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Cognitive Radio Network Technologies
and Applications

Rajorshi Biswas and Jie Wu

Abstract Mobile devices are advancing every day, creating a need for higher
bandwidth. Because both the bandwidth and spectrums are limited, maximiz-
ing the utilization of a spectrum is a target for next-generation technologies.
Government agencies lease different spectrums to different mobile operators,
resulting in the underutilization of spectrums in some areas. For some op-
erators, limited licensed spectrums are insufficient, and using others’ unused
spectrums becomes necessary. The unlicensed usage of others’ spectrums is
possible if the licensed users are not using the spectrum, and this gives rise to
the idea of cognitive radio networks (CRNs). In CRN architecture, each user
must determine the status of a spectrum before using it. In this chapter, we
present the complete architecture of CRN, and we additionally discuss other
scenarios including the applications of the CRN. After the Federal Communi-
cations Commission (FCC) declared the 5GHz band unlicensed, Wi-Fi, LTE,
and other wireless technologies became willing to access the band, leading to
a competition for the spectrums. Because of this, ensuring that the spectrum
is fairly shared among different technologies is quite challenging. While other
works on DSRC and Wi-Fi sharing exist, in this chapter, we discuss LTE and
Wi-Fi sharing specifically.

1.1 Introduction

Currently, governmental agencies assign wireless spectrums to license holders
in large areas for long terms. For this kind of static spectrum allocation,
licensed users of any spectrum cannot use others’ licensed spectrums. This

Temple University

Philadelphia, PA 19122, USA

Rajorshi Biswas e-mail: rajorshi@temple.edu · Jie Wu e-mail: jiewu@temple.edu

1



2 Rajorshi Biswas and Jie Wu

increase in data transmission results in a spectrum crisis for the mobile users.
One method that can help in this situation is dynamic spectrum allocation.
Users use their spectrum in an opportunistic manner. This way, if others’
spectrums are free, then any licensed user can use their licensed spectrum.
Users in this kind of network architecture need to sense channels to find a free
channel. If they find more than one free channel, they need to choose the best
channel for their transmissions. Generally, the number of users is greater than
the number of free channels and users need to share a channel. While using a
free, unlicensed channel, users must be cautious about licensed transmissions
because if any licensed transmission is detected, the user must vacate the
channel. Therefore, the operations of users can be divided into four major
steps: spectrum sensing, spectrum decision, spectrum sharing, and spectrum
mobility. From these four major operations in a CRN, we can conclude that
there are two kinds of transmissions. One is transmissions in a licensed band;
this we call the primary transmissions and we call the user transmitting in
the licensed band a primary user (PU). The other type is transmissions in
the unlicensed band, which we call the secondary transmissions; the user
transmitting in the unlicensed band is an SU (SU).

Transmissions in an unlicensed channel depend on the sensing information
of CR users. There are various methods for detecting transmissions in a
spectrum. Primary transmitter detection, primary receiver detection, and
cooperative sensing are the most common techniques. Cognitive radio (CR)
users must be able to decide the best channel out of all the available channels.
This notion is called spectrum decision. Spectrum decision depends on the
channel characteristics and operation of PUs. Spectrum sharing deals with
sharing the same channel with multiple CR users. Many users can detect
that the same channels are free and their channel choice decisions can be the
same. Because of this, the same channel must sometimes be shared between
different CR users. While a CR user is transmitting in a secondary channel, a
PU may need to use the channel. In this situation, the SU vacates the channel
to the PU, but a secondary transmission cannot be stopped. The SU must
find another channel and resume transmissions in that channel.

At the end of this chapter, we discuss some coexistence scenarios in the
5GHz band which is currently an unlicensed band. Currently, some Wi-Fi
standards (802.11ac and 802.11ax) are operating in the 5GHz band. Dedi-
cated Short Range Communication (DSRC) also operates in the 5GHz band.
LTE shareholders are now trying to operate in that band. We discuss two
co-existence scenarios: the co-existence between LTE and Wi-Fi and the co-
existence between Wi-Fi and DSRC.
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1.2 Network Architecture of Cognitive Radio Networks

This subsection describes the network architecture and components of a CRN.
Figure 1.1 depicts the whole network system. User devices, primary base sta-
tions, and CR base stations are the components of a basic CRN. In Figure
1.1, there are two channels: channel 1 and channel 2. One primary base sta-
tion operates in channel 1 and another in channel 2. Transmissions with the
primary base station are done through licensed channels by mobile users, and
the transmissions are called primary transmissions (denoted by solid lines).
Transmissions with the CR base station can be done through either licensed
or unlicensed channels and these transmissions are called secondary transmis-
sions (marked by dotted lines). There is also another kind of transmission in
which any user device can transmit directly to another user device. Therefore,
transmissions in a CRN can be grouped into three classes:

• Primary transmissions: Primary transmissions are most prioritized
transmissions and cannot be compromised with other transmissions. These
transmissions are done in a licensed channel between primary base stations
and PUs. Primary transmissions are denoted by solid lines in Figure 1.1.

• Secondary transmissions: Secondary transmissions are done in the ab-
sence of primary transmissions. Transmissions between the CR base station
and the CR user are usually secondary transmissions.

