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Structural health monitoring (SHM) refers to the process of implementing a damage detection and char-
acterization strategy for engineering structures. Its objective is to monitor the integrity of structures and
detect and pinpoint the locations of possible damages. Although wired network systems still dominate in
SHM applications, it is commonly believed that wireless sensor network (WSN) systems will be deployed
for SHM in the near future, due to their intrinsic advantages. However, the constraints (e.g., communica-
tion, fault tolerance, energy) of WSNs must be considered before their deployment on structures. In this
article, we study the methodology of sensor placement optimization for WSN-based SHM. Sensor place-
ment plays a vital role in SHM applications, where sensor nodes are placed on critical locations that are of
civil/structural engineering importance. We design a three-phase sensor placement approach, named TPSP,
aiming to achieve the following objectives: finding a high quality placement for a given set of sensors that
satisfies the engineering requirements; ensuring communication efficiency and reliability and low place-
ment complexity; and reducing the probability of failures in a WSN. Along with the sensor placement, we
enable sensor nodes to develop “connectivity trees” in such a way that maintaining structural health state
and network connectivity, e.g., in case of a sensor fault, can be done in a distributed manner. The trees are
constructed once (unlike dynamic clusters or trees) and do not incur additional communication costs for the
WSN. We optimize the performance of TPSP by considering multiple objectives: low communication cost,
fault tolerance, and lifetime prolongation. We validate the effectiveness and performance of TPSP through
both simulations using real data sets and a proof-of-concept system on a physical structure.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture
and Design; C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Wireless sensor networks, sensor placement, communication efficiency,
fault tolerance, connectivity, lifetime, structural health monitoring

1. INTRODUCTION
Wireless sensor networks (WSNs) have been deployed in a wide variety of applications
related to public safety, e.g., military surveillance, intrusion detection, and tracking
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applications [Akyildiz et al. 2002; Wu 2005; Wang et al. 2010; Bhuiyan et al. 2013b].
Structural health monitoring (SHM) is also becoming a prominent application of WSNs
in the interest of public safety, e.g., smart buildings, bridges, smart aircrafts, dams, etc.
These consist of physical components (see Figure 1). Current implementation costs and
time for a wired sensor network are high, making the realization of a large-scale net-
work prohibitively expensive. Compared to the wired network-based systems, WSN-
based SHM systems with optimized control techniques are believed to have the poten-
tial to offer not only a healthy and comfortable environment, but also lower mainte-
nance costs and time. Such a system is a typical example of a complex cyber-physical
system (CPS) [Hackmann et al. 2013]. However, the nature of SHM poses many new
challenges to resource-constrained WSNs.

First, sensor placement plays a key role in SHM, according to the civil and struc-
tural engineering (CSE for short) domains [Beygzadeh et al. 2013; Li et al. 2010; Yi
et al. 2011]. Sensors have to be placed at critical locations that are of the CSE’s impor-
tance, and provide the health state accurately. These placement methods require sig-
nificant domain knowledge along with SHM complexity. Conversely, sensor placement
in generic WSN applications is often assumed to be random, uniform, on grids, tree,
polygon, etc. With these sensor placement methods, effective SHM may not be possi-
ble. Because the spatial information to describe the dynamic behavior of a structure or
sensitivity of events of interest (e.g., damage) is not sufficient at many locations.

Second, wired sensor networks are usually deployed for SHM by the CSE domains.
Only a few justify the use of WSNs, where sensors are often required to transmit
data to a central server (or a sink) [Ceriotti et al. 2009; Araujo et al. 2012; Hackmann
et al. 2012; Li et al. 2013; Linderman et al. 2010; Farrar and Worden 2012]. By using
either single-hop or multi-hop communication techniques, data transmission over a
large structure is extremely difficult and costly. These techniques bear the common
problem of relying on the sink (bottleneck).

Third, on the one hand, SHM requires vibration measurement data at a high rate
and demands efficient delivery for a large amount of data, which must be divided into
a large number of packets [Kim et al. 2007; Wijetunge et al. 2009]. Each sample data
point is typically 2 to 4 bytes, and sampling rate can be from hundreds to thousands
of Hertz. On the other hand, the wireless communication links are very volatile and
prone to failure, due to channel effects, interference, sensor faults, etc. Thus, on the
CSE-driven deployment, it is difficult to balance the wireless data communication load.

Fourth, existing WSN deployments for SHM systems primarily focus on cyber as-
pects (like data acquisition, communication) or on structural physical aspects (like
damage detection, or modal analysis). But the deployments do not focus on the inte-
gration of both types of aspects (called cyber-physical system (CPS) aspects) [Peckens
and Lynch 2013; Anshuman et al. 2013; Bocca et al. 2011; Farrar and Worden 2012;
Yi et al. 2011; Araujo et al. 2012; Bhuiyan et al. 2013a]. This isolation may result in
suboptimal CPS solutions.

A representative example. It can be best observed that, commonly, “no change (e.g.,
damage)” occurs in a structure. Regarding this in a resource-constrained WSN, the
large volume of data really does not always need to be transmitted to the sink.
Instead, a simplified decision transmission may be interesting in the case of a “no
change” state. However, if a change has occurred in the structure, in addition to
transmitting a decision on the possible change, a node may need to transmit all of its
collected data towards an upstream node or the sink upon request. The nodes may
have additional interactions between them. For example, they need to communicate
to the neighboring nodes in the region of the change and to further analyze the data
for ensuing the state of the change. This indicates that a change in the physical
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A substructure -- According to the CSE domains, a physical 

structure consists of a number of substructures or units. The group 

of sensors (which can be in a subnetwork of the network), which 

are deployed in the area of such a substructure, can provide 

monitoring in a distributed manner for the substructure only.

Fig. 1. Example CPSs in which sensors can be placed across the structures to perform active monitoring
and control in a distributed manner.

structural system results in extensive communication and computation in the WSN
system, especially between the nodes in the region around the change.

Therefore, the integration between both systems is a CPS. In such a system, (i) a
distributed decision maker, and (ii) finding the regions of interest, are essential so
as to reduce the volume of data in the case of “no damage.” If there is damage at
a part/section/span/region of the structure (say, in a substructure, refer to Figure 1), a
group of sensors (say, a subnetwork) around the damage should operate for a prolonged
time. Sensors in the other subnetworks (or in the other regions) can sleep to extend
their lifetime.

Motivated by the above limitations and requirements, in this article, we study the
sensor placement problem in a heterogeneous WSN and design a three-phase sensor
placement (TPSP) approach. TPSP is composed of two types of sensor nodes: low-end
nodes (LNs) and high-end nodes (HNs). The LNs are resource-constrained (e.g., limited
battery lifetime and communication abilities), while the HNs are resource-rich (e.g.,
long battery lifetime and long distance communication abilities). A mixed deployment
of these nodes can provide a balance of performance and cost in WSNs.

