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Abstract—Extracting knowledge from sensor data for various purposes has received a great deal of attention by the data mining
community. For the purpose of event detection in cyber-physical systems (CPS), e.g., damage in building or aerospace vehicles from
the continuous arriving data is challenging due to the detection quality. Traditional data mining schemes are used to reduce data that
often use metrics, association rules, and binary values for frequent patterns as indicators for finding interesting knowledge about an
event. However, these may not be directly applicable to the network due to certain constraints (communication, computation,
bandwidth). We discover that, the indicators may not reveal meaningful information for event detection in practice. In this paper, we
propose a comprehensive data mining framework for event detection in the CPS named DPminer, which functions in a distributed and
parallel manner (data in a partitioned database processed by one or more sensor processors) and is able to extract a pattern of
sensors that may have event information with a low communication cost. To achieve this, we introduce a new sensor behavioral pattern
mining technique called differential sensor pattern (DSP) which considers different frequencies and values (non-binary) with a set of
sensors, instead of traditional binary patterns. We present an algorithm for data preparation and then use a highly-compact data tree
structure (called DP-Tree) for generating the DSP. An important tradeoff between the communication and computation costs for the
event detection via data mining is made. Evaluation results show that DPminer can be very useful for networked sensing with a
superior performance in terms of communication cost and event detection quality compared to existing data mining schemes.

Index Terms—Cyber-physical systems, wireless sensor, data mining, pattern mining, event detection, resource-efficiency
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1 INTRODUCTION

C BER-physical systems (CPS) have gained a lot of atten-
tion in both the public and the research communities,

because they are expected to bring interactions between
humans, environments, and machines to a new paradigm.
With the capabilities of pervasive surveillance, the CPS
have strong practical applications in many domains, e.g.,
structural health monitoring (SHM for short) for industrial
machine or aerospace vehicles, chemical explosion, military
surveillance, and smart grid [1]–[7].

In SHM applications, the characterizing feature of these
systems is the interaction between physical processes gov-
erned by the laws of physics and an execution platform
(i.e., cyber system) which comprises embedded software
and hardware devices such as sensors, actuators, processors,
and communication networks to interconnect them. The
physical process involves the elements of structures and
the physical conconnectivity between the elements of a
structure. Any changes in elements, even micro-elements
and their connectivity can be closely monitored by the
cyber system. Such a change leads to further interaction
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in the cyber systems in terms computation, communica-
tions, etc. Thus, in an intended CPS, physical system as-
pects and cyber system aspects should be tightly combined.
The wireless sensors in the CPS produce a huge volume
of dynamic, geographically-distributed and heterogeneous
data when deployed in these applications. The raw data, if
accurately analyzed and transformed to usable information
through data mining, can facilitate automatic and intelligent
decision-making on specific events of interest (e.g., damage
in aerospace vehicles, chemical explosion), while optimizing
the resource efficiency of cyber systems. Hence, it is vital to
develop methodologies to mine sensor data.

Recently, extracting knowledge from sensor data has
received a great deal of attention in the data mining com-
munity [8]–[11]. Traditional data mining schemes focusing
on association rules, frequent patterns, sequential patterns,
clustering, and classification have been successfully used on
sensor data. These mining schemes are usually centralized
and computationally expensive, and they focus on disk-
resident transactional data. A decent number of data mining
algorithms have been developed with less computational
complexity [8], [12]–[14], and the process of forming pat-
terns and producing association rules is straightforward.
Metrics, rules, binary patterns, and frequent patterns are
often used as indicators to find interesting knowledge. They
require excessive interactions and rule exchanges, leading to
massive amounts of communication.

Through observation, we discover that many of the in-
dicators do not reflect meaningful information of a physical
event, particularly in those applications, including complex
event detection like events in damage or cracks in struc-
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(i) Communication energy cost analysis (ii) Event detection in different schemes
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Fig. 1. Observation of the communication cost and event detection
performance in WSN when applying data mining techniques.

tures (aerospace vehicles, nuclear plants, faults in industrial
equipment, and so on) that urgently require preprocessed
data for event detection once there is an event detection
indicator. We select three types of data mining algorithms
(associations rule based [10], associated-pattern based [12],
and confidence metric-based [14]), and verify them with
real datasets. We use Intel WSN real dataset [15] and mine
these data with algorithms. We illustrate the outcome of
the observation in Fig. 1. It depicts that the communication
energy cost of a WSN with those algorithms is significantly
high, while they often fail to detect an event. We find
that, the binary frequency pattern does not exactly indicate
moderate event intensity, as the intensity of an event oc-
currence is analyzed by constant triggering or data. Thus,
these algorithms are not directly applicable to the event
detection due to resource constraints in networked systems
(communication, computation, bandwidth).

In this paper, we present a comprehensive data min-
ing framework for event detection in the WSN, named
DPminer, which functions in a distributed and parallel
manner (see Fig. 2) and is able to extract a pattern of
sensors that may have event information by mining a
differential data pattern (with different frequencies and
values in different datasets), with a low communication cost.
The crucial thing is that DPminer can provide useful and
interesting knowledge from sensor databases by considering
non-binary frequencies and values of sensors in each tuple
(similar to a “record” in a traditional database).

Each partition contains a set of data acquired at a time
slot, which we call Cases. From Cases, a sensor mines differ-
ent values/items and different rates of frequencies of these
values, and puts in a database partition. Besides, the sensor
maintains a Controls database/dataset that contains ranges
of data (to compare with the data in Cases) and is defined
by the event intensity in a specific application. Based on the
event intensity, the sensor calculate a data pattern.

A cluster of sensors shares data patterns so that each
sensor can calculate a sensor pattern. The sensors in a cluster
coordinate with their cluster head (CH), and together, they
develop a differential data pattern tree structure, called DP-
Tree in a distributed and parallel manner. The CH, along
with its sensors, finds an initial differential sensor pattern
(DSP) via the DP-Tree. After mining all initial DSPs, the
CH provides a confirmed DSP that can ensure whether an
event has occurred around some sensors or the cluster, even
offering a value (e.g., eV > 1) as the event indicator. (see
Fig. 1(ii) for indicators in DPminer based on DSPs).
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Fig. 2. The concept of DPminer showing interactions between sensors
and their cluster head (CH) in generating a sensor pattern.

In DPminer, the sensors which are not in a DSP are
dropped with their data from further pattern mining,
thereby reducing the communication cost. Instead of finding
binary frequent patterns, we find sensor patterns that come
from the consideration of different rates of frequencies and
values in the Cases and Controls. Generating such a DSP from
a network can be very useful in a wide range of applications
that require fine-grained monitoring.

The major contributions of this paper are four-fold:

• We define a new type of data pattern mining for
sensors in the CPS, DSP, which discovers the sensors
that contain event detection information. We design
DPminer to generate the DSP for event detection.

• We propose a simplified “data preparation” algo-
rithm, which is the first-stage data mining algorithm
used to prepare data for a tree structure in a WSN.

• To generate a DSP, we devise a DP-Tree that is devel-
oped on a sensor partitioned database in such a way
that data in each sub-database can be processed by
one or more sensor processors in a distributed and
parallel manner. A partitioning is also given.

• Finally, we validate DPminer in simulations on our
real-data traces. We also consider other two sets of
data traces to analyze the performance. We provide
trade-off between sensor energy costs for communi-
cation and computation for event detection through
sensor data mining in the CPS. We have found that
DPminer achieves a superior performance in terms
of both communication cost and detection quality
compared to existing data mining schemes.