• Secondary ad hoc transmissions: User to user communications are
called ad hoc transmissions. These transmissions can continue without
base stations or other components of the network architecture. Users cre-
ate their own network topology and adapt any routing protocols of ad
hoc networks. Users in the gray area form an ad hoc network in Fig-
ure 1.1. There are a lot of routing protocols for mobile ad hoc networks.
For example, the proposed routing algorithm in [1], which ensures a fair
amount of communications among nodes and improves the load concentra-
tion problem, can be used in secondary ad hoc networks. The on-demand
cluster-based hybrid routing protocol proposed in [2] can also be applicable
here.

1.3 Spectrum Sensing

Secondary transmissions depend on spectrum sensing information, so this
step should be done very accurately. Inaccurate sensing detection can lead to
interferences with the PU that are highly unexpected. Though false alarms
(in which channel is not occupied, but is detected as occupied) do not create
interferences with the primary transmissions, it makes the CR user choose a
channel from a narrower range of channels. As a result, a channel must be
shared with many CR users and there will be increased competition among
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Fig. 1.1 Network architecture of a CRN.

CR users to access the channel. The authors of [3] present a classification of
spectrum sensing techniques. First, they classify sensing techniques into three
groups: non-cooperative sensing, cooperative sensing, and interference-based
sensing. Non-cooperative sensing is again classified into three groups: energy
detection, matched filter detection, and cyclostationary feature detection.
The classification is depicted in Figure 1.2.

Spectrum sensing
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sensing

Interference 
based sensing

Energy detection
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detection
Cyclostationary 

feature detection 

Fig. 1.2 Classification of spectrum sensing technologies.

1.3.1 Non-cooperative sensing

In non-cooperative sensing, CR users do not share sensing information with
one another. A CR user makes a decision about the PU’s presence using
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its own sensing information. We discuss primary transmitter detection and
primary receiver detection, which are presented in [4] and [5], in the following
subsection.

1.3.1.1 Primary Transmitter Detection

Transmitter detection techniques emphasize detecting low power signals from
any PU. Low power signals mix with noise from the environment and make
it hard for the CR user to detect primary signals. A low signal-to-noise ratio,
multipath fading effects, and time depression make primary transmissions
detection very difficult for the CR user. We discuss some primary transmitter
detection techniques like energy detection, coherent detection, and matched
filter detection.

Energy Detection:

This technique does not require CR users to have knowledge of PU signal
characteristics, and it is easy to implement. Because of this, it is widely used
to detect primary transmissions. Let’s assume S(n) is the signal received by
the CR user, W (n) is white Gaussian noise, and P (n) is the original signal
from the PU.

H0 : S(n) = W (n) (1.1)

H1 : S(n) = W (n) + hP (n) (1.2)

Hypothesis H0 indicates the absence of a PU and hypothesis H1 indicates
the presence of the PU transmissions. h denotes the channel gain between
the primary and secondary transmissions. Then, the average energy S of N
samples is:

S = 1/N

N∑
n=1

S(n)2 (1.3)

The CR user collects N samples, calculates the average energy, and compares
it with a threshold λ. If the average energy is greater than the threshold,
λ, then the CR user concludes that primary transmissions are present. To
measure the performance, we denote the probability of the false positive (CR
detects the presence of PU transmissions when there is no PU transmission)
as Pf and probability of the detection as Pd.

Pf = P (S > λ|H0) (1.4)

Pd = P (S > λ|H1) (1.5)
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To improve the performance, we need to keep the PU’s transmission secured.
Therefore, the false positive probability should be less than 0.1 and the de-
tection probability should be greater than 0.9.

Coherent Detection:

When characteristics like signal patterns, pilot tones, and preambles of pri-
mary signals are known, coherent detection techniques can be used. These
techniques work better than energy detection in an environment with noise
level uncertainties. To describe this technique, we define the binary hypoth-
esis slightly differently than energy detection.

H0 : S(n) = W (n) (1.6)

H1 : S(n) =
√
εPpt(n) +

√
1− εP (n) +W (n) (1.7)

Here, pilot signal energy is denoted by Ppt, and ε is the fraction of energy
allocated to the pilot tone. Pilot signals are special kinds of signals used to
send control signals. Hypothesis H0 indicates the absence of primary trans-
missions, and hypothesis H1 indicates the presence of primary transmissions.

If the CR user collects N samples and X̂p is the unit vector in the direction
of the pilot tone, then the average energy, S, is:

S = 1/N

N∑
n=1

S(n)2 × X̂p(n) (1.8)

Problems of Transmitter Detection:

There are some situations where this detection technique does not work. We
discuss two such situations: the hidden terminal problem and shadowing and
multipath effects. Figure 1.3 depicts a scenario where a CR user remains
outside of a base station’s coverage area and it detects that the channel is
free. Because it thinks the channel is free, it transmits in the channel and
interference occurs at the other PU remaining in the coverage of the base
station and the CR user. Figure 1.4 depicts the shadowing effect. The CR user
behind the wall cannot detect primary transmissions. So, the same problem
occurs.