In order to achieve an accurate monitoring decision, the placement of such HNs and
LNs is carried out efficiently and effectively. For example, in the case that there is
damage somewhere in a structure, LNs process the collected data, and transmit an
extremity of the damage state to the HNs. Besides an LN’s tasks, an HN also aggregates
all of the states. Along with the LNs’ placement, we enable each HN to maintain a
connectivity tree, called “HN-LN” tree. By which the HN can perform appropriate actions
(sending a refined decision, e.g., alert, tackling routing inconsistencies, sensor faults,
maintaining connectivity, etc.) in a distributed manner.

The optimality criterion used as a location quality indicator is the optimization of
the determinant of the Fisher information matrix (FIM). This is a standard metric
to identify the placement quality according to the CSE domains [Kammer 1990; Meo
and Zumpano 2005; Yi et al. 2011]. Utilizing the location quality, we deal with the
placement problem with a large finite set of feasible M locations in a structure. This
eliminates the least effective locations until a given set of N(< M) sensors is left.

We perform the sensor placement in three phases. In the first two phases, we place
a set of HNs and a set of LNs, respectively. The number of HNs can be limited while that
of LNs can be large, relying on the scale of the WSN and the structure. However, the
WSN formed by the HNs and LNs lacks some requirements, e.g., low communication
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load, network connectivity, and fault tolerance ability. Because traditional placements
in CSE do not focus on these requirements. CSE still prefers the use of wired networks
for SHM that are not usually prone to fault/failure, even though in many cases, there
is no need to tackle a fault.

We improve these situations by placing a set of redundant nodes (RNs), whose func-
tionality is similar to the LNs. This is performed by finding possible vulnerable points
in the WSN (e.g., articulation point, junction point) out of the remaining locations from
M locations. As a result, multiple objectives, such as low communication, a specific
level (e.g., k-1) of fault tolerance, and prolonged lifetime, can be achieved.

In summary, this article makes a number of major contributions as follows:

— We formulate a sensor placement problem as a multiple objectives optimization prob-
lem for a WSN-based SHM. This is a difficult task, as it requires multi-domain knowl-
edge to satisfy the domain’s specific requirements. We design the TPSP approach to
address the problem.

— We propose a set of algorithms, including a new notion of a priority-based redundant
sensor placement (PRSP) method, to improve the WSN’s performance.

— To achieve the monitoring in a distributed manner, we develop an HN-LN tree along
with the sensor placement It does not incur additional costs for the WSN. Network
maintenance (e.g., in the case of sensor fault) is also achieved by such a tree.

— We evaluate our TPSP approach via simulations using real data sets collected by a
SHM system (a high-rise building monitoring project of Hong Kong PolyU)1. Also,
we implement a proof-of-concept CPS using the Imote2 platforms and TinyOS on a
civil structure. The results, compared with existing work, validate the efficiency and
effectiveness of the TPSP approach.

This article is an extended version of a preliminary work [Bhuiyan et al. 2012c].
The extension includes several aspects. (i) A detailed analysis of system models, con-
straints, and the algorithms with complexities is carried out. (ii) A new algorithm
(Algorithm 5) for fault tolerance and a method for improving difficulties in WSN-based
SHM are presented. (iii) Clarifications on the duty cycle for nodes, simulation and de-
ployment setup, and related work are made. (iv) Further evaluation and comparisons
between this approach and existing approaches are conducted.

The layout of this article is as follows. Section 2 reviews related work and provides
some background of SHM. Section 3 presents the problem formulation and models.
In Section 4, we develop three-phase sensor placement (TPSP) algorithms. Section 5
analyzes the improvement on both WSN and SHM system aspects and fault tolerance.
We evaluate our approach via simulations in Section 6 and a real implementation in
Section 7. Finally, Section 8 concludes this article and highlights our future work.

2. RELATED WORK
In this section, we relate our approach to existing work.

2.1. Existing WNS-based SHM Approaches
Wireless sensors, with their embedded computational and communication capabilities,
offer new opportunities for SHM. Over the past several years, the CSE domains grad-
ually have targeted the implementation of analytical methods to detect and quantify
structural damage by using reliable sensing technologies [Farrar and Worden 2012;
Linderman et al. 2010; Rice and Spencer 2009; Bocca et al. 2011; Whelan and Hiet-
brink 2012; Peckens and Lynch 2013; Araujo et al. 2012]. While WSNs are gradually
receiving attention from the CSE as an attractive tool, many engineering applications

1Structural health monitoring for Guangzhou new TV tower, http://www.cse.polyu.edu.hk/benchmark/
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(e.g., SHM) are receiving attention from the computer science domain. Some research
efforts on this overlapping area have been presented in the literature [Jindal and Liu
2012; Li et al. 2010; Liu et al. 2011b; Hackmann et al. 2013; Peckens and Lynch 2013;
Bhuiyan et al. 2012b; Ceriotti et al. 2009]. A state-of-the-art technique verified on the
Golden Gate Bridge (GGB) and applications of WSNs for SHM can be found in [Kim
et al. 2007; Ceriotti et al. 2009; Wijetunge et al. 2009].

2.2. Hierarchies in WSNs for SHM Approaches
Traditional wire-based network deployments for SHM rely on flat network architec-
tures [Ni et al. 2008]. The decision on structural state is made offline. Many existing
WSN approaches use the flat architectures [Bocca et al. 2011; Whelan and Hietbrink
2012; Peckens and Lynch 2013; Araujo et al. 2012; Li et al. 2013; Kim et al. 2007; Li
et al. 2010]. The way of raw data transmitting and processing at the sink makes prac-
tically difficult to achieve the high quality of monitoring, because of WSN constraints.
Like the generic WSN applications (e.g., target/event detection, environmental moni-
toring), there is also a growing demand for an increase in transmission bandwidths in
WSN deployments with large networks. They require distributed aggregation of many
data records.

Particularly, online SHM based on WSNs can be a promising technique for monitor-
ing the health state of structures. There are a number of WSN approaches for SHM
from both CSE and computer science domains that have assumed a hierarchical WSN
architecture for structural monitoring in recent years [Jindal and Liu 2012; Liu et al.
2011b; Sima et al. 2011; Nie and Li 2011; Bhuiyan et al. 2012b; Hackmann et al. 2013;
Liu et al. 2011a]. However, none of these approaches focus on how to deploy a WSN
deployment in a hierarchical manner.

