of the training data on feature hyperplane. Fig. 10 shows an
example where the attacker can easily break the line-fitting
model without having the victim’s internal body voice.
Assuming that the attacker’s data has satisfied the Equation
4, then the attacker can carefully design the internal body
voice in advance so that the values of both P1 and P2 close
to zero. In this case, the point of the attacker’s data is also
within the decision boundary on the feature hyperplane.
More importantly, considering the attacker will only launch
attacks on a limited number of dangerous commands (e.g.
authentication passphrase and delete files), the cost of this
type of attack is relatively low. The attack can keep gener-
ating the desired internal body voices for these commands

until the final values of both P1 and P2 are close to zero.
After that, the attacker can easily launch the attack without
any cost.

Attack model. In this extension, we consider a new
type of attacker called expert attacker. Beyond the ability of
obstruction attackers and replay attackers, expert attackers
can acquire the detailed design of our system. Moreover, the
expert attacker is able to generate fake internal body voices
in order to make the values of both P1 and P2 are close to
zero.

5.2 Enhanced classification for robust liveness detec-
tion

To reject this new type of attacker, we need to carefully de-
sign the decision boundary based only on the normal user’s
data so that it can not only accurately separate the data of
the normal user and attackers (both obstruction attacker and
replay attacker) but also effectually defend against expert
attackers. This is challenging for two reasons. First, since
the InAR headsets are battery-limited devices, we need to
keep the computation cost as low as possible. Therefore,
we should avoid using complex classification models like
neural networks. Second, the generalization of the selected
classification model must be high. For instance, even if we
can obtain the perfect decision boundary for a user’s data by
carefully setting the parameters of the classification model,
these parameters may not be suitable for classifying data of
others users. To address the above challenges, we propose
a new classification model. Specifically, we first train two
weak classifiers based on the covariance and support vector
data description (SVDD) independently using the same
training dataset. Finally, we combine two weak classifiers to
create a strong one. Any testing data is recognized as from
the normal user if and only if it passes both weak classifiers.

Minimum covariance determinant-based classifier.
Since the attacker’s data is away from the clusters of the
normal user’s data, if the testing data is from the attacker, it
must appear like an outlier on the feature hyperplane. One
common way of performing outlier detection is to assume
that the regular data comes from a known distribution (e.g.
data are Gaussian distributed). From this assumption, we
generally try to define the shape of the data, and can de-
fine outlying observations as observations which stand far
enough from the fit shape. To define the shape of the data,
we first fit a Minimum Covariance Determinant estimation
based on the training data by setting a proportion of training
data as inliers. Then, for each testing data, we calculate its
Mahalanobis distance obtained from this estimation based
on:

DM (~P ) =

√
(~P − ~µ)TE−1(~P − ~µ) (8)

where ~P = [P1, P2] is a data point, ~µ is the mean value
of training data, and E is the covariance matrix estimation.
We use the Mahalanobis distance as a measure of outly-
ingness. A data point is detected as from the attacker if
its Mahalanobis distance is larger than those of inliers. Fig.
11(a) shows the decision boundary of Minimum Covariance
Determinant-based classifier when it is trained based on 20
training instances and 5% of all data is regarded as outliers.
We can observe that the decision boundary can efficiently
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(a) Robust covariance. (b) SVDD. (c) MCD-SVDD model.

Fig. 11. Decision boundaries of different classifiers.

separate the data of attackers and the normal user, but
much blank spaces are still covered at the upper right and
lower left corners. We further eliminate these blank spaces
by levering the second weak classifier. Moreover, we find
that the decision boundary of covariance determinant-based
model is almost linear for some dataset but can also be a
curve for others.

SVDD-based classifier. In our system, the basic idea of
SVDD is to find a circular boundary around the data of
the normal user in the two-dimensional feature space and
minimize the volume of this hypersphere in order to reject
as many outliers as possible. In general, the hypersphere is
characterized by a center a and a radiusR. HereR is defined
as the the distance from the center a to any support vector,
and a is a linear combination of the support vectors. To get
a soft margin, slack variables ξi with penalty parameter C
are used to form data points xi. Then, we can formulate the
minimization as:

min
R,a

R2 + C
n∑
i=1

ξi

s.t. ||xi − a||2 ≤ R2 + ξi

ξi ≥ 0

(9)