1.3.1.2 Primary Receiver Detection:

The most effective way to detect PU transmissions is to detect the primary
receivers who are receiving from the primary channel. The circuit in Figure
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1.5 shows a simple RF receiver. It has a local oscillator that emits a very
low power signal for its leakage current in the circuit. A CR user can detect
the leakage signals from the RF receiver circuit and identify the presence
of primary transmissions. This detection technique solves both the hidden
terminal and shadowing effect problems. Since the signal power is very low,
it is very challenging and costly to implement the circuit for primary receiver
detection.

1.3.1.3 Matched Filter Detection

When primary signal features like modulation type, pulse shape, operating
frequency, packet format, noise statistics, etc. are known, matched filter de-
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Fig. 1.5 Simple RF receiver circuit.

tection can be an optimal detection technique. If these parameters are known,
the CR user only needs to calculate a small number of samples. As the signal-
to-noise ratio decreases, the CR user needs to calculate a greater number of
samples. The disadvantages of this technique are the complexities in low
signal-to-noise ratio, the high cost of implementation, and the very poor per-
formance if the features are incorrect.

1.3.1.4 Cyclostationary Feature Detection

In a broader sense, a signal can be called a cyclostationary process if its
statistical properties vary cyclically with time. In [6], the authors presented a
signal classification procedure that extracts cyclic frequency domain profiles
and classifies them by comparing their log-likelihood with the signal type in
the database. This technique can work very well in a low SNR. The drawback
of this technique is that it needs a huge amount of computation and thus, a
high speed sensing is hard to achieve [7].

1.3.2 Cooperative Sensing

Cooperative sensing deals with sharing CR users’ sensing information and
making decisions by combining this information. A CR user collects sensing
information from other CR users (in a distributed system) or from the base
station (in a centralized system). Then, it analyzes the sensing information
and makes a decision about whether the primary transmission is ongoing or
not. Though this detection technique overcomes the hidden terminal problem
and the shadowing and multipath problems, it is more complex than previ-
ously mentioned detection techniques. Though its implementation is costly
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and its time complexity is higher, this technique has the best sensing accuracy
and very few false alarms.

1.3.2.1 Data Aggregation Center of Cooperative Sensing

This system can be located either in user devices (distributed system) or in
base stations (centralized system). A Data aggregation center is responsible
for the collection and combination processes of sensing information. The sys-
tem runs some aggregation functions over the collected data continuously
and emits results about the primary transmission status. There are differ-
ent methodologies to combine and calculate, but we must discuss the hard
combining and the soft combining methodologies.

Hard Combining:

CR users send their sensing results to the data aggregation center. This is
just one bit information: 1 for the presence of primary transmissions and 0 for
the absence of primary transmissions. After receiving the sensing information,
the data aggregation center calculates the final result. The final result can be
calculated based on AND, OR, or MAJORITY voting.

Soft Combining:

Unlike the hard combining methodology, CR users send their raw sensing
information (energy level w.r. to time, signal power, SNR, etc.) to the data
aggregation center. Then, the data aggregation center decides the presence
of primary transmissions.

1.3.3 Interference Based Sensing

One user’s transmissions can interfere with another user’s transmissions at
the receivers. The FCC introduced a new model to measure interference.
According to the model, a receiver can tolerate up to a certain level of in-
terference. This limit is called the interference-temperature limit. As long as
CR users do not exceed this limit, they can use any spectrum. In this sensing
method, the PU will calculate the noise level and send the information to
the CR users. The CR users will use the information to control their trans-
missions to avoid exceeding the interference-temperature limit for PUs. The
authors in [8] present interference-based sensing and a technique to calculate
the interference at a PU.
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1.3.4 Predicting Channel to Sense

Due to limitations in the hardware, the CR users cannot sense a wide range
of channels at a time. In addition, sensing a wide range of channels will
raise the CR users’ power consumption. Instead of sensing a huge number
of channels, a CR user can predict which channel to sense. The authors in
[9] model the prediction as a multi-armed-bandit problem. In the multi-arm-
bandit problem of probability theory, a gambler tries to maximize his reward
by playing different slot machines. The gambler has to decide which slot
machine to play, how many times to play each machine, and in which order
to play. The main objective of the gambler is to learn through every play
and to predict which machine to play next so that the cumulative reward
maximizes.

Let’s assume there are N SUs and K channels, and SUs are trying to
learn from their past history to predict the next channel to sense. Every CR
user keeps a log of the transmitting channel in an array of length K. We will
denote the array by Bn where n ∈ {1, ..., N}.

Bn[k] =

{
1, if CR user n transmitted in channel k

0, Otherwise
(1.9)

CR users share their Bn with the other CR users. CR users preserve Bn with
the time of arrival tBn . Then, CR users apply ε − GREEDY methods to
predict the channel for sensing [9].

ε-GREEDY method:

This is the simplest solution of the multi-arm-bandit problem. The next chan-
nel is selected randomly with a probability of ε. The rest of the time, the
maximum average valued channel is selected. The average value of channel k
is denoted by Ak.