Cyber-physical systems (CPS) have recently been proposed by [Li et al. 2013; Hack-
mann et al. 2013], considering both the constraints of the underlying WSNs and the
SHM requirements, where a distributed damage detection algorithm is suggested un-
der a hierarchical cluster-based WSN [Hackmann et al. 2013]. Although it offers a
trade-off between the computation and communication capacities, it does not reveal
the details, such as connectivity, or coverage in the hierarchical architecture. A pure
hierarchical cluster-based SHM (C-SHM for short) considers a fundamental problem
in SHM: mode shape analysis (see Definition 3.2) in clusters [Liu et al. 2011b]. In each
cluster, the vibration characteristics are identified and then are assembled together.

However, the heuristic-based clustering approach is used in the above approaches,
which may not fit a real SHM. Although the clustering in the C-SHM and [Hackmann
et al. 2013] needs to meet extra requirements of modal analysis, the quality of SHM
may be affected. Because the modal analysis can be different at the same cluster at
different times. The cluster size should be optimized to minimize the total energy con-
sumption. Moreover, the system performance through the hierarchical architecture of
both C-SHM and [Hackmann et al. 2013] in terms of connectivity, communication, life-
time, etc., is not discussed. Each cluster of nodes cannot provide an analysis on a state
of the cluster region independently.

2.3. Existing Placement Approaches and Challenges with Them
Generally, a large number of sensors are involved in monitoring a large structure. Nu-
merous engineering methods for wired systems have been advanced for the optimal
sensor placement problem. These methods are widely reported in the engineering lit-
erature, e.g., effective independence method (EFI), kinetic energy method (KEM), and
genetic algorithm [Kammer 1990; Meo and Zumpano 2005; Yi et al. 2011; Beygzadeh
et al. 2013]. When deploying a WSN for SHM, these methods pose many challenges to
the WSN, allowing for constraints in WSNs, e.g., wireless bandwidth, communication
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range and load, fault tolerance, energy, etc. Conversely, although a lot of existing work
is dedicated to WSN systems in different aspects [Wijetunge et al. 2009; Araujo et al.
2012; Hackmann et al. 2013; Rice and Spencer 2009], they do not show the method-
ology of the WSN deployment on structures. Even then, the methods of optimal WSN
deployment are more essential if one intends to deploy a minimum number of sensors.

2.4. Difficulties in Applying Generic WSN Placement Approaches for SHM
In generic WSN deployment for monitoring an event (e.g., object or target), sensor
placement is often carried out randomly, uniformly, and so on. With these placements,
each sensor node detects an event by comparing the received energy, in terms of light,
acoustic, temperature, etc., emitted by the event to a threshold. Each sensor normally
requires a light-weight computation (in many cases, 0/1 decision for the event detec-
tion). There are plenty of deployment approaches proposed by computer science re-
searchers focusing on this research area [Chang et al. 2011; Wang et al. 2008; Kashyap
et al. 2011; Krause et al. 2011; Xue et al. 2012; Xu et al. 2010; Bredin et al. 2010].

In contrast to these applications, it can be seen that WSN deployment for monitor-
ing a structural event (e.g., damage, crack, etc.) is not as straightforward as in other
applications. Detection of structural damage in SHM is performed through vibration
and strain characteristics. With the generic WSN deployment methods, effective SHM
may not be possible. Because the spatial information to describe the dynamic behavior
of a structure or sensitivity of an event (damage) is not sufficient at many locations,
where monitoring damage is due largely to structural location sensitivity. For example,
existing sensor placement with grids, or at intersection points, may not be suitable for
SHM. The intersection points of cells in a grid cannot be considered as the candidate
sensor locations regarding structural properties.

Relay nodes are placed anywhere, or by using random or uniform deployment meth-
ods in WSNs, e.g., [Xu et al. 2010; Xue et al. 2012; Bredin et al. 2010; Cheng et al.
2004]. A relay node placement strategy is proposed by [Xu et al. 2010] to improve a uni-
form deployment-based solution. This solution for data collection is a state-of-the-art
approach, proposed by computer scientists. It discovers that the uniform deployment
strategy is inefficient from an energy perspective. This is due to the biased energy
consumption rate phenomenon in both single-hop and multi-hop heterogeneous WSN
cases. It then uses random deployment strategy for relay nodes in the uniformly de-
ployed WSN. In practice, there are certain restrictions (with respect to the location
quality) on such a method of placement in SHM.

A closely related approach, pSPIEL [Krause et al. 2011], points out the intractability
of the sensor placement problem, which incurs low communication cost between the
sensors. The pSPIEL presents a polynomial-time, data-driven algorithm using non-
parametric probabilistic models called Gaussian Processes both for the spatial phe-
nomena of interest and for the spatial variability of link qualities. This allows it to
estimate the predictive energy and the communication cost of un-sensed locations. In
pSPIEL, entropy is used to measure the quality of the data collected, and the place-
ment is gradually refined by the Gaussian Process. The meaning of “informative” in
pSPIEL is thus very general.

In contrast to the pSPIEL, the mathematical model of a sensor placement derived
from the civil engineering domain provides the information about structural geometry.
For example, damage detection through the structural mode shape depends on the ge-
ometry of a physical structure. We think that the high quality locations found through
the sensor placement algorithms in pSPIEL may be used in various applications in
general sense, but they may not provide high enough quality for SHM.
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2.5. SHM Domain-Specific Sensor Placement and Our Approach
Some of the approaches from engineering domain discussed before justify whether the
deployed WSN-based SHM system can replicate the data collection functionality of
the original wire-based counterpart. Many times powerful wireless sensor nodes are
deployed to accomplish tasks that could have been achieved by more cost-effective
counterparts through system optimization. Those approaches still have difficulties in
handling the constraints of WSNs. They are also not concerned with sensor faults, com-
munication faults, routing inconsistency, etc. These leave opportunities in this multi-
domain research area, e.g., deploying a WSN for SHM, bearing distributed monitoring
in the WSN that can incorporate both computer science and CSE aspects.

In the event of a typhoon, earthquake, or damage or crack in a structure, to en-
sure the safety during the construction of (and the operational performance of) the
GNTVT structure, a long-term SHM system has been implemented. A deployment
method called SPEM [Li et al. 2010] nicely explains CSE requirements and is verified
on the GNTVT. It adjusts the quality of sensor locations to better fit WSN require-
ments. However, such an adjustment (with a reduction of location quality) may lose
some optimal locations. Also, it is fully centralized and does not have any fault toler-
ance support. It does not handle communication errors and load. Since all the sensors
involve transmitting a large volume of data to the sink, they may fail during operation.