From Karush-Kuhn-Tucker optimality conditions, we
have

a =
n∑
i=1

αixi (10)

where αi can be solved based on the following optimization
problem:

max
α

n∑
i=1

αiK(xi, xi)−
n∑

i,j=1

αiαjK(xi, xj)

s.t.
n∑
i=1

αi = 1

0 ≤ αi ≤ C

(11)

where K is the kernel function. In our system, we used
radial basis function as the kernel function and set an upper
bound on the fraction of training errors to 5%. Fig. 11(b)
shows the decision boundary of our SVDD-based classifi-
cation model learnt from 20 training data of the normal
user. We can observe that SVDD-based model can effectively
reject data points in the lower left and upper right areas

in the feature space. Although SVDD-based classification
model cannot really reject the data points of obstruction
attacks because of the circular boundary and the distribution
of data points, it can be combined with our MCD-based
classification model for better system performance.

Classification models combination. As we stated above,
both the MCD-based and SVDD-based classification models
have their strength and limitations on rejecting attackers.
Specifically, MCD-based classification model can effectively
defend against obstruction and replay attacks, while having
limited ability to reject expert attackers. On the other hand,
SVDD-based classification model can protect the normal
user from expert attacks, but fails to defend against obstruc-
tion and replay attacks. Based on these two insights, we pro-
pose a new classification model by combining the strengths
of MCD-based and SVDD-based classification models. As
shown in Fig. 12, the extracted features (P1 and P2) are first
sent to the MCD-based model. If the incoming features are
recognized as from the normal user, they are immediately
sent to the SVDD-based model for the second round classi-
fication. A pair of features is recognized as from the normal
user only when they are classified as from the normal user
by both classifiers. Otherwise, the features are recognized
as from an attacker. In addition, since the requirements of
performing expert attacks are higher than those of either
obstruction attacks or replay attacks, we argue that it is
easier for the normal user to suffer from obstruction and
replay attacks. Therefore, we let the testing data pass the
MCD-based classifier first to reduce the amount of data
that is sent to the SVDD-based classifier. Fig. 11(c) shows
the decision boundary of the MCD-SVDD model. We can
see that most data points of the normal user are within
the boundary while almost all data points of three types
of attackers are outside the boundary. Similar to the line-
fitting model, we also combined the classification results of
multiple words through a weight majority voting game. The
weight of each player the voting procedure is the same as
the one used for the line-fitting model. The only difference
is that the minimal number of positive votes is set to 0.3×n
for the MCD-SVDD model.

6 EVALUATION

In this section, we introduce the experimental setting of our
evaluation and show the experimental results.
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Fig. 12. Workflow of classification model.
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Fig. 13. Testbed for collecting internal body voice.

6.1 Hardware and data collection
Our system consists of two components: a testbed for col-
lecting internal body voice and a smartphone for collecting
air voice. We implemented our testbed using a Raspberry
Pi 3, an iRig HD 2 soundcard, and an AXL contact mi-
crophone. Besides, we used a Nexus 5 to collect users’ air
voices and transmit them to the Raspberry testbed through
WiFi. Both the smartphone and the Raspberry testbed were
synchronized to the same server. Our experiments involved
10 volunteers, and all of them were asked to repeat saying
sentences of different lengths to our system. In order to
make sure the contact microphone can capture the internal
body voice during the data collection, we attached the
contact microphone to a hat and asked each volunteer to
wear it. Each volunteer wore the hat in their own way
and was in a comfortable posture they preferred. For data
analysis and processing, the data was then transmitted to
a desktop computer with Intel(R) Core(TM) Devils Canyon
Quad-Core i7-8700K @ 4.00 GHz CPU and 16 GB of RAM.
To evaluate the system performance for legitimate users,
we asked each user to say say a 5-word sentence 50 times.
Among 250 collected words, we randomly picked 40 words
as the training data and the remaining as the testing data.
To examine how well our system can defend against attacks,
we generate a dataset that contains 200 words for each
attack model.

Performance metrics. In our experiments, we use the
following performance metrics to evaluate the validation
performance of our system. Accuracy is defined as the rate
at which a normal user is correctly accepted or an attacker
is successfully rejected by the system.