This paper is organized as follows. Section 2 reviews
related work. We formulate our problem in Section 3. Sec-
tion 4 explains the DPminer framework. Section 5 presents
the data preparation algorithm. Section 6 develops DP-Tree
and analysis, event detection, and database partitioning
algorithm. Evaluation through simulations is conducted in
Section 7. Finally, Section 8 concludes this paper.

2 RELATED WORK

Big data mining from a WSN of the CPS is the process of ex-
tracting application-oriented event information or patterns
with acceptable accuracy, which comes from a continuous
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and rapid flow of data streams. In the CPS, the data con-
tains the physical system or event information. There are
various data mining techniques and algorithms outlined
in the literature, including frequent patterns, sequential
patterns, clustering, and classification. They already address
numerous issues in data mining including execution time,
complexity, and rule or query processing needed to mine
stored (static) and/or stream data [8]–[11], [14], [16]. Due to
various constraints, a complete set of acquired data cannot
be either stored or delivered in real-time. The data cannot
be dropped due to guaranteeing monitoring quality.

Looking into more details of particular data mining algo-
rithms, in the recent decades, mining association rules have
been used in transactional databases. Recently, they have
been applied to data mining schemes in sensor networks.
Mining the associations among sensor values that co-exist
temporally in large-scaled the WSN and mining spatial tem-
poral event patterns from sensor data are proposed in [14],
[17]. A behavioral pattern named Target-based Association
Rules (TARs) for point-of-coverage in the WSN which aims
to discover the correlation among a set of targets monitored
by a WSN and uses confidence metrics is proposed [14]. In
TARs, every sensor maintains an additional flash memory
that increases the deployment cost.

An interesting data mining technique in wireless ad
hoc networks uses a tree-based structure called Positional
Lexicographic Tree (MAR-PLT for short) to mine association
rules [10]. It follows a FP-growth-like pattern growth mining
technique, but the two database scanning requirements and
the extra MAR-PLT update operations during mining limit
efficient use of this technique in handling WSN data. Asso-
ciation rules-based growth trees do not show satisfactory
performance in the WSN in terms of communication, as
shown in Fig. 1(i).

In another work [9], generating context association rule
over an online sensor/actuator transactional data stream is
suggested. This is used to invoke proper operations of actu-
ators relevant to values of the sensors. It organize frequent
context itemsets over the current data steam, such that a
set of frequently co-occurred sensors and actuators items is
arranged. A data mining technique to generate association
rules from WSN by using a prefix-tree called sensor pattern
tree (SP-tree). Although SP-tree shows better performance
than PLT [16], it still generates a large number of rules, many
of which may not be useful enough, resulting in a significant
communication cost and computation costs.

A method which captures association-like co-
occurrences as well as temporal correlations (linked
with such co-occurrences) is used to mine associated patterns
from sensor data streams [12]. A regular frequent pattern
is proposed to find frequent sensor patterns that occur
after a certain interval in the sensor database. Most of
these techniques consider a binary (0/1) occurrence of the
patterns in the database. Binary value (0/1) is also used for
frequent pattern association. Such a binary occurrence or
pattern association may fail to detect events in practice. In
addition, they still require significant communication costs
in terms of excessive message transmission in the WSN.

A share-confidence framework and share-frequent sen-
sor patterns (SFSPs) are proposed to identify share-frequent
itemsets [18], [19]. The ShFSM (Fast Share Measure) algo-

rithm used level closure property instead of downward
property which to improve the past algorithms [20]. SFSPs
has been proposed to facilitate a pattern growth mining
technique to discover SFSPs from WSN data. But, both cre-
ate too many candidates at each pass so it is computationally
expensive.

Recently, applying machine learning algorithms for big
data mining in CPS receives significant attention [1]–[3],
[21], [22]. For example, cluster analysis is used to extract
useful information and patterns from data generated from
physical devices of a CPS. A density-based data stream
clustering algorithm built on the multiple species flocking
model for big data is considered [2]. FlockStream is based
on a multi-agent system that uses a decentralized bottom-
up self-organizing strategy to group similar data points.
Another work discusses the challenges of a common big
data-driven framework to support monitoring, anomaly
detection, prognosis (degradation modeling), diagnosis, and
control in CPS [3].

Most current data or pattern mining techniques are par-
ticularly suggested for transactional databases and require
several scans to mine the frequent patterns. Thus, these
existing algorithms may not efficiently mine sensor pattern
from the sensor data stream. None of them analyzes event
detection performance through the mining techniques. In
particular event detection applications, structural health
monitoring, industrial applications, intrusion detection in
military applications that immediately require event de-
tection indicators, with exact level of indication value. As
shown in Fig. 1, binary indication may not reflect mean-
ingful information of a physical event in the data mining
algorithms: associations rule based [10], associated-pattern
based [12], and confidence metric-based [14]). In terms of
network performance (computation, communication), these
algorithms are inefficient.

We observe that current data mining schemes using
association rules, associated pattern, data clustering, and
so on do not show satisfactory performance in terms of
communication and event detection in sensors of the CPS.
These issues have not been specifically addressed before.
Our framework DPminer is an attempt to overcome these
shortcomings while detecting an event through a DSP.

3 DIFFERENTIAL SENSOR PATTERN MINING

In this section, we first describe the network aspect of the
CPS. Then, we give a discussion on the event detection
in the WSN of the CPS, regarding the cyber and physical
aspects. Next, data mining technique is described. Finally,
we define the problem of DPminer.

Let us consider a hierarchical WSN with a large set
S of m sensors which is to be deployed for a partic-
ular monitoring application of the CPS, such as SHM,
S = {s1, s2, . . . , sm}. The sensors are randomly deployed
in the sensing area, and they are self-organized into clusters
using a clustering algorithm [7], [23], [24]. The underly-
ing principle of data mining in DPminer involves starting
from simple in-network data mining at sensors (say data
preparation) to fair regional complete pattern mining at
intermediate sensors (e.g., cluster heads: CHs) and finally
through to a global base station (BS).
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Fig. 3. The overall framework in which process of DPminer is involved in the CPS.

We give a representative example of how SHM system
is a type of sensor network-based CPS system. It can be
best observed that, commonly, “no change (e.g., damage
event)” occurs in a physical structural system. Regarding
this in the resource-constrained WSN, a large volume of
data really does not always need to be transmitted to the BS.
Instead, a pattern or a set of mined pattern transmissions
may be interesting in the case of a “no change” state.
However, if a change has occurred in the physical structural
system, in addition to transmitting the set of patterns on
the possible change, a sensor node may need to transmit all
of its collected data towards an upstream node or the BS
upon request. The nodes in the neighborhood may have
additional interactions between them. For example, they
need to communicate to the neighboring nodes in the region
of the change and to further analyze the data for ensuing
the state of the change. This indicates that a change in the
physical structural system results in extensive communication
and computation in the WSN system, especially between the
sensor nodes in the region around the change. Therefore, the
integration between both systems is a CPS. In such a system,
a distributed pattern generation in a particular region of
interest is essential so as to reduce the volume of data in
the case of “no damage event.” If there is a damage event
at a part/section/span/region of the structure, a cluster
of sensors around the region should operate for the event
detection.

The overall data mining framework for the CPS is shown
in Fig. 3. We assume that there can be different kinds
of applications with different sensing entity and sensing
modalities. Sensor devices collect data and put temporary
in buffer for data preparation. Once data is prepared, data
pattern are calculated for event detecting sensor pattern.
From the patterns, an indicator is used to distinguish the
event intensity. The complete process corresponds to sensor
data mining.