Our proposed three-phase sensor placement (TPSP) approach significantly differs
from existing approaches. We attempt to satisfy CSE requirements, together with
WSN constraints. To achieve the health state in a distributed manner in a WSN with
multiple objectives, including fault tolerance, we employ the CSE’s method in three
phase in TPSP. Through these phases, a subnetwork deployed in a substructure can
provide a health state of the substructure independently. TPSP does not alter the pa-
rameters of the structural properties. It demonstrates that it is effective in solving the
optimal wireless sensor placement problem. It has performance results similar to the
engineering methods, with lower computational iterations.

3. PROBLEM FORMULATION AND MODELS
As the first work to deploy a multiple-objective WSN for SHM applications, we first
describe preliminaries, including some necessary definitions. Then, we explain WSN
system models, a sensor placement model, and associated constraints. Finally, we out-
line our problem.

3.1. Preliminaries
Definition 3.1 (Finite Element Model (FEM)). A computer-based numerical model

for calculating the behavior and strength of structural mechanics, such as vibration
and displacement. Via FEM, a complex structural model is simplified by breaking it
down into small elements. These elements are blocks that contain the information of
the entire property of the structure.

Definition 3.2 (Mode Shape: Φ). Each type of mechanical structure has a specific
pattern of vibration at a specific frequency, called mode shape. More specifically, it
basically shows how a structure will vibrate, and in what pattern. Φ is the matrix of
FEM target mode shapes, e.g., Mode1 (or Φ1) : {2.56, 7.45, 10.56, 6.34}Hz.

Definition 3.3 (FIM: Q). Fisher Information Matrix is used to calculate the place-
ment quality indicator (Ej). In CSE, FIM determinant |Q| can be given by a location
assignment which is a standard metric to specify Ej .

Definition 3.4 (Damage). Damage is a significant change to the geometric proper-
ties of a structural system, such as changes to captured frequencies and mode shapes.
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These definitions are used for sensor placement in this article, which may help with
understanding some properties adopted by CSE domains. We provide the following
assumptions and notations before the problem statement.

— Consider that a structure F is given for monitoring. A set P of N heterogeneous
sensors will be placed by finding locations on F such that any changes related to F ’s
health can be accurately identified.

— The set P includes a set H of nh high-end nodes (HNs), a set L of nl low-end nodes
(LNs), and a set R of nr redundant nodes (RNs). nl can be plenty, but nh and nr are
limited. Thus, P = H ∪ L ∪ R, |H| < |R| < |L|, |P | = N , and N < M . Here, N is the
total number of sensors and M is the number of feasible locations on F .

— The HNs should collect data from LNs and aggregate the refined data sent by the LNs
to make a distributed decision. Basically, LNs and RNs have the same functionalities
in this work, but they are placed in different phases, so as to improve the network
performance. Sometimes we refer to both types of low-end sensor nodes as LNs.

— The candidate sensor locations can be assigned, S = {s1, s2, s3, . . . , s|H|+|L|+|R|}, from
a set of M feasible locations for the set P of N sensors. The sink can be located at
a suitable location s0. Each jth sensor location has a contribution to the location
quality Ej (see Definition 3.3).

3.2. Communication Model
We assume that LNs have a communication range 0 < τ ≤ Rc, where τ is adjustable.
Using Rc, an LN communicates to neighboring LNs or an HN. However, an HN has two
ranges: Rc to communicate with its LNs; Rh to communicate directly with its neigh-
boring HNs or to the sink. Here, Rh ≥ Rc. We adopt these two types to reduce energy
consumption for communication. We calculate C.cost as the communication cost in the
WSN (described in Section 5.2).

Let du,v be the Euclidean distance between any two LNs, or an LN and an HN. That
is, any two sensors u and v can communicate directly if and only if du,v ≤ Rc, and
there exists at least k paths from any LN to at least an HN. In other words, a node u can
communicate directly with another node w, which could be an LN or a direct HN if and
only if du,v ≤ Rc. An HN u can communicate directly with v (which can be another HN or
the sink) if and only if du,v ≤ Rh.

Besides the energy consumption metric (modeled in Section 3.3) for communication
in the network, an important communication metric is the quality of a wireless link.
We attempt to achieve communication efficiency and link reliability in two stages:
during sensor placement and during network run-time.

In the first stage, we calculate Qu,v as the probability of link quality, mainly based on
the expected number of retransmissions between locations of any two sensors u and v,
as suggested by [Krause et al. 2011]). In the second stage, we consider that some of the
routing paths through the tree may be altered during monitoring operations. We apply
the technique of data-path validation [Gnawali et al. 2009], which enables routing
layers to remain efficient and reliable in highly dynamic topologies. See Appendix A
for a detailed description of these two stages.

Following the above policies, the HNs, the LNs, the RNs, and the sink, together with
the values of Rh and Rc, collectively generate a heterogeneous network. We describe
the following constraints for generating the WSN.

C1 [Connectivity Constraint]. Given HNs, LNs, and RNs to be placed to form a
heterogeneous WSN, where HNs use both adjustable Rh and Rc, and all of the LNs
adjust τ up to Rc, determine the transmission power level τ of each sensor such that:
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— k-node HN connectivity: there exist k-node disjoint paths from every LN to other
LNs and at least one HN, and every HN to the sink.

— The maximum transmission power level is reduced, MAXpτ |τ = 1, 2, . . . = mini-
mum.

— The WSN can tolerate the failure of up to k − 1 nodes.

C2 [Transmission Load Constraint]. The maximum distance d(> du,v) from any
LN to an HN and an LN to another LN should be minimized. As a result, the load of long
distance transmissions from an LN to any neighboring LNs and an LN to its correspond-
ing HN may alter.

C3 [Data Delivery Constraint] Decisions about the structural health state made
by each LN are gathered at one or more HN(s). The final (distributed) decision made
by an HN should be quickly forwarded to the sink only when there is a “damage” state.
Otherwise, a normal acknowledgment is forwarded. Thus, each sensor must periodi-
cally report its decision, and data delivery must be fault-tolerant to the sensor failure
of up to a specified level (e.g., k − 1).