Ak =
1

N

N∑
n=1

Bn[k] (1.10)

Another approach that considers forgetting factor β while averaging the
channel values works better. Let transmission logs Bn1

, Bn2
, ..., Bnz come

to a CR user at t1, t2, ..., tz. The forgetting factors for t1, t2, ..., tz are
βt1 , βt2 , ..., βtz , respectively. The average value of channel k is denoted by
Akβ .

Bnβ [k] =

Z∑
z=1

βtz ×Bnz [k] (1.11)
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Akβ =
1

N

N∑
n=1

Bnβ [k] (1.12)

Bnβ [k] denotes the effective value of channel k for CR user n. The effective
values of different CR users for a channel are averaged to find the average ef-
fective value of the channel. The channel with the maximum average effective
value is selected to sense next.

1.4 Spectrum Decision

CR users get a list of free channels after completion of the sensing process. A
CR user can transmit in only one channel at a time. Therefore, the CR user
must choose one channel among all the free channels. It is likely that any
rational CR will choose the best channel. A channel can be characterized as
“good” or “bad” according to some channel properties. Channel choice not
only depends on channel characteristics, but also on other CR users’ activi-
ties. For example, if a channel is crowded by many CR users, despite being a
good channel, a CR may not choose that channel. Normally, the spectrum de-
cision process is done in two steps. We discuss some characteristics of channel
in the following.

Interference:

Interference in a channel represents the channel’s capacity. If interference is
high, its capacity is low. A CR user should choose a channel with low interfer-
ence. The permissible power of a CR can be calculated from the interference
at the receiver.

Path Loss:

Path loss is the reduction in power density of an electromagnetic wave as it
propagates through space. It is related to both distance and frequency. If the
carrier frequency is high, the path loss is also high. To reduce path loss, a
CR can increase the transmission power. Interference with other users also
increases with the increase of transmission power. Usually, a CR user chooses
a channel with low path loss. If the distance between the sender and the
receiver is short enough that the path loss is ineffective, then the CR user
can ignore the path loss’s effects.
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Wireless Link Error:

Errors are more likely to happen in wireless than in wired connections. The
error rate also depends on modulation techniques. These errors are handled
by transport layer protocols. Therefore, CR users choose channels with low
link error rates.

Transmission Delay:

Different channels have different interference levels, packet loss rates, wire-
less link errors, and path loss effects. As a result, different types of link layer
protocols are appropriate for different channels. For this heterogeneity, differ-
ent transmission delays are observed in different channels. A CR user might
choose a channel with few transmission delays.

PU Activity:

If PU transmissions are very likely in the channel, then the CR cannot con-
tinue transmission for a long time in that channel. In this sense, the CR
should choose the channel with the lowest user activity.

Contagious Frequency Channel:

If a CR user can find some channels with contagious frequencies, it can extend
the channel’s bandwidth by combining channels. However, if PU activities are
seen in any of the channels, it cannot yield one particular channel. As a result,
the CR segregates the channels and takes different channels for transmission.
Since the probability of PU activity increases by the number of combined
channels, combining channels may not be a good spectrum decision in situa-
tions with high user activity channels. In addition, channel aggregation and
segregation takes time that increases the latency of a transmission.

1.5 Spectrum Sharing

Usually, the number of available free channels is less than the number of CR
users. Therefore, CR users must share channels. CR users can be competitive
or cooperative with each other. A scenario where CR users are competitive
can be modeled as a static game where each CR user tries to maximize their
reward by transmitting in the shared channel. There are three paradigms
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(underlay, overlay, and interleave) that are used to facilitate the spectrum
sharing.

Underlay:

In this paradigm, secondary and primary transmissions are done simulta-
neously. CR users transmit in very low power that appears as noise to the
primary receiver. Secondary transmission power can be determined by the
interference-temperature limit. If the secondary transmission power does not
exceed the interference-temperature limit, then it does not hamper the pri-
mary transmission. The biggest advantage is that CR users do not need to
sense PU transmissions, so, secondary transmissions can be operated regard-
less of PUs’ activities. SUs suffer from packet loss due to primary transmis-
sions. The authors in [10] propose an energy-efficient algorithm to minimize
the loss rate of SUs. The algorithm also maximizes energy-efficiency in infor-
mation bits per Joule.

Overlay:

In this paradigm, CR users utilize the unused portion of the primary spec-
trum. Using a portion of the spectrum reduces interference with a PU who
uses the whole spectrum. Unlike the underlay, there is no transmission power
limit; an SU can transmit in its maximum power. SUs must have knowledge
(codebook, message format, frequency etc.) about the primary spectrum. CR
users can get this knowledge from the broadcasting of the PU or from a uni-
form standard. Since the CR user knows the codebook, it can divide its power
between its own message transmissions and relay the primary message [4].

Interweave:

This is the original proposal for CRN. In this paradigm, the SU can only
transmit if there is no PU activity. This requires that one sense the primary
channel. SUs use their detection techniques to detect primary transmissions,
and if a channel is not occupied by a PU, then the SU starts transmitting.