We assume that the whole event detection time (Qw)
is divided into Q periods. Each period includes further
q slots, i.e., {t1, t2, . . . , tq} such that tk+1-tk = τ , which
is the length of each time slot. We assume that a sensor
database DB can be partitioned into d sub-databases, i.e.,
DB1, DB2, . . . , DBd. One of the sub-databases (e.g., DB1)
of a sensor contains prepared data that is collected in period
Q (refer to Fig. 4(i)). This arriving dataset is a large dataset
which we call Cases. Other sub-databases are shared with
the neighbors in a cluster.

Each wireless sensor mines both different values/items
(V ) and different frequencies (F ) of these values from Cases
and determines a set of tuples within time slot tk. Here,

TABLE 1
Symbol Definition

Symbol Definition
D Differential sensor patter (DSP)
F, V data frequency, data value, respectively
rf & mv rate of frequencies & median values, respectively
Ss subset of sensors
Hh set of tuple (h = 1, 2 . . . , n)
Ftk (si, Hh) rate of frequencies in Hh of the ith sensor
Ftk (Hh) total frequencies in Hh

Ftk (Hh)rf total rate of frequencies in Hh of a DBi

Ftk (Ss, Hh)Ss rate of frequencies in Hh of Ss

Ftk (Ss)rf rate of frequencies in Hh of Ss in DBi

Vtk (Ss)mv median values in Hh of Ss in DBi

eV > event indication based in on values
eF > event indication based in on frequencies

we maintain a Controls database/dataset which contains
the healthy data (for comparison with the data in Cases).
The healthy data can also be said as reference data. If
there is an event, each tuple may have frequent values
with higher event intensity information (see Fig. 4(ii)). Some
values can be distinguishable from other values. This can
be determined through comparison with data in Controls.
In Cases, a set of tuples denoted by Hh(h = 1, 2 . . . , n)
is defined as a subset of data (frequencies and values) of
a particular sub-database. From Cases, we first find a rate
of frequencies (rf ) and median values (mv) in Hh, a subset
Ss of sensors, and DBi. Then, we find the global values
(grf and gmv) at each CH. We do not assume any user-
driven threshold, percentage, or binary decision for pattern
identification or frequency selection. Rather, we use a data
pattern comparison with Controls.

For SHM applications, data collection needs some par-
ticular models, for example finite element model (FEM)
[25]. FEM is a numerical model for calculating the behavior
and strength of structural mechanics, such as vibration and
displacement in a building, bridge, or aircraft [25]. Via FEM,
a complex structural model is simplified by breaking it
down into small elements. When such an element hit and
the external influence (force) is removed, it will vibrate at its
natural frequency. The natural frequency is defined as the
number of times a physical structural system will oscillate
between its original position and its displaced position. An
event such as damage or crack is a significant change to
the geometric properties of the structural system, such as
changes to captured frequencies. The data in Fig. 4 shows
normalized frequencies from collected data.

Let Ftk(si,Hh) be the rate of frequencies in Hh of the
ith sensor, i.e., the number of times a value is seen in tk
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of the ith sensor. For example, A = 3 in Fig. 4(v), i.e.,
a value within label A has been seen three times in Hh.
Towards the DSP generation, we first need to define the rate
of frequencies and the total values from a set of acquired
data.

Definition 1 [Ftk(Hh)]. The rate of frequencies in a set
of tuple Hh represents the total frequencies in Hh; it is given
by the following equation:

Ftk(Hh) =
∑

si∈Hh

Ftk(si,Hh) (1)

In Fig. 5, Ftk(H1)=Ftk(s1,H1)+Ftk(s3,H1)+Ftk(s4,H1)+
Ftk(s6,H1) + Ftk(s9,H1) = 3 + 2 + 3 + 1 + 1 = 10.

Definition 2 [Ftk(Hh)rf ]. The total rate of frequencies
that carry event information in all tuples of a DBi is given
by the following equation:

Ftk(Hh)rf =
∑

Hh∈DBi

Ftk(Hh) (2)

In Fig. 5, Ftk(H1)rf = 10 + 13 + 16 + 8 + 12 + 16 = 75.
Assume that a subset Ss of sensors is working in a

cluster. Then, the following equation gives the rate of fre-
quencies in Hh:

Ftk(Ss,Hh)Ss =
∑

si∈Ss

Ftk(si,Hh) (3)

For example, Ftk((s2, s3, s5),H2)Ss
= 1 + 3 + 2 = 6 in Fig.

5. We then calculate the rate of frequencies in all of tuples of
Ss in DBi as follows:

Ftk(Ss)rf =
∑

Si∈DBi

Ftk(Ss,Hh). (4)

Similarly, the total median values in all of the tuples in
a subset Ss of sensors in DBi can be calculated by the
following:

Vtk(Ss)mv =
∑

Hh∈DBi

Vtk(Ss,Hh) (5)

In Fig. 5, Vtk(s2, s3,Hh)mv = Vtk(s2, s3,H2)mv +
Vtk(s2, s3,H6)mv = (3.4 + 4.6) + (6.3 + 8.3) = 22.6.

Once we have a subset Ss of sensors’ frequencies and
values in DBi, we can find the DSP by ordering the sensors
based on a differential data tree structure (called DP-Tree).
This tree is structured by each sensor, but its structural
process requires the participation of both the neighboring
nodes and the CH node in a parallel and distributed man-
ner. Vtk(Ss)mv and Ftk(Ss)rf are some possible criteria for
developing a DP-Tree structure. Finally, a sensor pattern can
be generalized via the DP-Tree using its step-by-step process.

Instead of finding a frequent sensor pattern (as is usually
done in existing schemes), sensors found in DSP denoted by
D come from the analysis of different frequencies and values
in Cases and Controls of← Ss. It is important to note that
instead of just having a DSP, a simplified event indicator as
a differentiation may also be calculated from the sensors in
a DSP by the following:

eV =
Vtk(Ss[Control])

Vtk(Ss)
, eF =

Ftk(Ss[Control])

Ftk(Ss)
(6)

An event can be said to be present in the physical system
environment if both eV > 1 and eF > 1. Otherwise, event

information is said to be absent based on the collected
sensor data.

A differential pattern D in DBi can be defined by
the differences between Cases and Controls datasets in
terms of prepared data values and rates of frequencies
obtained from all sets of tuples in DBi, i.e., diff (D,DBi) =
|{Hs(Hh, Ss)|D ⊆ Ss}|. A pattern D is said to be a DSP
if diff (D,DBi) ≥ min diff, where min diff is a user-given
minimum support parameter in percentage of DBi size in
terms of size (Hs) of tuples.

Our problem is to find a D of sensors (that may report
an event of interest) by mining all sets of Hh of each
sensor in a cluster in a distributed manner such that a
CH can finally decide whether an event has occurred in
the area and report to the BS. Our objectives are to reduce
the communication cost of the sensor and to provide high-
quality event detection.

4 DPMINER: A DISTRIBUTED DATA MINING
FRAMEWORK FOR WIRELESS SENSOR IN THE CPS
In this section, we present the DPminer framework. It
includes a step-by-step process for finding a differential
sensor pattern (DSP) in a distributed and parallel manner.
We also include necessary definitions.

To mine data parallelly in sensors means that mining
tasks are performed concurrently in multiple processing
nodes, a process referred to as “auto-palatalization.” How-
ever, the term “distributed” is usually associated with data
mining of geographically-distributed datasets and it is not
concerned with computational scalability. In palatalization,
the data can be partitioned into smaller subsets or sub-
databases, and it is distributed to multiple processors [26].