3.3. Energy Model
For the estimation of the required transmission energy, we follow a standard trans-
mission model [Cheng et al. 2004; Wang et al. 2006]. Such a model assumes that the
energy per bit for transmission over a wireless link is a function of the distance be-
tween a transmitter and a receiver. Let E and T be the maximum energy consumption
and the system lifetime, respectively. A node u is assumed to generate data at a rate
xuv during its lifetime. Similar to the model in [Cheng et al. 2004], the energy required
per unit of time from a node u to a node v is determined by:

Et
uv = ptuv · xuv (1)

where ptuv is the required energy for transmitting one unit of data at time t, which can
be modeled as follows:

ptuv = α+ β · dκuv (2)

where α and β are non-negative constants, and κ is the path loss exponent parameter
in {2, 6}. These parameters depend on the structural environment (i.e., bridge, build-
ing, or others). This ideal power model in (2) has been widely adopted to study various
theoretical aspects of WSNs [Cheng et al. 2004; Olariu and Stojmenovic 2006; Singh
et al. 1998]. We focus on the per packet cost minimization model (PPCM), in which the
data is sent on a path that minimizes the total energy consumption to deliver the data
[Singh et al. 1998]. We define the neighbors of node u as N(u) = v ∈ P |du,v ≤ Rc or Rh.

In the above, we discuss the energy consumption for data transmission. We assume
that a sensor node normally has different states of operation, namely, working, sleep-
ing, and idling [Wang et al. 2006]. In the idle state, the node consumes a significant
amount of energy. We use the rate of energy consumption for a node’s idle state mod-
eled in [Wang et al. 2006]. There are other sources of energy consumption that we con-
sider when estimating the total energy consumption in the WSN. Examples include
network maintenance (fault tolerance, data path validation), any retransmission due
to packet loss, as well as clock synchronization.

Definition 3.5 (T : Lifetime). The elapsed time from the launch of a WSN until the
instant that an HN fails to receive data from an LN or an HN due to energy depletion.
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Table I. Ej values obtained from different
candidate locations

Candidate location number Ej

332 0.9234
448 1.0000
45 0.6401

221 0.9981
96 0.2312

For our network setting, Definition 3.5 is equivalent to the minimum lifetime of the
sensors [Cheng et al. 2004], i.e.,

E[T ] = E[min
u

(Tu)] (3)

where Tu is the lifetime of sensor u.
To ensure a maximized system lifetime besides ensuring the quality of monitoring,

an appropriate sensor node duty cycling should be employed in which the radios can
go to sleep and wake up periodically. A discussion on the duty cycle setting in this
approach can be found in Appendix B.

3.4. Sensor Placement Model
Optimal sensor placement maximizes the possibility of identifying structural health
states. Based on the assumptions from CSE, the health state of a structure, e.g., dam-
age, depends strongly on the location quality indicator (Ej). Computational approaches
are used to place sensors at the optimal locations.

Our aim is to satisfy aspects of both CSE and computer science domains for a WSN-
based SHM. This is why we follow the widely accepted sensor placement method from
CSE, effective independence method (EIM). The mode shape, Φ, is calibrated for find-
ing locations. The EIM optimizes and selects a set of target modes (e.g., N ) for identi-
fication based on the FEM analysis. An initial candidate set of N sensor locations can
be selected from a feasible set of M locations.

The quality indicator related to the jth sensor location is within the range 0.0 ≤
Ej ≤ 1. The mathematical formulation to obtain Ej via EIM can be found in Appendix
C. On the MATLAB platform, 110 candidate sensor locations, based on data sets from
GNTVT1, were ranked using Ej . For example, five candidate locations with their loca-
tion quality are listed in Table I. Ej = 0.0 indicates a location having no contribution to
the measurement data matrix. Such a sensor location is removed from the candidate
set without impacting Q. Ej = 1.0 indicates a location that highly contributes to the
measurement data matrix, and should not be removed from the candidate set.

It is sensible that, the larger the contribution to Ej is, the better the location quality
(see Table I). A high quality location can be set by the quality indicator, e.g., Ej ≥ 0.7,
Ej ≥ 0.5, etc., depending on the end SHM user and the number of sensors available.
However, one of our important purposes is to improve network performance for the
SHM system. Thus, the sensor placement is subject to the following constraints.

C4 [Location Assignment Constraint]. Two HNs or LNs should not be placed at
the same location. But an RN can be placed at an LN’s location as required. For any two
HNs, u and v, duv ≥ Rs, Rs is the sensing range.

C5 [Structural Constraint] In a real-world SHM, the selected optimal locations
on a structure for placing sensors may be inaccessible. Also, wireless sensor communi-
cation is less reliable (Qu,vis low) in structural environments due to several reasons:
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— Physical structural model: There is the proximity to the bearing load zone (e.g.,
in a bridge structure, in an industrial machine), or obstacles (wall, pillars, piers,
etc.), or environmental effects (e.g., heavy wind).

— Irregular sensing field, e.g., not a square or circle-shape on a building, aircraft,
or other structure [Linderman et al. 2010].

— The location is a poor/vulnerable point for wireless sensor communication. The
link quality may also vary from one location to another, one substructure to an-
other, one structural environment to another.

— The environmental interference is very high.

3.5. Problem Statement
A set P of N sensors is given to be placed to form a WSN for monitoring F by finding
locations S = s1, s2, . . . , sN with maximum Ej out of a finite set of M candidate loca-
tions of F , such that C.cost is minimized, the WSN guarantees to tolerate the failure
of up to k − 1 sensors, and T is maximized, subject to the C1 to C5 constraints.

4. THREE-PHASE SENSOR PLACEMENT (TPSP)
In this section, we present several algorithms to design a heterogeneous WSN. At first,
we place HNs and LNs in the first two phases, respectively. Then, they are connected and
organized into groups. Finally, we provide the third phase for RNs’ placement.

4.1. The First Phase: HNs Placement
Data transmission from sensor nodes to the sink often incurs significant energy con-
sumption. This critically affects T , especially in SHM application. Suppose that we
are given a substructure (e.g., a long span of a bridge, a number of floors of a high-
rise building, or a large section of an aircraft) of a large civil structure for monitoring.
Neither a strategy of long-range one-hop data transmission nor short-range hop-by-
hop communication is cost-efficient. We generalize and reduce energy consumption by
deploying several HNs in terms of single to multi-hop communication.

As can be seen in generic WSN deployment, relay nodes, leader nodes, cluster head,
high-end, or similar types of nodes are deployed in the last phase, i.e., after the deploy-
ment of a given set of sensors [Xue et al. 2012; Xu et al. 2010; Wang et al. 2011; Xu
et al. 2010; Kashyap et al. 2011]. In this work, we attempt to place the HNs in the first
phase, due to several benefits for SHM, e.g.,

— We determine the optimal, also suitable, locations for the HNs according to our com-
munication model. In the model, we take into account the high communication link
quality between any two HNs in such a way that enables us to achieve monitoring de-
cisions from each substructure independently. Thus, the HNs placed at such locations
should provide a balance of cost in the network.

— Every HN also has a sensing task. Since they are placed at the best locations of a
substructure, the ability of health monitoring is enhanced.

— HNs are expected to work longer than LNs.