6.2 Overall performance
Line-fitting model. We first evaluated the system perfor-
mance for normal users and against two types of attacks
using the line-fitting model. In this experiment, we used the
voices of 40 words collected from the normal user as the
training data. The correlation threshold λ was set to 0.1, and
the distance threshold γ was set to the 95% largest distance
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(a) Line-fitting model.
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(b) MCD-SVDD model.

Fig. 14. Overall performance of our system.

of normal user’s training data. We asked each user to say a
5-word sentence 50 times. Moreover, we repeated this pro-
cedure for 10 times to study the variance of true acceptance
rates of different volunteers, and the experimental results
are shown in Fig. 14(a). We can observe that our system
can correctly accept the normal user with mean accuracy of
97% for all users. Even in the worst case, our system can still
achieve a high accuracy of 92.3% for normal users. By study-
ing normal users’ data that is wrongly rejected, there are two
main reasons why the performance is degraded. First, there
are two volunteers who speak softly, which makes their
voices easier to be covered by background noise. Second,
volunteers’ activities may cause a slight movement of the
hat, which introduces high-energy noise to the internal body
voice and reduces similarity between the two voices.

We further evaluated how accurately our line-fitting
model can reject two types of attacks. To collect the data
for the obstruction attack, we let a volunteer speak loudly
while the normal user (another volunteer) was wearing
the hat. To collect the data for the replay attack, we used
a Nexus 6 smartphone to record the victim’s voices at a
distance of 0.5 meters. Then, we used the loudspeaker of a
smartphone to replay in the victim’s voice to our system. At
the same time, the replay attacker said the same sentence
to our system while wearing the hat. Moreover, we made
sure the gender of the victim and the replay attacker are
the same. We leveraged the fitted straight line for the victim
to determine the legitimacy of the attacker’s data, and the
results are shown in Fig. 14(a). We can see that our system
can provide high accuracy against both types of attacks.
More specifically, our system can provide a mean accuracy
of 99.2% and 98% for defending the obstruction attack
and replay attack, respectively. The accuracy of successful
defenses is not 100% for two reasons. First, some inter-
nal body voices in the training dataset contained noise,
which increased the distance threshold. Second, the slight
movement of the user’s head may also introduce random
high-energy influence to the spectrogram. In rare cases, the
filtered spectrogram of noise was similar to that of some
words (e.g. “eight”). As a whole, our system can provide
high-security protection for users against obstruction attack
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Fig. 15. Influence of distance threshold γ.

10 20 30 40

No. of training data

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

Normal user

Obstruction attack

Replay attack

(a) Line-fitting model.

10 20 30 40

No. of training data

0

20

40

60

80

100
A

c
c
u
ra

c
y
 (

%
)

Normal user

Obstruction attack

Replay attack

Expert attack

(b) MCD-SVDD model.

Fig. 16. System performance with respect to the number of training
instances.

and replay attack while still ensuring good user experience
for normal users.

MCD-SVDD model. We also evaluated the performance
of our MCD-SVDD model for five-word sentences using
the same dataset. Specifically, we used 40 training instances
collected from the normal user to build two classifiers and
set the upper bound of outliers in training data to 5%. Fig.
14(b) illustrates the classification accuracy for normal users
and against three types of attacks. It is clear that the MCD-
SVDD model can accurately accept normal users and reject
obstruction and replay attacks with high accuracy. Besides,
by improving the decision boundary, the expert attack can
be efficiently detected with accuracy of 100% for all ten
users in our dataset.

6.3 Influence of training dataset size

In practice, we want the amount of training data to be
as small as possible to reduce the training cost for new
users. Therefore, we evaluated how much training data is
needed by our system in order to provide both high-security
protection and good user experience. Fig. 16(a) shows the
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Fig. 17. System performance with respect to voting threshold.

performance of the line-fitting model with different sizes
of the training dataset. We can see that the average accu-
racy for the normal user is improved a lot by using more
data for training since we have more knowledge about
the distribution of the normal user’s data. By contrast, the
average accuracy of successful defense against either of the
two attacks is almost the same by using different numbers
of training data. The reason behind this is that the data
distribution of the attacker’s data is significantly away from
that of the normal user. Therefore, our system can accurately
reject two types of attacks even if the training data is limited.
We also did the same experiment on the MCD-SVDD model,
and the results are shown in Fig. 16(b). When there are only
10 training instances available, the MCD-SVDD model can
only reject the replay attack with an accuracy of about 85%.
By increasing the number of training instances to at 20 or
more, the system performance can be largely improved to
nearly 100%, especially against replay attacks. Overall, our
system can provide both high-security protection and good
user experience after collecting the voices of 20 words from
the normal user, which is low-cost and easy to be used for
new users.