Using the idea above, we consider DPminer as a par-
allel and a distributed memory-shared data mining frame-
work for event detection in the CPS. Regarding our net-
work model, we consider the wireless sensor of CPS as
a distributed system of m processing nodes denoted as
si, si . . . sm, that are collectively responsible for mining the
whole prepared dataset. Each processing node is comprised
of one or more processors, local memories, and limited
resources, including energy. For memory sharing and pro-
cessing the data on a share-basis, we also consider that a
sensor database (DB) is horizontally divided into n non-
overlapping partitions (where n is the number of neigh-
boring nodes of sensor si). In that way, a processor of the
ith sensor si processes almost an equal number of tuples
(including different frequencies and values). Thus, we can
have the DB in DB1, DB2,. . . , DBd. We assume that each
partition/sub-database is assigned to a sensor process, i.e.,
DBi is assigned to sensor si. The example database where
the dataset is split into several parts can be seen in Fig.
5; each is assigned to a processor (e.g., P1). A simplified
partitioning algorithm (Algorithm 3) is in Appendix A.

A CH can have some additional capacity besides its reg-
ular data mining tasks. It is responsible for performing extra
sequential steps, and any of the processors can be allocated
to do these tasks. This processor is called a CH/master
processor PCH while every other sensor’s processor is called
a local processor, (P1, P2, . . . , Pp). Each DBi of DB is set
as a local dataset for sensor si. Having subdatabases, the
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H1

F

A B B C A B C D B A B D D C B B

B A B C C A B D A E C A B A B A

A B B A C B B A F D A A B B B E

… … … … … … … … … … … … … … … … …

d1 0.05685 0.18652 0.12451 0.21546 0.06592 0.18652 …

d2 0.12596 0.01256 0.12981 0.26451 0.29865 0.08289 …

d3 0.01652 0.16029 0.17045 0.01421 0.02429 0.19077 …

… … … … … … … …

Labeling values

A=3 B=7 C=3 D=3

A=6 B=5 C=3 D=1 E=1

A=5 B=7 C=1 D=1 E=1 F=1

TA=14 TB=19 TC=7 TD=5 TE=2 TF=1

Rate of Frequencies FA=3 FB=3 FC=3 FD=3 FE=2 FF=1

Total values

Sensor s1

Acquired data at t1(i)

(iv)

(v)

(vi)

(iii)

Calculating
frequencies

H2

H3

F
t1

={3,3,3,3,2,1}

Tmv=  8.5

Rate of Frequencies:
Total average values:

 Data ranging and
 intensity level

(ii)
0.00 0.09 0.10 0.19 0.21 0.29 0.31 0.39 0.41 0.49 0.51 0.59 0.61 0.69 0.71 0.79 0.81 0.89 0.91 1.00

low event intensity low event intensity high event intensity

F=0.55 G=0.65 H=0.75 I=0.85 J=0.95

low to high event intensity

A=0.05 B=0.15 C=0.25 D=0.35 E=0.45

Summarization

Fig. 4. The process of data preparation from refined data in sensors of the CPS.

following key information is required to identify a DSP in a
parallel and distributed environment.

Definition 3 [Ftk(Ss)lrf ] The total rate of frequencies in
all sets of tuples of a subset Ss of sensors that may carry
event information denoted by Ftk(Hh)lrf at tk is the sum of
frequencies in all the tuples of the local partition of DBi. It
is given by the following:

Ftk(Ss)lrf =
∑

Ss⊆Hh∈DBi

Ftk(Hh)lrf (7)

For example, Ftk(s3, s5, s7)lrf= Ftk(H2)lrf = 13, as shown
in Fig. 5. This is because {s3, s5, s7} appears only in H2 in
the local partition P1.

Definition 4 [Ftk(Hh)lmv] The total value in all sets
of tuples of a subset Ss of sensors that may carry event
information denoted by Ftk(Hh)lmv at tk is the the total
median values in all the tuples of the local partition DBi,
and it is given by:

Vtk(Ss)lmv =
∑

Ss⊆Hh∈Pi

Vtk(Hh)lmv (8)

For example, Vtk(s2, s3, s5, s7, s8)lmv= Ftk(H2)lmv=40.4
Definition 5 [Ftk(Ss)grf ] The total rate of frequencies in

all sets of tuples Ss is the sum of frequencies in all the tuples
of the global DB, and it is given by the following equation:

Ftk(Ss)grf =
∑

Ss⊆Hh∈DB

Ftk(Hh) (9)

For example, Ftk(s3, s5, s7)grf = Ftk(H2) + Ftk(H21) +
Ftk(H22) = 13 + 10 + 17 = 40, as shown in Fig. 5. This
is because {s2, s3, s5, s7, s8} appears only in H2 in the
ith local partition DBi. Similarly, the total median value

is Vtk(s3, s5, s7)lmv = Vtk(H2) + Vtk(H21) + Vtk(H22) =
40.4 + 39.9 + 67.3 = 147.6.

For identifying a DSP in parallel and distributed sensors
of the CPS, DPminer executes the following steps.

Step 1 Sensor si carries out “data preparation” based
on its acquired data and puts the prepared data
into its DBi. Refer to Fig. 4 for acquired data
that need to be prepared.

Step 2 Sensor si scans the local database DBi only
once, and it develops an initial local DP-Tree
structure in lexicographic order of sensors [10].
It maintains DP-Tree locally and puts the values
of Ftk(Ss)lrf and Vtk(Ss)lmv in ith sensor si’s
header table dentoed by si(SH). It then trans-
mits it to the CH.

Step 3 The CH sensor sCH maintains a global ta-
ble si(GSH) by accumulating all values of
Ftk(Ss)lrf and Vtk(Ss)lmv available at local sen-
sor node si and then broadcasts the si(GSH)
table to sensor si.

Step 4 si develops a DP-Tree, according to the descend-
ing order of Vtk(Ss)lmv . It then applies a com-
pression method to locally reconstruct DP-Tree.

Step 5 Sensor si calculates initial DSP and then sends
to the sCH . This DSP can be an indicator of
which are the subsets of sensors that have event
information.

Step 6 Finally, sCH receives all the initial DSPs from all
sensors and mines them, generating a final DSP.
This eventually tells whether there is an event
or not, and the sensors which have the event
information.
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5 DATA PREPARATION: THE 1ST STAGE DATA
MINING

In this section, we present data preparation algorithm
needed towards DP-Tree development for event detection.
We provide an algorithm.

Acquired data from sensors often contains a large
amount of redundancy, noise, and outliers for various rea-
sons [8] separating out actual data from the acquired data
is a rigorous task. In addition, sensor data is usually mean-
ingless unless it is associated with the time and location of
the information. There are various types of data extraction
algorithms, cleaning methods, outlier detections, and data
predictions that can help with this task using them, there is
a risk of missing important data. Instead, in DPminer local
data preparation is provided.

The idea behind the data preparation is to reduce addi-
tional data transmission and interactions by mining data,
and therein, to reduce the communication cost. In the
beginning of the system operation, in DPminer, the data
preparation process diffuses the mining parameters from the
BS to all nodes, and if there is a DSP, request the DSP as the
event information (see Algorithm 1 for steps).