4.1.1. Substructure-oriented Subnetwork Deployment. We can gain the above benefits
through a substructure-oriented subnetwork deployment. As illustrated in Figure 1,
a large physical structure consists of a number of substructures. In other words, a
structure can be divided into a number of substructures based on different sections.
After deployment, sensor nodes in a WSN can be organized into groups (or subnet-
works) in such a way (in a hierarchical manner) that each subnetwork can provide
localized monitoring results for a substructure independently.

However, such substructures are usually identified by wired sensor networks (hav-
ing constant power supply). This cannot be possible by the wireless sensors, as
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the identification requires a huge amount of high-complexity computation and com-
munication. The optimal sensor locations in such substructures can also be identi-
fied by the wired sensors. For example, see the identification of substructures (sec-
tions/regions/subspaces) of a structure using wired sensors and the group of wired
sensors connected to each other, and to the sink [Ni et al. 2009; Xing and Mita 2012;
Weng et al. 2011; DeVore 2013].

Considering severe constraints in WSNs, we want to find localized decisions on the
health state of each substructure independently by the subnetwork. To achieve it, it
can be better if we can still organize the nodes according to the physical substructure
orientation. In recent years, a number of WSN approaches from both CSE and com-
puter science domains has employed hierarchical WSN architectures for structural
monitoring [Jindal and Liu 2012], [Liu et al. 2011b], [Sima et al. 2011], [Nie and Li
2011], [Bhuiyan et al. 2012b], [Hackmann et al. 2013]. However, these approaches do
not figure out how to get such a WSN deployed for SHM. Thus, we have to find a way
that can create subnetworks of a WSN without identifying substructures.

4.1.2. Traditional Approaches to Find Subnetworks. On the one hand, one may wish to find
a heuristic-based sensor organization [Liu et al. 2011b],[Jindal and Liu 2012],[Hack-
mann et al. 2013]. We think that such network may not provide the coverage of the
substructure in practice, and may not come as a result of optimal sensor placements.
The dynamic sensor organization incurs a significant amount of communication cost.

On the other hand, one may wish to perform sensor placement in a greedy fashion
(similar to procedures in EIM): starting with one sensor node, each node is placed, one
at a time, so that it optimally compliments the existing fixed arrangement. It allows for
the finding of a subset of locations with high quality. That is to simply pick sensor loca-
tions in sequence with high quality indicators, irrespective to the communication cost
and link reliability in the network, and also to the substructure-oriented monitoring.

However, such a simple greedy solution for sensor placement performs arbitrarily
worse than a global optimum solution for sensor placement, in practice. Unfortunately,
the optimality of the simple greedy algorithm only holds when we do not take into
account the communication cost and reliability. It also holds when we do not generalize
to the strong connectivity between the nodes. Since EIM is basically designed for wired
sensor deployment, there are usually no such difficulties.

One may think of a global optimum solution that may be an alternative for sen-
sor placement to the simple greedy strategy when deploying all of the sensors at one
deployment time. However, such a solution may only be used for a new system deploy-
ment for a structure at one deployment (with no support for further improvements).
It does not suit the substructure-oriented monitoring. Also, the solution does not work
well to counter physical obstacles or network communication holes in diverse struc-
tural environments.

In contrast, we present algorithms (Algorithm 1 for HNs’ placement and Algorithm
3 for RNs’ placement) that have a modification on the simple greedy algorithm. They
are useful when augmenting an existing system deployed with additional sensors, or
when one wishes to deploy more sensors to enhance the system performance. They are
also useful for providing communication cost balance and reliability into the network.

4.1.3. The HNs’ Placement Algorithm. For the HNs’ placement (through Algorithm 1), we
can determine the diameter of a given structure and all of its substructures. The di-
ameter is used to determine the distance between two substructures. On the one hand,
the required minimum number of HNs to be placed is determined by the diameter of
the structures, the number of substructures, and the given communication range of the
HNs. On the other hand, the minimum and reliable communication range can be set
by the number of available HNs, the diameter (width also can be considered) of each
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ALGORITHM 1: Optimal Location Finding for HNs
Input: Given a set H(⊂ P ) of nh HNs, M candidate locations.
Output: Location assignment for the set H of nh HNs.
Step 1: generate Φm // using Eqn. (6), as derived in the Appendix C;

compute initial data matrix X with nh rows;
Step 2: for i = M to nh + 1 do

compute Ej ;
M ← sort locations of M , according to Ej ;

end
Step 3: select jth location, j = 1;

sj ← j; //set a location
place an HN at sj ;
for j = 1 to nh − 1 do

for i = 1 to M − 1 do
if there is any HN’s location with high Qu,v then

i = i+ 1;
else

sj ← i;
place j at sj ; //place the next HN

end
end

end
return placement of nh;

substructure, and the total number of substructures. The communication range should
be adjustable. This implies that, normally, the required number of HNs’ placement is
proportional to the number of substructures.

However, hn (the number of required HNs) can also vary due to the wireless link
quality (Qu,v). This is because there should be more than one HN placed in a substruc-
ture when placement of only one HN shows low Qu,v. We then look for the locations
with high location quality indicators for the HNs’ placement, and find high link quali-
ties (> Q′

u,v) within distance du,v from one sensor location to another.
The implementation procedure in Algorithm 1 for determining the optimal locations

involves working with all measurement points/locations of F by generating a data
matrix (Step 1). In Step 2, Ej , which is associated with the data matrix, is computed
and all of the locations are sorted according to Ej . In Step 3, first a location with high
location quality indicator is required to be set. The location can be searched from the
location of the sink. The algorithm finds each location from M with Ej and Qu,v. In
this case, if there are any neighboring nodes (HNs) already placed, link qualities of a
sensor location are compared with the locations of the nodes. Otherwise, any locations
with high contribution to Ej are chosen and link qualities are compared.