1.5.1 Spectrum Allocation in Centralized Interweave
Cognitive Radio Network

In a centralized system, channel allocations to SUs are done by a base station,
and secondary transmissions can occur in the absence of PUs in a interweave
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system. We assume a heterogeneous network with M number of PUs m ∈
{1, ..,M}. An N number of SUs n ∈ {1, .., N} compete with each other to
get access to any k ∈ {1, ..,K} channel among K free channels. Pp(x) and
Ps(y) are the transmission powers of the PU x and the SU y, respectively.
gp(x) denotes the gain of the signal of PU x in the channel and gs(y) denotes
the gain of the signal of SU y. So, the total noise in any channel, k, at any
SU, s, is:

Total Noise =

N∑
n=1

gs(n)Ps(n) +

M∑
m=1

gp(m)Pp(m) +Nk (1.13)

Nk denotes white Gaussian noise from external sources. The first part of the
total noise equation is caused by the signals of other secondary transmissions
and the second part is caused by the signals of all primary transmissions.
Therefore, the signal-to-noise ratio at the SU y in channel k is:

SNRk(y) =
gs(y)Ps(y)

Total Noise
(1.14)

Figure 1.6 shows the bipartite graph formulation by the SUs and the free

SU 1

SU 2

SU N

CH 1

CH 2

CH K

SU 1

SU 2

SU N

CH 1

CH 2

CH K

Channel allocation 
algorithm

Fig. 1.6 Channel allocation algorithm.

channels. An N number of SUs form a disjoint set, and a K number of
channels form another disjoint set of a bipartite graph. Edges in this graph
represent an allocation of the channel to an SU. The graph in Figure 1.6
is a weighted graph whose edge weight represents the allocation cost of the
channel in terms of the decrease in the total signal-to-noise ratio. Let’s as-
sume that after allocating channel k to SU n, the total signal-to-noise ratio
decreases from SNRp to SNRn. Then, the cost of allocation is:
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C(n, k) =
SNRp − SNRn

SNRp
(1.15)

We can also call C(n, k) the weight of the edge (n, k) in the bipartite graph
constructed by N SUs and K free channels. Now, the problem converts to
minimizing the matching cost in a bipartite graph. The hungarian algorithm
provides the solution to the maximum weight matching [11], which can be
adapted to minimize the cost of the matching by inverting the cost.

1.6 Spectrum Mobility

After the spectrum choice, any CR user can access a secondary spectrum, but
a PU is sensed to be present when a CR user is transmitting. The CR user
must vacate the channel for the PU. The transmissions of the CR user cannot
be stopped and may be continued in another channel. This process is referred
to as spectrum mobility. The main function of spectrum mobility is to do a
spectrum handoff. The spectrum handoff process consists of two phases: the
evaluation phase and the link maintenance phase [12]. The evalution phase
deals with observing the environment to find handoff-triggering events, like
primary transmission detection or channel condition degradation. After the
handoff triggering event, SUs decide to handoff and go to the link maintanace
phase. In the link maintainance phase, SUs stop the ongoing transmission and
resume transmissions in another free channel. After completing this phase,
SUs return to the evaluation phase. In [13], authors present different handoff
strategies:

• Non-handoff Strategy: In this strategy, the CR user remains idle while
the primary transmissions continue. The CR user expects to transmit in
the same channel. This strategy is inefficient if the primary transmissions
continue for a long time. Long waiting times will cause the QoS to degrade.
This strategy is preferable when CR users know the channel statistics and
short time primary transmissions are likely in the channel.

• Pure Reactive Handoff Strategy: In this strategy, the CR user hands
off the channel after detection of a primary transmission in the current
channel. The CR must choose another free channel to continue the trans-
mission. Finding the next free channel can take time, which is not accept-
able for the smooth data connection. Since the CR user finds the next
channel after the handoff-triggering events, the majority of the time is
spent finding the free channel.

• Pure Proactive Handoff Strategy: In the proactive handoff strategy
[14], the CR user finds the next free channel before the detection of the
primary channel; the free channel can work as a backup channel. The CR
user can predict the time of the PU’s presence and handoff channel before
handoff-triggering events occur. This strategy needs hardware support to
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sense and transmit simultaneously. Still, there is the possibility of the pres-
ence of a PU in the backup channel that could lead to transmission delays.
Predicting the time of the presence of primary transmissions requires a lot
of machine learning and can lead to a high power consumption by CR
users due to computation complexities.

• Hybrid Handoff Strategy: This strategy is a combination of the pure
reactive and pure proactive handoff strategies. In the hybrid handoff strat-
egy, finding the free channel is done before the handoff-triggering event
(like in the proactive handoff strategy) but the channel handoff is done
after the triggering event (like reactive handoff strategy). This strategy
can achieve a faster channel handoff, but the possibility that the backup
channel will be obsolete is still a concern.