Algorithm 1: Network Interaction and Data Collection

The BS:
Broadcast (Q,Qw, τ , clustering, DB partitioning,

min dif )
Upon receiving returned messages

for each tk(tk = 1 to Qw

τ )
I ← set sensors’ identifiers within the same

time slot
U ← (tk, I)
Insert (U,DB)

Node si: (Upon receiving mining parameters)
for each ith node si of the CPS

Communicate with the neighbors and organize
into clusters

tk = 1
t← current time (tc)
While tc ≤ Qw − t

If (tc ≤ t+ (tk × τ))
Perform DB partitioning
Acquire data and buffer
Call Algorithm 2 at tk for data preparation

else
tk++

These parameters include data collection period Q and
tk with slot length τ . Upon the returned message reception,
the BS sets both its time slot and its time for data collection.
This is highly important for synchronized data acquisition
[27]. Once the sensor nodes receives the message, they start
working.

Upon receiving the mining parameters, sensor si exe-
cutes commands, including timing and clustering. It also
sets its DBi. We assume that data mining can be per-
formed at each time slot (i.e., close to process as the data
arrives). When a set of data is acquired, data preparation
starts. Algorithm 2 is presented for data preparation and

its corresponding illustration is shown in Fig. 4. After data
acquisition, ith sensor node si stores the set of data into
its DBi: Cases dataset. tk is the ith time slot that the data
is collected within a specific time period Q. si may have a
large set of acquired data. A partial set of data can be seen
in Fig. 4(i). Then, si performs a proportion test to refine the
acquired data.

Proportion Test. As part of the data preparation al-
gorithm, we perform a proportion test [28] (i.e., to check
whether the collected data is within a given range or not).
We then configure a simplified dataset Controls. It includes
(i) a set of ranges to classify the acquired data in order to
find frequencies and simplified values and (ii) a set of tuples
with different frequencies and values defined/collected that
can be defined by the healthy data (when there is no event in
an application). The ranges are set between 0.01 and 1. Note
that these ranges can be different for different applications
due to the nature of sensor data, their special characteristics,
as well as the intensity of an event required in a particular
application. Note that, without mining all of sensor si’s
data, there is no guarantee whether there is an event or not.
In DPminer, a set of tuples (Hh) is defined as value and
frequency combinations of different dataset. The key goal
by defining this is to find data patterns that may not have
a significant frequency and value differences in Cases and
Controls.

Through the proportion test, a significant amount of
unnecessary, irregular, or null data (i.e., the data having
no relation to event information, not indicate the data
in Controls) can be reduced. Although the proportion
test helps to reduce irregular data, we still need redun-
dant/duplicate data for event detection so do not skip them.
The proportion test establishes a data pattern by comparing
close frequencies and values between Cases and Controls
(Hin : πCase = πControl vs Hout : πCase ̸= πControl,
where Hin and Hout denote the frequencies and values that
are ‘in’ the range and ‘out’ of the range, respectively) in
between Cases and Controls). We denote the frequencies
in the union of Cases and Controls by π. In the following
equation, pCase, pControl, and p are estimates of πCase,
πControl and π, respectively. Then, we have,

z =
pcase − pcontrol√

p(1− p)( 1
πcase

+ 1
πcontrol

)
. (10)

Under the null hypothesis of no difference in values, the
square of the statistic z2 follows the Pearson’s chi-squared test
[29]. In Fig. 4(iii), we have the label for the data for sets of
tuples Hh. Based on this tuple set, every sensor calculates
the total values and frequencies that are used in the DP-Tree
development, as shown in Figs. 6(v) and 6(vi) .

Algorithm 2. Data Preparation and Summarization

for each node si
Acquired data // e.g., step (i) in Fig. 4
Pass the acquired data through the ProportionTest
Classify and label all the data according to the ranges

(see step (ii) and step (ii) in Fig. 4
Calculate frequency and value set
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Qi t k Sensor Tuple Frequency rate Average values Total 
 values Partition

Q1 t 1 s1 , s3, s4,s6, s9 3,2,3,1,1 8.5,12.3,4.6,16.2,7.2 48.8

t 2 s2, s3,s5, s7,s8 1,3,2,4,2,1 3.4,4.6,8.9,11.5,12 40.4

t 3 s1, s2,s5, s6,s8,s10 1,3,2,4,2,1,3 7.9,5.9,8.1,4.9,13.9,14.1 54.8

… … … …

t 10 s3, s4,s6, s7 2,3,1,2 8.9,7.9,16.1,15.6 48.5

t 11 s1, s4,s5, s7,s8, s9 3,2,1,1,2,3 5.6,7.9,12.3,13.6,4.6,5.6 49.6

t 12 s2, s3,s4 ,s6,s7,s8,s9 2,4,2,1,1,2,1,3 6.3,8.3,13.9,8,5.9,7.1,52,12.1 113.6

… … … … …

… … … … …

P1

P2

(H ) h

4,3,2,1 9.7, 13.2, 9.8, 7.2s3, s4,s5, s7

s1, s3,s5, s7,s8 5,2,3,3,5 7.2,7.1,14.2,14.1,16.4,8.3

6.2, 12.6, 9.5, 4.5, 14.2, 11.2s1, s2,s4, s6,s8 6,1,4,2,2,1

67.3

58.2

39.9t 21

t 22

t 23

… … … … …Q2

,s10

,s9

(DB
1
)

(DB
2
)

Fig. 5. A sensor DB with sensor data values, sensor tuples, and each DB partition corresponding to a processor.

Make a summary of the total frequencies and values

After the data preparation, we can begin the second
stage of the mining process which we call DSP mining
process, each sensor represents itself with different data fre-
quencies and values (instead of ‘0/1’ values). Next section
will illustrate the pattern mining sensors to store and mine
the data.

6 DSP MINING THROUGH DP-Tree DEVELOP-
MENT

This section studies data mining in sensors of the CPS
through DP-Tree development, and generates a differen-
tial sensor pattern (DSP), and shows the event detection
through the DSP.

6.1 DP-Tree Development
We devise a data mining tree structure (called DP-Tree) on
a partitioned database DBi for generating a DSP. Each si
maintains a DP-Tree to mine the pattern. The tree structure is
composed of two segments: insertion segment and restruc-
turing segment. Insertion segment arranges local DBi con-
tents into the tree, while restructuring segment restructures
the tree into descending order.

6.1.1 Insertion Segment
We consider DBi as shown in Fig. 5. We also consider that
si can have two or more processors P1 and P2. In Fig. 5, the
rows corresponding to P1 mean that these rows are within
DB1. If si first has only one process, and the parts of its data
(if any remain) may be processed by another processor of
its own, or a neighboring sensor which is free of tasks at the
time slot. ith DBi is assigned to the ith respective processor,
as shown in Fig. 5. si develops the insertion segment of DP-
Tree in parallel.

To illustrate the details of the tree structural process,
we depict a part of the data from database DB in Fig.
6. It shows that ith sensor’s sub-database (DB1) that is
processed by ith sensor processor P1. Consider the DP-
Tree having q tuples for a set of sensors (which are mainly

neighbors). DP-Tree is executed by each sensor but the data
can be shared and processed by other sensors. This implies
that all the partitions of DB are processed by different
processors. Particularly, all of the DP-Trees are executed in
parallel. The step-by-step development processes of DP-
Tree (with the corresponding representation in Fig. 6) is as
follows.

Step 1 The DP-Tree is initialized with developing ith
sensor si’s header table, denoted as si(SH)0.
Initially, it is empty (having a ‘null’ value), as
shown in Fig. 6(i). This is because, the table
for the tree is made empty after a period of
event detection operation. However, the sensor
pattern tuples can be kept for further analysis
with additional space adjustment.