When each such location (satisfying both high location quality indicator and high
link quality) is found, an HN is placed there. This placement ensures that each placed
HN has the high link quality to at least one of its neighboring HNs that should be within
distance du,v. Finding locations for HNs out of M has a very low complexity O(nhM),
because there are no other nodes placed to be compared to. The high complexity of
an HN placement is O(nh

Md). Here, nh is the number of HNs and d is the maximum
distance from an HN to another HN, or the sink. Practically, nh is from few to many in a
SHM system. As described earlier, the required value of nh can be defined by an SHM
end user.
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ALGORITHM 2: Optimal Location Finding for LNs
Input: Given a set L(⊂ P ) of nl LNs, M − nh candidate locations.
Output: Location assignment for the nl LNs.
Step 1: get Φm with dimensions nl × (M − nh);

get data matrix X;
Step 2: for i = M − nh to nl + 1 do

compute Ej ;
sort remaining locations M − nh, according to Ej ;

end
Step 3: for j = 1 to nl do

find respective Ej for each jth location after removing the respective row and column;
cache the update after removing;
place j at sj ;

end
Step 4: if j = nl then

remove the location from M − nh that is with minimum location quality to Ej ;
set the next location sj according to Ej ;

if i = nl then
break;

else
go to Step 2;

end
else

find location sj for the next jth sensor;
go to Step 3;

end
return placement of nl;

4.2. The Second Phase: LNs Placement
In this phase, we place all of the given LNs. Algorithm 2 is given for the LNs’ placement.
The initial implementation procedure is similar to Algorithm 1. In Algorithm 1, we
compare minimum link quality in distance du,v during the placement of HNs. On the
one hand, when considering the high link quality, we may miss some of the locations
with high location quality indicators. On the other hand, there may be more than one
sensor location within du,v that may have both high location quality indicators and link
qualities. Such locations may be missed due to the limited number of HN placements in
a substructure. We have to ensure the placement of sensors at those locations.

Thus, in Algorithm 2, we do not estimate Qu,v within du,v of any two LNs, or a LN
and a HN. The LNs are placed by fully finding the locations with high quality indicators
out of M − nh locations. This ensures that all of the optimal locations can be found for
monitoring. A question may arise that sensors placed at some of such locations may
not satisfy high link quality, or some sensors placed at some of such locations may be
poorly connected. We address this concern in Section 4.3.

In Algorithm 2, Step 1 is similar to Step 1 in Algorithm 1. In Step 3, we compute Ej

for each LN. This is done by deleting the rows and the columns of the matrix that corre-
spond to the sensor measurement with the lowest noise effect (Step 4). Locations with
low contributions to Ej are removed from the candidate location set. LNs are placed
one by one at the remaining locations after removal. Compared to a thorough search,
this solution reduces the complexity from O(nM−nh

l ) to O(
∑nl

i=1 (i · (M − nh) + i · nn)),
where nn is the maximum number of neighboring sensor locations, including some HNs
and some LNs that are already placed. We give a bound on the complexity by O(n3

lM).
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Fig. 2. Illustration of an HN-LN tree (a distributed view in a WSN).

4.2.1. Grouping and Connectivity Maintenance. There are more challenging issues when
forming a WSN by placing sensors via EIM, e.g., communication, connectivity, and
fault tolerance. We address these issues to provide a high-level network performance
for SHM.

The idea is to make groups of closely placed sensors and to connect each group of
sensors by an HN instead of connecting each sensor to all of the others in a group, as
shown in Figure 2. LNs in a group that are within Rc of an HN, and one or more other HNs
within Rh, can be covered by (connected to) the same HN. The covered groups can then
be connected to their closest neighbors to provide stable connectivity of the network. In
addition, in order to find possible vulnerable points (the locations at which the placed
sensors are poorly connected) in the network, this sensor grouping is crucial. Figure 2
illustrates the grouping of HNs and LNs, and covers each group by at least an HN. We
present Algorithm 3 for grouping the sensors and maintaining the connectivity.

Algorithm 3 includes 4 steps. In Step 1, LNs find their neighboring nodes with Rc

and connect them. Step 1 shows that, every LN (u, v, w, . . .) finds its required closest
neighbors and connects them. rnb is a variable, which denotes the number of required
neighboring nodes that a node should connect to. Suppose that rnb = 3 in a WSN
system. This implies that an LN is restricted to connect more than 3 neighboring LNs.
However, rnb = 3 can be more or less, depending on the structural environments where
the network is being deployed.

Step 2 further confirms the connectivity between any two LNs. Step 3 shows the
connectivity between LNs and HNs. There is also a restriction that an LN must connect
at least one HN. This is given for the purpose of fault tolerance during monitoring.

Step 4 is very important, as it establishes a connectivity tree, called an “HN-LN tree.”
The idea is to connect all of the LNs to HNs. More specifically, the tree is constructed
from a set of LNs to a root, i.e., an HN (see Figure 2), which resides in an HN’s Rc. The LNs
that belong to an HN collect the structural data and send it to the HN. In other words, an
HN-LN tree is constructed by the flows, where a flow is a connection between an LN and
an HN. Each HN maintains a separate HN-LN tree and records all of its LNs’ information
in the local memory. Intuitively, such a tree can be considered as a subnetwork, i.e.,
the portion of the structure that is monitored by a subnetwork can be viewed as a
substructure.

In Step 4, during grouping of the LNs in the HN-LN tree, the LNs that are farthest
from an HN (i.e., in the boundary) may be overlapped and covered by (connected to)
more than one HN. The covered trees can then be connected with each other to provide
full connectivity of the WSN. The complexity of the grouping algorithm is O((nl+nh)

2),
where nl and nh are the number of LNs and HNs, respectively. This is because each LN
is checked for grouping with all other LNs and HNs.
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ALGORITHM 3: Grouping and Finding HN-LN Connectivity
Input: Given a set H of nh placed HNs and a set L of nl placed LNs.
Output: Connected network and HN-LN trees.
Step 1: nn = 0; //the number of neighboring nodes

for each LN u in L do
for each u, v, or w in L do

if (du,v ≤ Rc) and (du,v ≤ du,w) then
u connects v as a neighboring node;

else
u connects w as a neighboring node;

end
nn ← count the number of neighboring nodes;

end
if (nn > rnb) and (du,v > du,w)
then

replace the furthest neighbor with a closest one;
end

end
Step 2: for each v is a neighbor of u do

v connects u as a neighboring node;
end

Step 3: nh ← 0; // the number of HNs
for each LN u of L do:

if nl ≤ rnb then
connect any HN h is within Rc;
if u is not connected to h
then

u sets h as its HN;
end

end
nh = nh + 1; //the next HN

end
Step 4: for each u is an v’s neighbor do

add u to the HN-LN tree;
for each neighbor v is an u’s neighbor do

add v to the HN-LN tree;
end

end
return connected network and the HN-LN trees;

4.3. The Third-Phase: RNs Placement
The WSN formed by the LNs and HNs placement in the first and second phases may
have the connectivity during the network run-time, as long as all HNs are functional.
Each optimal location is monitored as long as all LNs are functional. Nevertheless, we
still have several concerns to address in a WSN placement for SHM:

— Through Algorithm 1 in the first phase of placement, it is possible that once HNs
are placed with high link qualities, the deployed HNs may connect some of their
neighboring nodes with the lowest communication costs. However, when using
the distance-based model for link qualities, we need to pay attention in two ex-
ceptions. (i) We may still miss some of the locations with high quality indicators.
(ii) It is impossible to have reliable links at some locations with high quality in-
dicators in different structural environments, in some instances. For example,
there are physical structural constraints (see constraint C5 in Section 3.4) and
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there is physical interference. We need to simultaneously ensure that both high
quality locations and low communication costs are kept.

