Algorithmic Solutions for Re-Balancing in Bike Sharing: Challenges and Opportunities

Jie Wu

Center for Networked Computing
Temple University

Road Map

- 1. Introduction
- 2. Four System Components
- 3. Re-balancing Through Trucks
- 4. Re-balancing Through Workers
- 5. Spatial and Temporal Complexity
- 6. Challenges and Opportunities
- 7. Conclusion

1. Introduction

Smart City

- Collection of data
- Management of assets, resources, and services

Scope

- Transportation
- . Power plants
- . Utilities
- Water supply
- Crime detection
- School
- Libraries
- Hospitals

•••

Bike Sharing System (BSS)

BSS

- First/last mile connection
- Rent-Ride-Return
- > 1600 BSSs in > 50 countries

Benefits

- Healthy lifestyle
- Green transportation
 - 40% of BSS users drive less

Unbalanced Usage in BSS

Unbalanced usage

- . Time
- . Space

Capacity

- Underflow (empty)
- Overflow (full)

- (a) AM rush hours: 8:00 10:00 AM
- (b) PM rush hours: 5:00 7:00 PM

Re-Balancing in BSS

Dock BSS

- Citi Bike (NYC), Indego (Philly),
 and GoBike (Bay Area)
- BikeMi (Milan), Bubi (Budapest)

Dock-less BSS

- ofo and Mobike (China)
- U-Bicycle and OV-fiets (Europe)
- LimeBike and JUMP (US)

Re-balancing (repositioning)

- Via trucks (not eco-friendly)
- Via workers (through crowdsourcing)

2. Four System Components

1. System design

- Station number, location, capacity, and bike number
- Facility location problem: area best for placing a station?

O

2. System prediction

- Mobility modeling
- Demand prediction

3. System balancing

- Dedicated truck service
- Incentive-based worker recruitment
- Route planning and scheduling

4. Trip advisor

- User guidance
- Re-balance via suggestions

AI Take-off

- X AI convergence
 - AI blackbox
- However, DARPA: Explainable AI

Produce more explainable models

Enable human users to understand

- Back to fundamentals
 - Direct algorithmic/combinatoric solutions
 - Mixed with AI/ML solutions

3. Re-balancing Through Trucks

Hamiltonian circle (for TSP) Legitimate circle

 Trucks move around stations to pick-up/drop-off bikes Alternating positive pieces and negative pieces s.t. capacity l

Notation

- +m: overflow by m
- -m: underflow by m
- I: truck capacity

MATCH Method

Assumptions

- Predefined Hamiltonian cycle
- Piece length limit: I'

MATCH method

- 1': 1/2, complexity: O(n3), bound: 6.5
- Min-weight perfect matching:
 pos (l')., neg (l')., and zero pieces
- Visit each pair following the cycle clock-wise (random point)
- Cyclic-shift the sequence (real start)
- + and initially balanced

l=6, l'=3, (**3**, 7, 8, 4, 5, 6, 9, 2, 10, 1)

Cyclic-shift: (1, 3, 7, 8, 4, 5, 6, 9, 2, 10)

GREED Method

Assumptions

- Predefined Hamiltonian cycle
- Piece length limit: I'

GREED method

- l': l, complexity: O(n²)
- Alternating pos. and neg.
 following the cycle clock-wise

(1, 2, 5, 6, 7, 8, 3, 4, 9, 10, 1)

HYBRID Method

MATCH

- Sparse mode (primary)
- Small geo-area (secondary)

GREED

- Dense model (primary)
- Large geo area (secondary)

HYBRID

- Two-level hierarchy
- MATCH for intra-cluster
- GREED for inter-cluster

(a) A sample distribution of dock stations in Beijing [26]

	MATCH	GREED	HYBRID
City	2.064	1.108	0.881
City+Suburb	3.016	1.923	1.080
City (Sparse)	1.435	1.781	1.342
City + Suburb (Sparse)	2.597	2.575	1.827

(b) MATCH, GREED, vs HYBRID

(Average per bike repositioning distance in km)

- M. Charikar et al, <u>Algorithms for capacitated vehicle</u> routing, SIAM, 2001
- Y. Duan, J. Wu, and H. Zheng, <u>A greedy approach for vehicle routing</u>, GLOBECOM, 2018

ICNC 2020

4. Re-balancing Through Workers

Through incentive

- Workers are BSS users
- Overflow: + and underflow: -
- Monetary award prop.to distance
- Reinforcement learning on setting the price

Dock-less incentive

- Source detour bounded by I
- Extensions with detour at both source and destination

(a) Source incentive

(b) Source and destination incentive

- L. Pan et al, <u>A Deeep Reinforcement Learning Framework for Rebalancing Dockless Bikesharing Systems</u>, AAAI, 2019
- Y. Duan and J. Wu, <u>Optimizing Rebalance Scheme for Dockless</u> <u>Bike Sharing Systems with Adaptive Incentive</u>, MDM, 2019

Incentive Simulation

Cost of detour δ

- 0 in original rent/return region
- $\eta \delta^2$ in neighbor regions
- •+∞ otherwise

Incentive

- RL learns optimal prizing for different regions and slots
- Higher rent (return) incentive in overflow (underflow) regions

Mobike Shanghai trace data

A Global Incentive Approach

Incentive

- For both dock and dock-less
- Deal with multiple workers
- Two rounds of perfect matching
 - Match overflow stations with underflow stations
 - Match users with station pairs