Step 2 In table si(SH)1 as shown in Fig. 6(ii), the rows
are allocated for the neighboring nodes. This is
arranged according to the lexicographic order of
sensor identifiers (i.e., s1 > s2 >, . . . , sm. Here,
‘>’ implies the order of sensor ranks). The table
is built by inserting every tuple into the DBi

one after another (see [10] for the lexicographic
order). See Fig. 6(ii) for sensor ordering.

Step 3 All the tuples in each ith DBi are inserted into
the respective DP-Trees, following the sensor or-
der. As shown in Fig. 6(iii) and Fig. 6(iv), the
lmv values of Vtk(Hh)lmv and the lrf values
of Ftk(Hh)lrf are calculated (refer to Fig. 5 for
example prepared data) and inserted into tables
si(SH)2 and si(SH)3, respectively. These are
processed by processor P1 and P2, respectively.
In Fig. 6, it is seen that si(SH)2 and si(SH)3

are complete representations of sensors DBi,
and si(SH)2, and si(SH)3 are constructed by
lmv and lrf . Note that, only the lmv values are
shown in the tree.

Step 4 After the insertion segment ends, the restruc-
turing segment begins. The goal of these seg-
ments is to achieve a highly compact DP-Tree,
which will utilize less memory and facilitate a
fast data mining process. The processor PCH of
a corresponding CH calculates the Vtk(Hh)gmv
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s i (SH )0

{}

{} s i (SH )1

s 1

s 2

s 3

s 4

s 5

s 6

s 7

s 8

s 9

s 10

s i

s 1 152.8 38

s 2 267 45

s 3 187.3 47

s 4 210 46

s 5 14.8 41

s 6 265.8 50

s 7 272.1 41

s 8 144.8 57

s 9 212 38

s 10 54.8 16

{} s i (SH )2
{}

s1: 152.8 s2: 267 s3:48.5

s4:49.6 s3:48.8 s2:54.8 s3:40.4 s3:113.6 s4:48.5

s5:49.6 s4:48.8 s5:54.8 s5:40.4 s4:113.6 s6:48.5

s7:49.6 s6:48.8 s6:54.8 s7:40.4 s6:113.6 s7:48.5

s8:49.6 s9:48.8 s8:54.8 s8:40.4 s7:113.6

s9:49.6 s10:54.8 s8:113.6

s9:113.6

s 1 125.3 34

s 2 58.2 16

s 3 67.3 34

s 4 98.1 28

s 5 67.3 28

s 6 58.2 18

s 7 107.2 18

s 8 39.9 34

s 9 39.9 10

s 10 58.2 16

s i (SH)3

Vt
i
(S s)lmv Ft

i
(S s)lrf Vt

i
(S s)lmv Fti (S s)lrf

s1:67.3 s3:39.9

s3:39.9

s2:67.3

s4::39.9

s5:39.9

s4:67.3

s5:39.9

s7:39.9

s7:67.3

s7:39.9

s8:39.9

s8:67.3

s9:39.9s10:67.3

{}s i

(i) 
Sensor 

header table (ii) Initial DP-Tree0 (iii) DP-TreeP1 for processor P1 execution (after inserting values from all tuples) (iv) DP-TreeP2 for processor P2 execution 

s i

s 1 152.8 125.3 278.1

s 2 267 58.2 325.2

s 3 187.3 67.3 254.6

s 4 210 98.1 308.1

s 5 14.8 67.3 82.1

s 6 265.8 58.2 324

s 7 252.1 107.2 359.3

s 8 144.8 39.9 184.7

s 9 212 39.9 251.9

s 10 54.8 58.2 113

(sCH GSH)

Vt
i
(S s)lmv Vt

i
(S s)lrf Vti (S s)gmv s i

s 7 252.1 107.2 359.3

s 2 267 58.2 325.2

s 6 265.8 58.2 324

s 4 210 98.1 308.1

s 1 152.8 125.3 278.1

s 3 187.3 67.3 254.6

s 9 212 39.9 251.9

s 8 144.8 39.9 184.7

s 10 54.8 58.2 113

s 5 14.8 67.3 82.1

(GSH)des

Vt
i
(S s)lmv Vt

i
(S s)lrf Vt

i
(S s)gmv

{}

{s4,s1,s9,s8,s5}: 49.6

{s2}: 153.8

{s6,s4,s3}: 48.5

{s3,s8,s5}: 40.4 {s6,s4,s3,s9,s8}: 113.6

{s7}: 252.1  {s6,s4,s1,s3,s9}: 48.8

{s2,s6,s1,s8,s10,s5}: 54.8

(v) DP-TreeG 
    gathered at the CH

(vi) DP-TreeGDes

    arranged at the CH
(vi) DP-TreeR executed by CH’s processor
    for sensor processor P

1

(vii) DP-TreeR executed by CH’s processor
    for sensor processor P

2

sCH {}

{s1,s3,s8,s5}: 67.3 {s4,s3,s9,s5}: 39.9

{s7}:107.2 {s6,s4,s1,s8,s10}: 58.2

Fig. 6. Distributed and parallel development of DP-Tree in sensors of the CPS.

and Ftk(Hh)grf values for each sensor pro-
cessor which is available at each sensor’s ta-
ble si(SH)3. This is a relatively small sequen-
tial step and sCH performs this task. Table
sCH(GSH) contains these values.

Step 5 When PCH finishes the calculation of all
Vtk(Hh)gmv and Ftk(Hh)grf values, it then
sorts the sensors in table si(GSH) according
to the descending order of gmv values (called
si(GSH)des) as shown in Fig. 6(vi).

Step 6 CH sensor iCH then broadcasts si(GSH)des to
all of its sensors so that each sensor processor
Pi facilitates restructuring as well as mining
phases. si is enabled to merge sort to put the tree
structure according to Vtk(Hh)gmv . For restruc-
turing si(GSH)des to have the DP-Tree, a branch
sorting method (BSM) is used [30]. BSM uses the
merge sort to sort every path of the prefix tree.
This approach first removes the unsorted paths,
then sorts all the paths, and finally reinserts
them into the tree. At this stage, a computation-
ally inexpensive but effective compression pro-
cess is employed. This puts the sensors with the
same values of Vtk(Hh)mv in each branch of the
tree and merges them to a single node. The final
DP-Tree, after restructuring and compression, is
shown in Fig. 6(vii), after having changed from
Fig. 6(i) to 6(ii) and from Fig. 6(vi) to 6(vii),
respectively. Due to space limitations, we ignore

further analysis of the mining process by the DP-
Tree.

Based on the two segments of tree structure above, si
first generates an initial DSP. If there is no event detected,
DSP can be empty, i.e., D = {}. ith sensor then forwards
the DSP to its CH. The CH receives all such patterns from
sensors, mines the patterns, and then finally generates a
DSP that may convey event information. If the system user
wishes, the CH can be enabled to provide a value as an
event indicator, which can be calculated by the combination
eV and eF . If (eV + eF ) > 1, an event has occurred around
those sensors in the DSP. The reason is that whenever an
event happens, both values and frequencies should be more
than 1. The CH forwards the final sensor pattern after
making association between all the pattern received from
the sensors. In the case of the presence of an event, the CH
may request the sensors , which are in the DSP, for the data,
which are in the DSP.

