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Introduction

• Background of Facility Allocation:
• Strategic placement of resources in various fields: urban planning, 

telecommunications, computing infrastructure.

• Focus on optimizing spatial resources in dynamic, uncertain conditions.

• Problem Complexity:
• Decision-making is iterative, aiming to maximize total reward over 

multiple rounds.

• Challenges in environments with variable demands, like emergency 
services and telecommunications.

• Combinatorial nature: multiple facilities are decided upon 
simultaneously.
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Problem Formulation

• Model Setup:
• Grid Layout: 1× 1 square divided into 𝑁 cells (perfect square).
• Population Density: Each cell 𝑖 has an unknown fixed density 𝐷(𝑖).

• Facility Allocation:
• Round-by-Round Decision: Allocate 𝐾 facilities at cell centers per round, 

represented as 𝑭 𝑡 = {𝑓1 𝑡 , … , 𝑓𝐾 𝑡 }.
• Unique Positioning: No two facilities share the same location in the same 

round.

• Voronoi Partitioning:
• Determines which facility point each cell is closest to, using either Manhattan 

or Euclidean distance.
• Cells are assigned to the nearest facility, breaking ties randomly.



Problem Formulation

• Attraction Probability:
• Probability 𝑝𝑖,𝑗(𝑡) of attracting an individual from cell 𝑖 to facility 𝑗 inversely 

proportional to their distance.
• Modeled as: 

𝛼

𝑑 𝑓𝑗 𝑡 ,𝑖 +1
, where 𝛼 is a tunable factor and 𝑑 is the chosen distance 

metric.

• Expected Population Attraction:
• Each round models population attraction as a binomial random variable:

𝑋𝑖 𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐷(𝑖), 𝑝𝑖,𝑗(𝑡)).
• Expected attracted population from cell 𝑖 to facility 𝑗: 𝐸 𝑋𝑖 𝑡 = σ𝑗≤ 𝐾𝐷 𝑖 𝑝𝑖,𝑗 𝑡 .

• Regret Minimization Objective:
• Regret Definition: Difference between optimal and actual attracted population over 

rounds.
• Optimization Goal: Minimize cumulative regret by selecting 𝑭(𝑡) to maximize total 

expected population attraction.



Problem Formulation
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Solution of the Problem

• Algorithm Choice:
• Utilizes a Combinatorial Upper Confidence Bound (C-UCB) algorithm.

• Balances exploration (gaining new information) and exploitation (using known high-reward locations).

• Algorithm Overview:
• Expected Attraction: Computes expected total population attraction for different facility sets, 𝑭(𝑡).

• UCB Formula: Incorporates both past data and an exploration bonus to guide allocation decisions.

• Algorithm Execution:
• Initialization: Sets initial conditions for all variables and parameters.

• Iteration Process: Evaluates and chooses facility sets based on their upper confidence bounds across all 
rounds.

• Voronoi Partitioning: Performed each round to determine the influence area of each facility based on 
chosen distance metric.

• Observation and Update: Records results from the current allocation to refine future decisions.



Solution of the Problem

• Key Features of Geometric-UCB:
• Uses real-time data to dynamically adjust decisions.

• Aims to maximize total attraction over time, minimizing regret.

• Suitable for scenarios where the number of facilities (𝐾) is small, 
making complex computations tractable.

• Computational Complexity:
• Time Complexity: Dominated by evaluating all potential allocations 

(𝑂(𝑇 × 𝑁𝐾)) and computing Voronoi partitions each round (𝑂(𝑇 ×
𝐾2)).
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Simulation

• Experimental Settings Overview:
• Facility Numbers: 𝐾 = 3 or 4 to manage computational feasibility.

• Probability Parameter: 𝛼 varied from 0.1 to 1.0 to test different 
attraction levels.

• Distance Metrics: Both Manhattan and Euclidean used to examine 
adaptability.

• Data Used for Simulation:
• Real-World Traces: Population density data from the United States, 

discretized into 36 or 49 cell grids.

• Synthesized Data: Generated datasets with population densities 
drawn from a normal distribution to test across varied scenarios.



Simulation

• Algorithm Comparison:
• Epsilon-Greedy Algorithm: Examines balance between exploration and 

exploitation, with 𝜖 = 0.25.

• Thompson Sampling: Assesses performance against a probabilistic method 
that uses Bayesian inference for decision-making.

• Random Selection: Provides a baseline by randomly choosing facility 
locations, ignoring prior data.

• Goals of Comparative Evaluation:
• Test the Geometric-UCB's efficiency against established algorithms.

• Identify strengths and potential areas for improvement in different settings.

• Validate robustness and adaptability of Geometric-UCB under varied 
experimental conditions.
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Future Work

• Expanding Dimensions:
• Explore the applicability of the Geometric-UCB algorithm in higher-

dimensional spaces.
• Test the scalability and computational feasibility as dimensions increase.

• New Performance Measures:
• Investigate other metrics beyond regret to assess the algorithm's effectiveness.
• Consider factors like computational efficiency, convergence speed, and 

robustness under varying conditions.

• Refinement of Probability Parameter (𝜶):
• Develop adaptive strategies for tuning 𝛼 dynamically based on observed 

attraction levels.
• Enhance the algorithm's responsiveness to changes in population density and 

attraction patterns.



Conclusion

• Key Contributions:
• Introduced a novel Geometric-UCB algorithm tailored for the stochastic facility 

allocation problem.
• First application of CMAB techniques in 2-dimensional spaces with uncertain 

population distributions.

• Algorithm Advantages:
• Efficiently balances exploration and exploitation to maximize total population 

attraction.
• Demonstrated adaptability with both Manhattan and Euclidean distances in facility 

allocation.

• Validation through Simulations:
• Tested on both real-world data and synthesized datasets to verify effectiveness and 

efficiency.
• Outperformed traditional algorithms like Epsilon-Greedy and Thompson Sampling 

in various setups.



Thank you!
Abdalaziz Sawwan (Presenter) and Jie Wu.

Department of Computer and Information Sciences,

Temple University.