6.4 Influence of the ratio of γ relative to the maximum
distance
In our default experimental setting, the distance threshold γ
is set to 95% of the highest distance in the training data.
In real scenarios, there is a trade-off on determining the
value of γ. A small distance threshold can provide extremely
high true rejection rate against two types of attackers, but it
also makes it hard for normal users to use our system. A
high distance threshold can ensure good user experience,
but more attackers are wrongly accepted. In this subsection,
we study what is the proper value of γ for different users.
Fig. 15 shows the system performance with different values
of γ. It is clear that the average accuracy for normal users
rises with the increase of γ, while the average accuracy
of successful rejection drops. When γ is the 95% highest
distance in the training dataset, the true acceptance rate and
the true rejection rate are nearly equal. Therefore, we let
the γ be equal to the 95% highest distance in the training
dataset to balance the need for security protection and user
experience.

6.5 Influence of voting threshold
The performance of our system relies on a successful voting
procedure. Hence, a proper voting threshold is important.
Similar to the distance threshold, there is also a trade-
off on determining the value of the voting threshold. If
the voting threshold is too small, all normal users can be
accepted, but some attackers may also be wrongly regarded
as the normal user. If we assign a high value to the voting
threshold, all attackers can be successfully rejected, but the
user experience of normal users is ruined. In this subsection,
we study what is the proper value of the voting threshold.
Here we use c ∗ n to represent the voting threshold where
c is a constant and n is the number of words in a sentence
(voice command). We evaluated the performance for 5-word
sentences using the default parameters and adjusted the
value of c, and the results are shown in Fig. 17(a). We can
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Fig. 18. System performance with respect to the sentence length.

see that the average accuracy for normal users drops rapidly
when c is larger than 0.2. Moreover, our system can provide
good security protection after c reaches 0.2. Therefore, we let
the c be equal to 0.2 in our default system setting for the line-
fitting model. Since the value of the voting threshold largely
depends on the system performance on a single word, we
also studied the proper value of voting threshold for our
MCD-SVDD model. As shown in Fig. 17(b), the MCD-SVDD
model cannot effectively defend against attacks when the
voting threshold is less than 0.3. Moreover, when the voting
threshold is greater than 0.4, the system can wrongly reject
the normal user with a probability of about 15%. Therefore,
the proper value voting threshold should be between 0.3
and 0.4 based on our experiments.

6.6 Influence of sentence length

We also evaluated the system performance for sentences
of different lengths. Here the sentence length refers to the
number of words in the sentence. When the length of the
sentence is short, the wrong classification of a few words
may dominate the voting procedure and give the incorrect
detection result. For longer sentences, the voting procedure
can tolerate a few wrong predictions by involving more
players. In this subsection, we study what is the minimum
sentence length to ensure good security protection and user
experience, and the results are shown in Fig. 18(a). We can
see that the system performance is improved with a higher
number of words in a sentence. When the sentence length is
6, our system can provide average accuracy of about 100%
for both accepting normal users and rejecting attackers.
Moreover, with a higher numbers of words in a sentence
(voice command), the variance of both the true acceptance
rate and the true rejection rate are reduced, as shown in the
error bar in Fig. 18(a). This fact implies that the robustness
of our system is improved by saying a voice command with
more words. The influence of the sentence length is more
significant for the MCD-SVDD model, as shown in Fig.
18(b). For a three-word sentence, the system can only defend
against attacks with accuracy of as low as 77.5%. By having
two more words in the sentence, the system can protect the
normal user from any type of attacks with accuracy of at
least 95%. Considering most voice commands supported by
current AR applications have lengths of at least 4 words (e.g.
show me the road), our system can provide good enough
security protection and user experience for them.
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Fig. 19. System performance with respect to the background noise.