6.2 Computation and Communication Tradeoff

6.2.1 The computation cost in the sensor of the CPS

Initially, sensor si has tasks of data preparation, including
data acquisition. Let ccr , cin, cFtk

, and cVtk
be the compu-

tation costs of data cross-checking with data in Controls
through the ProportionTest, refined data insertion, total
frequencies, and values computations. Then, the total com-
putation cost for data preparation is Cdp = ccr + cin +
cFtk

+ cVtk
. We have DBi of sensor si. Let V and F be
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the total number of values and frequencies in DBi respec-
tively. Assume that the average computation costs to scan
one tuple from DBi and to insert it into the DP-Tree are
cS and cI , respectively. Therefore, the total cost to scan
all tuples from DBi and insert them into the DP-Tree is
Cc = V × F × (cS + cI). The total cost for the CH is
Ch = cGSH + cdesGSH + cmine for tasks in tables sCH(GSH)
and sCH(GSH) and in DSP mining. Ca = cm+ cBSM + cPi

is the extra computation cost required for merge sort cm,
BSM sort (cBSM ), and initial sensor pattern generation
(cPi

). The total computation cost for DP-Tree and the DSP
generation is given by:

CT = Cdp + Cc + Ch + Ca (11)

The communication cost in the sensor of the CPS. Re-
call that DP-Tree in DP-miner functions in a cluster. We first
find cluster-wise energy costs for communication. Assume
a cluster denoted by Sc contains a total of ni sensors. Then,
the total energy in a cluster, denoted by cost(Sc), is given
by the following:

cost(Sc) = X ·eT+(ni−1)X ·eR+(ni−1)
nt

2
(eT+eR) (12)

where eT and eR are the energy costs for transmitting and
receiving X data and nt is time length. The first two terms
at the right side of (12) are , respectively, the energy costs
required when a CH broadcasts its time data to its sensors
or the BS, and when all the sensors receive the broad-
casts, respectively. The last term is the energy consumption
when the (ni − 1) sensors in the cluster transmit back
their response (including connection establishment), table
data transmission, sensor pattern transmission, and all data
transmission if it is in the DSP; a CH may receive the request
for data transmission.

From (12), we can get cost(ni) = cost(Sc), indicating
that the energy consumption of a cluster is only associated
with ni sensors in a cluster. When m sensors are partitioned
into equal-sized clusters of size l, then the number of clus-
ters isz = m/l. The optimal cluster size [23] can be obtained
by looking for l that minimizes the average energy cost per
node, defined thusly:

Cost(si) =
z.cost(l)

m
+

1− l/m

l − 1
κ (13)

where κ is a constraint on the overlapping sensor nodes in
the cluster [23].

The right side of (13) indicates that, in terms of wire-
less communication, partitioning sensor network into large-
sized clusters is preferred when eT is greater than an avail-
able transmission energy indicator, while generating small-
sized clusters is better if otherwise.

7 PERFORMANCE EVALUATION

7.1 Methodology

We evaluate the performance of DPMiner and its DP-Tree
development for a DSP generation. The objective of the
evaluation is to verify its ability in terms of communication
and computation cost, and the quality of event detection. We
conduct an extensive set of simulations and then highlight

the main characteristics that enable for the mining process
using DP-Tree.

We consider two sets of large datasets for the evaluation,
and we evaluate the performance of DPminer in hetero-
geneous sensors in the CPS. The first dataset containing
real sensor data is from the Intel Berkeley Research Lab
[15] and has been widely used [10]. This consists of tuples
from 54 sensors and 84600 time slots (one month). The
second dataset (available online) we used is collected by an
SHM system deployed on the Guangzhou National TV
tower (GNTVT) [31]–[34]. It consists of a set of 800 wired
acceleration sensors data, collected in 273000 time slots.
The dataset consists of vibration signals collected from a
sophisticated SHM system. However, to see the DSP mining
performance in sensors of the CPS, we have conducted sim-
ulations seriously considering WSN aspects, commutation,
communication, event detection. We consider the GNTVT
SHM dataset in the 200-sensor case.

Considering recent advancements of the CPS, as mod-
eled before, we consider that some sensors could have
greater memory and more processors than others. Each DB
is distributed among the sensors, and the processor in the
node has complete access to its portion of the database.
Simulations are performed with Omnet++ simulation tool
within a 50m× 500m rectangular field, taking into account
the SHM environment, e.g., a high-rise building, bridge,
aircraft, etc. The hardware constants for the processor and
transceiver are from the Intel Xscale PXA271. The Imote2
uses a CC2420 radio chip for wireless communication. We
model each sensor with six discrete power levels in the
interval {-10dBm, 0dB}, considering the Imote2s power
settings, which is tuned within the IEEE 802.15.4. We adopt
similar configurations from an improved log-normal path
loss model [35] and a synchronized data collection method
[28] only for data forwarding. For the sake of convenience,
we normalize the communication cost and computation cost
from 0% to 100%.

For observing the presence of an event, we consider
the GNTVT SHM dataset and give different levels of event
injection (damage information) at different sensor locations
(by modifying the input signal randomly in the data sets
of (5-10)th sensors, (41-45)th sensors, (90-95)th sensors, and
(170-175)th sensors). For comparison, we consider two other
sensor network data mining schemes: MAR-PLT [10] and
TARs [14]. The main reason of choosing them is that the
similarity in terms sensor data mining or pattern mining
and the hints for event information.

7.2 Performance Results

7.2.1 Computation Cost
In the first set of simulations, we observe the average com-
putation time in generating a DSP in DPminer. We gather
the time for two data set computations in sensors of CPS.
The total computation time is composed of the time for data
preparation, DP-Tree development (including data insertion,
tree restructuring, delay in data broadcasting/receiving be-
tween the CH and sensors), and finally, DSP generation.
The results for the two data sets at their respective min diff
parameter settings (defined in Section III) are in Figs. 7(i)
and 7(ii). We vary the min diff parameter from 1.0 to 4.0. It
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shows the average computation time for the three schemes.
It is found that the computation time in DPminer is a little
lower compared to that of MAR-PLT and TARs.

We note that the computational load is almost equally
distributed among all the processors in a cluster for the
two data sets. In Figs. 7(iii) and 7(iii), it is evident that the
computation time decreases when the number of processors
increases in each cluster. In the simulations, the number
of processors in developing the DP-Tree distributedly and
parallely in a cluster is varied for each dataset in different
simulations. Importantly, we found that the rate of decreases
is faster in DPminer than the rates found in MAR-PLT and
TAR.

7.2.2 Energy Cost of the sensor in the CPS for DSP Mining

Recall that the performance of different data mining
schemes in terms of the c energy cost and event detection is
shown in Fig. 1, which is achieved by using the Intel dataset.

First we discuss results of the computation cost achieved
by using the SHM dataset and Intel Dataset. The energy cost
of the sensor for computation in DPminer is shown in Figs.
8(i) and 8(ii) for the both datasets. We can see computing
SHM dataset need additional computation cost in DPminer.
Comparison between DPminer and other schemes for the
two datasets can be in Figs. 8(iii) and 8(iv), respectively.
These show that the computation energy cost for data
mining is much lower compared to other schemes

Next, we discuss the results of communication cost
achieved by using the SHM dataset and Intel Dataset. The
energy cost of the sensor for communication in DPminer is
shown in Figs. 8(i) and Fig. 8(ii). Based on parameters for
sensors and clusters, we demonstrate the communication
energy cost for various cluster sizes, when the transmission
power eT is set from eT = 1eR to eT = 6eR. This is
because the communication cost dominates the energy cost
in a wireless sensor. We normalize the energy cost usage
between 0 to 100%.