Multiple strategies for selecting the next channel exist. The hidden markov
model is used to predict channel behavior in [15], [16], and [17]. How-
ever, prediction-based channel selection can be harmful when predictions
are wrong. Delays in selecting the next channel can deteriorate the QoS.
Therefore, we consider a search-based approach to select the next channel.
Let’s consider a 2-D search space of time and frequency. We consider all
slots as nodes in a graph. An edge between one node to another represents
the channel switching cost, which is either zero or one. Figure 1.7 shows the
formation of the graph. Let’s denote a slot by (T, CH), where T represents
the time and CH represents the channel. For example, the switching cost
from (T1, CH3) to (T2, CH3) is 0 because the CR user actually contin-
ued transmission in the same channel. The switching cost from (T1, CH1)
to (T2, CH1), (T2, CH2), and (T2, CH4) is 1. The weight of an edge can
be found by adding the switching cost and the channel density. In the fig-
ure, darker slots have more channel density. Now, we get a directed weighted
graph. Graph traversal algorithms like Dijkstra can be applied to this graph
to find the best slot. However, spectrum mobility is challenging. When a CR
user switches its channel, the routing breaks and the routing table needs to
be updated. Routing recalculation is a costly and time-consuming process.
Therefore, routing calculation becomes a part of the channel handoff process.
Instead of recalculating the routing before the handoff, a CR user can pre-
pare a backup channel. The CR user needs to maintain the backup channel
periodically so that it can transfer communication links immediately to the
backup channel after a handoff-triggering event.

1.7 Security Issues in Cognitive Radio Networks

In the last few years, CRNs have become a promising technology in solveing
the spectrum scarcity. However, this network technology has a lot of security
challenges. Authors in [18], [19], and [20] describe a lot of security issues and
solutions in CRNs. In a primary user emulation attack (PUEA), an attacker



1 Cognitive Radio Network Technologies and Applications 17

TimeTime

Fr
e
q
u
e
n
cy

Fr
e
q
u
e
n
cy

T1 T2 T3 T4 T5 T6 T7

CH1

CH2

CH3

CH4

Fig. 1.7 Spectrum search space.

mimics a PU’s signal to fool SUs so that they refrain from using the channel.
As a result, network congestion and a denial of service happens. To solve the
PUEA, classification methods are used to classify whether a signal is from
a PU or an attacker. Location verification-based solutions are proposed in
[21, 22]. Though a PUEA mimics PU signals, it is very hard to mimic the
signal’s energy distribution of a PU. Based on this principle, [23, 24] propose
solutions which classify signals based on power mean, power variance, and the
Walds Sequential Probability Ratio. Usually, all SUs know all PUs’ locations.
Based on the received signals’ power, an SU can determine whether the power
level is feasible if the signal comes from the PU’s location [25].

The spectrum sensing data falsifying (SSDF) attack is applicable in a co-
operative spectrum sensing system with a data aggregation center or fusion
center. Malicious SUs (MSU) send false information to data aggregation cen-
ters so that other SUs take wrong decisions. In the worst case, MSUs and the
benign SUs with the wrong sensing information can win the election. So, it is
important to detect the MSUs and exclude them from the voting. Solutions
for SSDF attacks are based on clustering the benign SUs to a group and
reputation-trust based. Authors in [26, 27], propose two different clustering
algorithms based on the hamming distance between the sensing results of dif-
ferent time slots of different SUs. Associative rule mining-based classification
is proposed in [28]. Authors propose an apriory algorithm to get a frequent
subset of the sensing results from all the SUs. They assume that the MSU
will remain in the frequent subset of the sensing result. Based on the proba-
bility of PUs’ presence, they classified the SUs into benign SUs and MSUs.
A trust-based spectrum sensing scheme against SSDF attacks is proposed in
[29]. In the proposed method, data aggregation center selects some of the SUs
to take local decisions and combines the detection results based on their reli-
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ability. Authors in [30] propose a distributed spectrum sensing method. The
reputation computed based on the deviation form the majority’s decision.

A PU emulation-based testing scheme, FastProbe, is proposed in [31]. Fast-
Probe creates PU signals to test whether the SUs are reporting honestly or
not. This detection technique is now ineffective because there are a lot of
mechanisms that detect PU emulation signals [32, 33, 34, 35, 25]. These
mechanisms are based on distribution, mean, variance of energy, and trans-
mitter localization. So, any MSU can detect the PU-emulated signal from the
data aggregation center and report correct results in that time slot to get a
high reputation and keep reporting false results in other time slots.

1.8 Applications of Cognitive Radio Networks in LTE
and Wi-Fi

Wi-Fi and LTE are the most prominent wireless access technologies nowa-
days. The migration from PCs to mobile devices leads to an exponential
increase of data usage in wireless technologies. The 84.5 MHz of unlicensed
spectrum in the 2.4 GHz band which is allocated for Wi-Fi has been satu-
rated, and is unusable for new wireless applications [36]. Therefore, Wi-Fi
stockholders have been showing interest in using the 5GHz bands. There is
up to 750MHz of unlicensed spectrums in the 5GHz band that falls under the
Unlicensed National Information Infrastructure (U-NII) rules of the FCC.