6.7 Influence of background noise

Since our system records the air voice using a normal
microphone, the background acoustic noise (e.g. conversa-
tion or music) may cover the features in the air voice and
degrade the performance for normal users. To evaluate the
robustness of our system against background noise in terms
of accepting normal users, we asked one volunteer to speak
a 5-word sentence to our system. During the data collection,
we used two loudspeakers to simulate different noise levels
from 45 dB (average home noise) to 70 dB (inside a car at 60
mph). We did not consider greater noise in our evaluation
for two reasons: 1) Most voice-based AR applications are
not designed for noisy environments (e.g. video call); 2)
The performance of voice recognition and authentication
systems can also be degraded by strong noise. Fig. 19 shows
the evaluation results. We can observe that our system can
achieve a high accuracy of at least 97.5% for all noise levels
no matter which classification is used, which means the user
experience of the normal user can be ensured in daily use.
More importantly, we found that the reason why our system
can still provide good performance in a noisy environment
is that the AR users will subconsciously raise their volumes
in a noisy environment, which makes the features of their
voices are more significant than those of background noises.
By applying spectrogram enhancement techniques, these
background noise can be largely removed.

7 DISCUSSION

In this section, we will discuss the usability, limitations, and
future work of our system.

7.1 Influence of acoustic noise

In real usage scenarios, the voice interaction between AR
headsets and AR users is also influenced by background
noise. Strong acoustic noise will influence not only the
performance of our system but also the normal speech
recognition. To reduce the influence of the acoustic noise,
the industry has come up with several solutions, such as
noise-canceling techniques and unidirectional microphones.
For example, Microsoft HoloLens [2] use 2 microphones to
collect information about the acoustic environment in order
to cancel the noise and another 2 microphones to collect only
the user’s voice. In order to simulate the hardware of real
AR headsets, we use a similar noise-canceling microphone
to capture the user’s air voice. This implementation makes
sure that our system can be integrated into current AR
headsets without extra effort.
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(b) Second position.

Fig. 21. Spectrograms of body voice when the sensor is at two positions.

7.2 Influence of the position of contact microphone

In practice, the user may attach the contact microphone any-
where around the temple based on the framework design
of the AR headset. Even for the same headset, we cannot
ensure that the user can attach it at the same position every
time. In order to evaluate the robustness of our system
against different wearing positions of the contact micro-
phone, we collect the data from 4 different positions around
the temple, as shown in Fig. 20. The distance between neigh-
boring positions is about 2 cm. We collect training data from
L1 to predict the testing data from the other locations. Fig.
21 shows the spectrograms internal body voice when the
contact microphone is at two different positions. We can see
that these two spectrograms reserve feasures at almost the
same frequency bands, which is the reason why the slight
position change of the contact microphone will not influence
the performance too much. Experimental results show that
our system can still achieve the same performance (over
97%) for both normal users and attackers, which implies
our system is robust enough to wearing position change.

7.3 Usability

Except for accuracy, validation time is also critical and
determines the usability. We further test the time our system
needs to process the raw signal and get the final validation
results. Experimental results show that our method can
finish the work within 500ms in all cases, which means
our system can respond to the user right after the user
stops recording and does not introduce too much overhead.
Compared with existing works, our system does not need
user’s extra effort in operating the AR headsets, e.g., moving
the device around the audio source. To further strengthen
the usability of our system, we adopt the same human-
computer interaction methods used by current AR headsets,
so that users can quickly get used to using our system.

7.4 Long-term stability
Considering the way of speaking may change for long-term
usage, the fitted line that is based on historical training data
may not accurately classify new data. To evaluate the robust-
ness of our approaches during long-term usage, we further
collect testing data from 2 volunteers 5 weeks after since
collecting their training data. Experimental results show that
our system can still successfully accept a normal user with
an accuracy of 99.1%, which is in line with our expectation.
Our system detects the legitimacy of the speaker by mea-
suring the correlation and shared information between two
voices. Therefore, as long as two voices are from the same
live speaker, there always exists a high correlation between
two voices no matter what speaking habit the user has.
Moreover, the proportions of shared information should
also be stable during long period since the internal body
propagation of each user will not change too much.

8 RELATED WORK

In this section, we discuss current voice-based AR applica-
tions, automatic speaker verification systems, and state-of-
the-art voice-spoofing attacks.