Y. Duan and J. Wu, Optimizing the crowdsourcing-based bike rebalancing scheme, IEEE ICDCS, 2019

Approximation

- 3-approximation
- Proof sketch:

Yellow: Optimal, Blue: 2-Round

Optimality of the two rounds of matching

$$\sum ou \leq \sum ou'$$

$$\Sigma(so + ud) \le \Sigma(s'o + ud')$$

Triangle inequality

$$\sum u d' \leq \sum (u u' + u' d')$$

$$\sum uu' \leq \sum (ou + ou')$$

Combining

$$\Sigma(so + ou + ud) \le \Sigma(s'o + 3ou' + u'd') \le 3OPT$$

5. Spatial and Temporal Complexity

Traffic dynamic: NYC Citi Bike dataset

Static vs. dynamic repositioning

Time-Space View

View

- Horizontal line
 Status of local station
- Vertical dotted line (slot)
 - Time period between two slots
- Slanted arrowRe-balancing event
- Cut: a re-balancing event go across two slots

Global state

- Local state
- Transition state

Frequency Reduction via Look-Ahead

K-hop look ahead

- Make minimum move in the current slot so that it can last at least k hops
- Reschedule after k slots

Greedily look ahead

- Make move in the current slot so that it can last the longest (L)
- Reschedule after L slots
 - (a) and (b): solid lines for 1-hop

(a) An example of 2-hop look ahead outperforming 1-hop look ahead

(b) An example of 1-hop look ahead outperforming greedily look ahead

Spatial and Temporal Domain Simulation

Spatial domain

- On a single time slot
- Given rebalance targets
- Minimize worker detour

(BB: Branch & Bound , LS: Local Search, TRM: 2-Round Matching, Greedy: closest NYC Citi Bike)

Temporal domain

- Over multiple time slots
- Minimize bike repositioning dis.

(1-LA: 1-hop, 2-LA: 2-hop, GLA: Greedily)

Extension to Dock-less Scenario

Virtual stations (VS)

- Mesh grid
- K-means
- Density-based clustering

Rebalancing VS

- Pick-upnearest in starting VS
- Drop-offnearest in destination VS

Mobike Shanghai Dataset (08/01/16-08/31/16)

Y. Duan and J. Wu, <u>Spatial-Temporal Inventory Rebalancing for Bike Sharing Systems with Worker Recruitment</u>, accepted to appear in IEEE Transactions on Mobile Computing, 2020

6. Challenges and Opportunities

Model extensions

- Models with "cut"
- Repositioning spanning over one slot

Scalable design

- Geometric partitioning
- Clustering (k-means or density-based)
- Number of trucks used
- Scheduling of trucks

(a) Two individual circles

(b) One merged circle

- J. Wu, Collaborative Mobile Charging and Coverage, JCST 2014
- H. Zheng, N. Wang, and J. Wu, <u>Minimizing Deep Sea Data Collection Delay With</u>
 <u>Autonomous Underwater Vehicles</u>, *Journal of Parallel and Distributed Computing*, 2017

Challenges and Opportunities (Cont'd)

Other models

- Bike recycling (and usage balance)
- Robust solution (under data uncertainty)
- Economic models (mechanism design

Gaming and incentive

- Stakelberg and Nash games
 - Among BBS operators and workers
- Incentive
 - Reinforcement incentive

Challenges and Opportunities (Cont'd)

Machine Learning (ML)

- Effectiveness
 - Learning from a large data set
 - Challenges: biased samples, data sparsity, data missing
- Robustness
 - Performance deviation due to the data perturbation
- Explainable AI
 - Hybrid approach

Challenges and Opportunities (Cont'd)

Dock vs. dock-less BSS

- Flexibility
- Manageability

Trends

- Dock-less BSSs have disappeared largely in US, JUMP from Uber
- Ofo, the largest dock-less BSS in China, suffered financially

A Bigger Picture: Classification

Active transportation

- Fixed (subway, bus, auto-shuttle)
- On-demand (taxi, Uber, DiDi, Lift)
- Hybrid (restricted on-demand)

Passive transportation

- ZipCar (first/last ten-mile)
- Bike/e-bike (first/last mile)
- Scooter/e-scooter (first/last mile)

J. Wu et al, <u>Logarithmic Store-Carry-Forward Routing in MANETs</u>, *IEEE Trans.* on Parallel and Distributed Computing, Aug. 2007..

A Bigger Picture: Future of BSSs

Future

- E-bike
- Two-wheeled e-scooters

Policy

- Shared responsibility
 - Credit systems
- Safety and regulation
 - Sidewalk, bike lanes, and car lanes
 - Scooter: sidewalk or bike lane?
 - How about folded-mini cars (MIT's CityCar Project)?
 - Regulation to enhance rebalancing?

7. Conclusions

- Bike Sharing Systems (BSSs)
 - Bike re-balancing issue
- Solutions
 - Algorithmic solutions
 - ML solutions with data analytics
- Future of BSSs
 - Policies and regulations
 - Role in a smart-city ecosystem

J. Wu, <u>Challenges and Opportunities in Algorithmic Solutions for Re-balancing in Bike-Sharing Systems</u>, <u>Tsinghua Science and Technology</u>, 2020.