Some LTE stakeholders, including Qualcomm (an American multinational
semiconductor and telecommunications equipment manufacturer), are also
keenly interested in the 5GHz bands. They proposed extending the deploy-
ment of LTE-Advanced (LTE-A) to the 5GHz band using channel aggregation
(CA) and supplemental downlink technologies (SDL). Carrier aggregation in
LTE-A enables using multiple carriers to provide high data rates. A supple-
mental downlink is a multi-carrier scheme for enhancing the downlink ca-
pacity in Evolved High Speed Packet Access(HSPA+). Some Wi-Fi systems,
such as 802.11a and 802.11n, are already operating in 5GHz bands. However,
Wi-Fi stakeholders have been lobbying the government for access to more
spectrums within the 5 GHz bands. In response, the FCC issued a Notice of
Proposed Rule Making (NPRM) 13-22 in 2013 [37] that recommends adding
195 MHz of additional spectrums for use by unlicensed devices. The Wi-Fi
Innovation Act was introduced in the U.S. Senate and House [38] recently.
This act directs the FCC to conduct tests to assess the feasibility of opening
the upper 5 GHz band, including the Intelligent Transportation System (ITS)
band, for unlicensed use. ITS stakeholders are very concerned about sharing
spectrums with Wi-Fi. They fear that coexistence with Wi-Fi may severely
degrade the performance of ITS applications, especially safety applications
that are sensitive to communication latency. When the ITS band was first
allocated in 1999, the FCC’s original intention was for this band to support
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Dedicated Short Range Communications (DSRC) for ITS exclusively. As a
result, ITS protocol stacks and the relevant applications are not designed
to coexist with unlicensed devices. Access to the 5 GHz spectrum has be-

5.5-698 MHz
TV White Space

2.4-2.5 GHz
2.4 GHz ISM

5.150-5.825 GHz
5 GHz U-NII(1-3)/ISM

5.850-5.925 GHz
ITS/DSRC/U-NII-4~ 3.55-3.7 GHz

3.5 GHz Shared Band~ ~

60 GHz mmWave Band

Fig. 1.8 Different bands for wireless applications.

came a cause of contention between the LTE, Wi-Fi, and DSRC stakeholders,
but more importantly, the 5 GHz bands have become a proving ground for
spectrum sharing between three heterogeneous wireless access technologies:
LTE-U, Wi-Fi (802.11ac/802.11ax), and DSRC. Recognizing the importance
of this problem, a research opportunity focusing on two coexistence scenarios
has opened: the coexistence between LTE-U and Wi-Fi and the coexistence
between DSRC and Wi-Fi.

1.8.1 LTE and Wi-Fi Coexistence

Enabling harmonious coexistence between LTE and Wi-Fi in 5 GHz bands
is particularly challenging for two main reasons. First, Wi-Fi networks are
contention-based, whereas LTE communications are schedule-based. Figure
1.9 shows the basic resource block of LTE. Each user is assigned to a slot in the
time and frequency domain of the spectrum. LTE HeNB (LTE base station)
does not sense before tranmission. On the other hand, Wi-Fi is a CSMA/CA-
based protocol, which means a Wi-Fi device senses before transmission and if
the channel is occupied, it does not transmit. As a result, LTE always shows
eminent behavior while coxisting with Wi-Fi. In fact, experiments done by
Nokia Research [39] show that in coexistence scenarios, the Wi-Fi network is
heavily influenced by LTE-U interference. Specifically, the Wi-Fi APs stay on
LISTEN mode more than 96% of the time, which causes severe degradation
to their throughput. So, the challenge facing LTE and Wi-Fi coexistence is
ensuring a fair share between them. There are several studies on ensuring a
fair share and coexistence between LTE and Wi-Fi. We discuss some of the
approaches next.
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Fig. 1.9 LTE subframe and resource allocation to users.

1.8.1.1 Self Interference Suppression Technology with LTE and
Wi-Fi

Wi-Fi and LTE conexistence can be achieved using Self interference suppres-
sion (SIS) and Full Duplex (FD) capabilities. The SIS is a technique to remove
interference induced by its own transmission. The self-interference cancella-
tion circuits [40] can be used to achieve full duplex capabilities. We consider
a coexistence scenario that consists of one or more Wi-Fi networks along with
several LTE operators. Each Wi-Fi network is comprised of an 802.11 AP and
several Wireless Users (WUs). Figure 1.10 shows the LTE and Wi-Fi coexis-
tence scenario. At the beginning, LTE-U starts the transmission only in the
licensed spectrum (without CA). After a while, LTE aggregates an unlicensed
channel, f2, with the licensed spectrum and continues transmission for some
time. After that, LTE releases f2 because of channel quality degradation, and
it aggregates another unlicensed channel, f1. Wi-Fi starts with CSMA/CA
activity (sensing the channel) and starts transmission in channel f1. At the
same time, it also starts sensing f1. When LTE switches channels from f2 to
f1, the Wi-Fi sensing detects the transmission and releases the channel f1.
Then, Wi-Fi again does CSMA/CA on another channel (f2) and continues
transmitting if the channel is free.

1.8.1.2 Backward Compatibility Approaches

The previous approach focuses on interactions between Wi-Fi and LTE-U and
advocates the design of new FD/SIS-based interference mitigation techniques
without consideration of the issue of fairness. In this section, we study fair
spectrum sharing in heterogeneous systems.
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Fig. 1.10 LTE and Wi-Fi activity and channel switching.