8.0.1 Voice-based AR applications;
There are several benefits of involving voice in the interac-
tion methods. First, voice-based interaction can improve the
immersion of AR experience. Second, it is widely accepted
that the audio is processed faster than the visual stimulus.
For example, Barde et al. [5] showed that audio cues can
reduce reaction time up to 50% for shooting games. There-
fore, the voice is becoming one of the major input meth-
ods of current AR headset and applications. Current AR
applications and headsets use voice for either controlling or
authentication. Most AR headsets support speech recogni-
tion and voice-based control. For instance, HoloLens [2] uses
the voice as the intention mechanism to issue a command.
Besides, voice can also be used for authentication. These
voice-based authentication applications offer opportunities
to attackers who are able to launch a voice-spoofing attack
by imitating a victim’s voice, tone, and speaking style.
This attack could harm the victim’s reputation, safety, and
property.

8.0.2 Automatic voice recognition and speaker verification;
Automatic speech recognition systems aim to modulate a
speech signal to a series of words so that users can interact
with their devices using the voice interface. In the course of
the last few years, there has been a remarkable advancement
in the domain of speech recognition [8], [22]. For example,
Williams et al. [8] presented a neural network that learns
to transcribe speech utterances to characters. The proposed
approaches can achieve a low word error rate of 8%. Voice
can also be used as the biometrics for authentication us-
ing speaker verification techniques. Typically, an automatic
speaker verification (ASV) system is designed to accept or
reject a speech sample submitted by a user for claiming cer-
tain identity [28]. Recently, the development of ASV systems
has made major progress as they are widely adopted by
mobile devices (e.g. smartphones) and online commerces
[15], [19]. Most ASV systems are text-independent, which
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means the user needs to repeat a fixed passphrase. The
reason text-independent ASV systems are widely selected
for authentication application is that they are able to accept
arbitrary utterances, i.e., different speaking habits and lan-
guages from speakers [6]. The current practice of building
an ASV system involves two processes: offline training and
runtime verification. During the offline training phase, the
ASV system uses several speech samples provided by the
genuine speaker to extract certain spectral, prosodic [4], [27],
or other high-level features [12], [20] and uses them to create
a speaker model. Then, in the runtime verification phase,
the ASV system uses the trained speaker model to verify
the incoming voice.

8.0.3 Attacks on voice recognition and speaker verification
systems;
Both voice recognition and speaker verification system
suffer from attacks. Recent researches [7], [10], [14], [29],
[34] have shown that spoken words can be mangled such
that they are unrecognizable to humans, which poses a
serious threat to voice recognition systems. For instance,
[34] showed that it is feasible to send inaudible attack
commands. Also, various approaches are proposed to break
the biometric identification of the victim [18], [30]. For
example, [30] shows that an attacker can overcome text-
dependent ASV systems by concatenating speech samples
from multiple short voice segments of the target speaker.
Due to the simplicity of voice spoofing attacks, a few
research papers have been published in developing relay
attack countermeasures [9], [11], [13], [16], [17], [21], [24],
[25], [31], [32], [36]. However, all these countermeasure
systems are particularly designed for smartphone, which
makes them hard to be implemented on AR headsets. For
example, the liveness detection system proposed in [35] can
detect the replay attacker by reusing smartphone as a sound
radar. However, this work cannot be implemented on AR
headsets since AR headsets do not have a speaker that is
towards the user’s mouth.

9 CONCLUSION

Voice-based interaction is usually used as the primary in-
teraction method for AR headsets due to its good user
experience and performance. AR users rely on accurate
and secure voice input to communicate with AR headsets.
However, recent researches have shown that an attacker can
easily perform various attacks with the help of state-of-the-
art voice synthesis/conversion software. To secure the voice
input on AR headsets, we propose a robust and low-cost
solution for defending against voice-spoofing attacks on AR
headsets with high accuracy. Our system leverages a contact
microphone to record the internal body propagation of the
voice. A user legitimacy is determined by measuring the
correlation and similarity between the internal body voice
and air voice. To our best knowledge, our system is the
first to protect the voice input for AR headsets. Especially,
our signal processing and feature extraction components
can remove noise in raw voice signals and extract useful
features that can represent the correlation and similarity
between two spectrograms of two voice signals. Moreover,
we proposed two classification models (line-fitting model

and MCD-SVDD model) to detect the voice input from the
attacker by targeting different attack models. Experimental
results show that our system can accept normal users with
average accuracy of 97% and defend against obstruction
attack and replay attack with average accuracy of 99.2% and
98%, respectively. More importantly, even if the attackers
can fool our line-fitting model by manipulating special
voice signals, our combine model can still reject them with
accuracy of 100%.
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