With the increase of sensors in clusters, the communica-
tion cost decreases slowly at first; then, it increases speedily.
Some observations are as follows: when the number of
sensors (ni) in a cluster is small to medium (e.g, 3 to 6), the
sensors have low communication tasks for DP-Tree devel-
opment; when ni is medium to high (e.g, 6 or more), there
are high communication tasks for DP-Tree development. The
comparison of different schemes in terms of communication
energy cost can be seen in Figs. 8(iii) and 8(iV). We find that
DPminer consumes a lower amount of energy than either
MAR-PLT and TARs. MAR-PLT requires higher energy cost
for communication than TARs. Both MAR-PLT and TARs
apply a lot of association rules between sensors and inter-
actions, and the tree development process in them requires
a significant communication cost in each step (which is not
investigated in their works).

In an observation, we find that both the computation
and communication energy costs are steady at first and then
gradually increase when the size of DP-Tree increases. With
similar computation energy costs, DPminer significantly
reduces the communication energy cost in data mining
compared to both MAR-PLT and TARs.

The computation cost decreases slowly, and but commu-
nication cost speedily. Some reason are because the compu-
tation tasks of DBi is performed in parallely and distribut-
edly in more number of processors so that the computation
time and cost decreases, but the data transmission in the
cluster increases. With the increase of eT , the cluster size
is increased but does not go unbounded considering the
energy cost of the DP-Tree for a large cluster.

7.2.3 Performance on the Event Detection
Finally, we report an interesting result about event detec-
tion performance in DPminer regarding the situations of
event detection in AR-PLT and TARs. Recall that we have
provided event information injection into some of the sen-
sors’ data. Corresponding clusters containing these sensors
should have a DSP, by which the detection indicator based
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Fig. 10. Performance of the event detection through differential pattern
mining in DPminer.

on eV and eT is calculated. Fig. 10 shows the performance
on the event detection in different clusters in DPminer.
Here, a detection indicator is calculated by average values
of (eV + eF ) in different time slots within a given period
of time in the wireless sensor of the CPS. We find the in-
dicator cluster-wise since the DP-Tree is developed between
sensors in each cluster in a distributed and parallel manner.
Different values are found as detection indicators (which is
different from binary 0/1 value) in each of the cluster, which
is calculated from sensors in the differential sensor pattern
(pattern is shown in Fig. 10.

As shown in Fig. 11, we can see that the sensors around
clusters 3, 4, 8, 12, and 13 have DSPs and detection indica-
tors with values larger than 2 in DPminer, while AR-PLT
and TAR almost fail to detect the event. The TARs has a
detection indicator in clusters 4 and 13, but indicators are
less than 1. AR-PLT achieves a slightly better performance
(in clusters 4, 8, and 13) than the TARs achieves. Some
of the possible reasons are figured out here. The same
transactional related association rules are used in the event
detection, which do not reflect the actual event detection.
The sensors have low event information, but they might
be rejected by binary-based association rules (“0” for 0.49,
while “1” for 0.51). If there is an acquired data value less
than 0.5 (e.g., 0.46), both AR-PLT and TAR detect it as
a binary “0” value (i.e., there is no event), which is the
wrong detection. However, this low event intensity is also
crucial for various applications, including SHM, industrial
equipment monitoring, etc.

8 CONCLUSION

In this paper, we have proposed DPminer, a comprehensive
data mining framework for wireless sensors in the CPS

E
v
en

t 
d
et

ec
ti

o
n
 i

n
d
ic

at
o
r TARs

SHM Dataset

MAR-PLT DPminer

{
s

9
4
,s

9
5
}

{
s

8
}

3 4 5 6 7 8 9 10 11 12 13 14

-2
-3

0
-1

2
1

4
5

3

 Event detection in three WSN schemes

ni  (sensors in each cluster)

Fig. 11. Performance of the event detection through differential pattern
mining in different schemes.

which functions in a distributed and parallel manner and
is able to extract a pattern of sensors that have event in-
formation. Towards the event detection, we have presented
a differential sensor pattern mining technique considering
actual data. In the technique, we have not modified the
actual data for the pattern generation. It is a unique min-
ing framework which works on sensing actual values and
providing important values as outputs (rather than “0/1”
binary decision) for event detection. DPminer hints that if
an application user wishes to have further analysis on the
event, such outputs can be crucial. Thus, it can be useful for
many CPS applications. We have validated that with a lower
or similar computational time in generating a sensor pattern
for event detection, DPminer can significantly reduce the
energy for computation and communication in the CPS.
Applying the differential sensor mining technique with a
machine-learning approach and in big data environments
will be our future work.
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Algorithm 3: Sensor Database Partition

Input: A set of wireless sensors with their database
Output: Each sensor with a partitioned database

Sort m sensor nodes according to cj descending order
Sort d partitions according ri descending order

for i = 1 to d
for j = 1 to d[i].length
m[i][j]← d[i]m[j]

APPENDIX A
SENSOR DATABASE PARTITIONING
We consider using heterogeneous sensors in the CPS, and share
the processor tasks and partitioning the sensor database to
balance the processing load on the sensors. We adjust the DP-
Tree in such the CPS where the loads are distributed among
the nodes in the system by the knapsack problem based resource-
aware load balancing technique [36], [37]. The load balancing
problem is a multiple knapsacks problem where each processor
represents a knapsack and the overall processing capacity is
defined by the number of the available processors. In our case,
the WSN model has m nodes, where each node represents a
knapsack and there are d partitions of datasets/database DB
that need to be assigned to them where each partition is taken
as a knapsack item. An important issue in the load balancing
problem can be to minimize the overall parallel computation
time. The problem thus becomes a minimization problem.

Let [cCPU
j cMEM

j ] be the capacity of the jth node and
j = {1, 2, . . .m} and [rCPU

j cMEM
rj ] be the resource requirements

of the ith partition and i ∈ {1, 2, . . . d}. tij is the computation
time for the ith partition in the jth node and xij is {0, 1}
variable that indicates whether partition DBi is set into mj .
Then, we formulate the partition setting problem as a multi-
knapsack problem with an objective of minimizing the total
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computation time, by setting a partition in the available sensor
node as follows:

min

d∑
i=1

m∑
j=1

xijtij (14)

s.t

d∑
i=1

rCPU
i · xij ≤ cCPU

j ,

d∑
i=1

rMEM
i · xij ≤ cMEM

j (15)

N∑
j−1

xij = 1 (16)

The first constraint (14) guarantees that the filling of knap-
sack j does not surplus its corresponding capacity cj , and the
second constraint (15) guarantees that each partition is allocated
to one and only one of the sensor nodes. This is an NP-hard
problem. To solve this problem, we apply the heuristic from
[36] for the Virtual machines (VMs) placement in the cloud
systems through emulated VM migration. In the method, a
VM is directly placed to the best physical machine (PM), as
long as PM has enough capacity. Otherwise, a migration-based
placement technique is used, which migrates another VM from
the current PM to accommodate the new VM.

Our partition setting method is similar to direct VM place-
ment. We study the partition placement problem under the
off-line scenario, where we know the information about the
incoming partitions set a priori (i.e., partitions resource de-
mand). We set one partition in one node according to the
resource requirements (i.e., CPU, memory) of the partition. The
pseudo-code for partition placement is shown in Algorithm 3.
This type of resource-aware load distribution ensures minimum
computation time, and thus optimizes the overall WSN system
performance. After receiving load (partition), each sensor node
develops the DP-Tree for a DSP generation.
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