Mechanism 1: Indirect Coordination using Carrier Sensing:

In this scenario, there will be no information flow between LTE and Wi-
Fi. Wi-Fi and LTE-U may not even know what their fair portions of the
spectrum should be. LTE senses the environment and detects the preambles
of Wi-Fi and an LTE HeNB determines how many Wi-Fi APs are within its
transmission range. Then, the LTE HeNB determines its fair portion of the
spectrum based on the number of co-existent Wi-Fi networks. If the LTE-U’s
spectrum usage so far is larger than its fair portion, then the LTE network
will slow down. That is, LTE turns off its transmission for a longer time (i.e.,
reducing its duty cycle) and lets Wi-Fi transmit more. On the other hand, if
the LTE-U’s spectrum usage so far is less than its fair portion, it may increase
its transmission.

Mechanism 2: Embedding Wi-Fi Information in Preamble:

Fair coexistence between LTE-U and Wi-Fi can be achieved by modifying the
Wi-Fi preamble. Only the reserved bits in the preamble can be used for this
purpose. Useful information can be embedded in them, and LTE can adjust
its operations according to the information; this enables fair usage. There are
some options for embedding WiFi usage information in the preamble. There
are at least 5 reserved bits that may be used to embed Wi-Fi information.
Figure 1.11 shows the Wi-Fi (IEEE 802.11ac) packet format. Based on the
information embedded in the Wi-Fi preamble, LTE can adjust its operations
accordingly to achieve fairness between the two systems, i.e., the LTE may
reduce (or increase) its duty cycle if the Wi-Fi has been using less bandwidth
(time) than the fair portion.
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Fig. 1.11 IEEE 802.11ac packet format.

Mechanism 3: Indirect Communication between LTE and Wi-Fi:

This mechanism can be applied to the scenario where there are some ser-
vice providers that provide both LTE and Wi-Fi networks. Those service
providers’ HeNB supports both LTE and Wi-Fi. Suppose provider 1 has both
LTE and Wi-Fi networks and provider 2 has only Wi-Fi networks. There
can be two kinds of communication. Firstly, indirect communication between
provider 1’s LTE and provider 1’s Wi-Fi. Secondly, communication between
provider 1’s Wi-Fi AP and provider 2’s Wi-Fi AP. The indirect communica-
tion may be used for various purposes, such as time synchronization between
LTE and Wi-Fi, exchanging spectrum usage information (e.g., aggregated
bandwidth, aggregated throughput, or the total air time so far), or for other
signaling information to achieve fair spectrum sharing between the two sys-
tems.

1's eNodeB 1's Wi-Fi AP 2's Wi-Fi AP

Fig. 1.12 Indirect communication.

1.8.2 Wi-Fi and DSRC Coexistance

The FCC allocates 75 MHz spectrums in the 5.9GHz band for DSRC which is
used for vehicle-to-vehicle communications. The DSRC is based on the IEEE
802.11p standard. After the FCC declared the 5.9 GHz unlicensed band (U-
NII-4), Wi-Fi could operate in that band. The DSRC remains as a PU and
others act as SUs. DSRC’s inter-frame space (IFS) parameters are two times
longer than 802.11ac/802.11ax. Similarly, the slot time used in the MAC
backoff is longer for DSRC (13 µsec) than for 802.11ac/802.11ax (9 µsec).
These differences give Wi-Fi effective priority over DSRC when accessing the
channel. One solution is changing the IFS values of 802.11ac or 802.11ax so



that DSRC gets a higher access priority. For instance, we can increase the
values of the Wi-Fi’s IFS parameters by adding a DSRC priority time offset
value, giving priority to DSRC. Only the IFS adjustment cannot guaratee
DSRC’s protection. Channelization of U-NII-4 by 802.11ac standards affects
DSRC transmissioins significantly. Experiments by the authors of [41] show
that if the 802.11ac primary channel remains in the same band as DSRC,
then adjusting the DIFS ensures the DSRC’s protection. On the other hand,
if the primary channel remains in another band and some of the secondary
channels remain in the same band as DSRC, adjusting DIFS does not protect
the DSRC transmissions.

1.9 Conclusion

Spectrums are a valuable resource in wireless communication systems. The
CRN is an excellent method of wireless communication in which underutilized
channels are fairly used. The implementation of a CRN includes PU detection,
channel choice, channel sharing, channel handoff, and routing reestablish-
ment. Though current mobile devices have hardware that support to operate
in 2.4GHz, 5Ghz, GSM, WCDMA, and LTE bands, simultaneous sensing
and transmitting is still lacking in them. The promising thing is that most
of the physical layers of communication are software managed. Therefore,
changing the software may adapt some functionality of CRN and its easier
than changing hardware. A lot of changes in the base stations are also re-
quired to implement a CRN. Commercial issues inducing usage policies and
charges to SUs or cognitive radio operators are also not defined. Therefore,
the implementation of a CRN is very complex and expensive. In this chapter,
we present the full architecture of CRN at a high level. We discuss applica-
tions of a CRN in the 5GHz band for the coexisting Wi-Fi, LTE, and DSRC.
We present different mechanisms for ensuring the fair sharing of spectrums
between different technologies in the 5GHz band. Therefore, a CRN is an
excellent means of wireless communication in which underutilized channels
are fairly used.
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