— Through Algorithm 2 in the second phase of placement, there may be a question.
That is, whether sensors placed at some locations with high quality indicators
have poor link qualities (using the distance-based model) or sensors placed at
those locations are poorly connected (or not connected at all). We have to improve
the link quality to the sensors placed at those locations.

— There are some events that may occur during the network run-time. (i) If the link
quality from a node u to a node v is poor, many times v’s location may not be mon-
itored. (ii) If an LN fails, the locations may not be monitored; if an HN occasionally
fails, a region of the WSN may fail. For example, in Figure 2, a failure of one LN
or HN may cause a region of a subnetwork (or an entire subnetwork) to become
disconnected from the WSN.

A general approach to improve the above concerns in a WSN is to place some redun-
dant sensors (RNs), as required, at some locations so that the following benefits can
be achieved. (i) The optimal location can be guaranteed to be monitored long-term. (ii)
High quality links can be ensured over the network. (iii) Some LNs which are located
at the optimal locations may have one or more sensors to communicate with the HNs.
(iv) Reduction of the longest-distance communication and its load is obtained.

We can define the level of redundancy as the number of mutually exclusive paths (k)
from a sensor to the sink. The level of redundancy can be estimated as the minimum
level of redundancy. We call the RN placement solution as k-redundant, and its level of
redundancy is k. This depends on the following criterion: (i) any sensor has at least k
exclusive (alternative) routes to its sink; (ii) a sensor which is located in the boundary
and connected to at least two HNs.

We put the priority of finding locations for RNs in accordance with the above criterion:

— The first priority is to place an RN between an LN u and another LN v, between an
LN u and an HN v, or between an HN u and another HN v. That is to mitigate the low
link quality between any two nodes u and v by placing RNs at relative locations if
the obtained link quality is lower than the acceptable reliable link quality. That is,
Qu,v ≤ Q′

u,v, see line 6 in Algorithm 4.
— The second priority is to place an RN (as an intermediate node) between any two

nodes u and v at a relative location if distance between the two nodes is longer than
expected. The target is to mitigate the communication load by minimizing the maxi-
mum distance d. That is, du,v ≥ Rc/2, see line 11 in Algorithm 4. In fact, there may
not be found many such two node locations. In some instances in the first priority,
a low link quality between any two nodes (where du,v between them is longer than
expected) can also be improved. Thus, when the high link quality between the nodes
is ensured, the long distance between them is also minimized by the first priority.

— The third priority is to place a RN at a junction LNs’ location. In multi-hop communi-
cation, such a node may fail, due to being a data forwarder for its descendant nodes
(lines 15-18 in Algorithm 4).

— The fourth priority is to place RNs at the boundary LNs’ locations, which may be con-
nected to at least two HNs, thus, having higher transmission cost (see line 19-20 in
Algorithm 4).

We assume that a location may be, or may not be, on the straight line from an LN to
its HN for each RN, as shown in Figure 2. Intuitively, such a placement offers exclusive
routes from each LN to an HN. We propose Algorithm 4, called priority-based redundant
sensor placement (PRSP), based on the above priorities to meet our system objectives.
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ALGORITHM 4: Priority-based Redundant Sensor Placement (PRSP)
Input: A set R of nr RNs, M − (nh + nl) candidate locations.
Output: Placement of the nr RNs into the WSN with HNs and LNs.
begin
1: r ← the number of RNs that are already placed; //initially, r = 0
2: if r ≤ nr // if there is an RN is available
3: then
4: for each placed HN do // until all of the given HNs are visited
5: for each LN belonging to an HN do // until all of the LNs are visited
6: if Qu,v ≤ Q′

u,v then
7: Call X
8: if (there is an sr available out of Mr) then
9: place an RN at sr;
10: end
11: else if du,v ≥ Rc/2 then
12: Call X
13: if (there is an sr available out of Mr) then
14: place an RN at sr;
15: else if (su is of an LN location and sv is with only one sensor) then
16: place an RN at sv;
17: else if (sv is of an LN location and su is with only one sensor) then
18: place an RN at su;
19: else
20: place an RN at su; // boundary or intermediate node
21: place an RN at sv; // boundary or intermediate node
22: end
23: else
24: the next link; //another link from u to v
25: end
26: end
27: end
28: increase r; // r increases as an RN is placed
29: end
30: return placement of nr(r ≤ nr);
end

X:
find location coordinates su and sv of node u and node v;
Mr ← 1 to M − (nh + nl) //remaining locations;
sort remaining locations Mr according to Ej ;
find a relative location sr between su and sv;

The PRSP is a distributed sensor placement algorithm: the RN placement problem in
SHM involves finding a location assignment for the given set R of nr redundant sensors
out of M − (nl + nh) possible locations, subject to the connectivity and data delivery
constraints. At the beginning of the PRSP, there are no RNs placed, i.e., r = 0. The
algorithm runs until the number of given RNs (i.e., nr) is placed into the WSN that is
with the HNs and LNs. After the placement of one or two RNs, the PRSP checks whether
we have RNs available or not, where nr < nl and nr < M − (nl + nh); we omit some
steps in the algorithm.

The PRSP executes via an HN to another HN, one by one until all of the HNs are vis-
ited (line 4 and line 5). In line 6, the obtained link quality is compared between any
two nodes u and v, and an RN is placed if the obtained link quality is lower than the
acceptable reliable link quality. An LN connected to which LN, or belonging to which HN,
can be determined by comparing du,v (line 11).
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It is obvious that nr < Mr, where nr is the number of RNs in R and Mr is the number
of remaining locations. If there is a near optimal relative location, i.e., a location having
Ej > 0.4, a sensor is placed at the location. If there is no location available, or Ej < 0.4,
but there are more RNs available to be placed, we place each RN at the same location of
an LN. An RN is placed at an empty location or at a location with having only one sensor
placed, i.e., we make sure that at most two sensors can be placed at any location.

The complexity of the PRSP algorithm is O((nh + nl) · d), where nh and nl are the
number of HNs and LNs, and d(> Rc/2) is the maximum distance between any two
sensors, u and v. This expression is taken by the following observation: for a group
of LNs (O(nl)), the two coordinates of an RN are computed and the RN is placed, until
the RN is within Rc of an HN in O(d) iterations. In a similar way, we can show that the
number of RNs placed is with O(nld). The total complexity depends on how the RNs are
placed, and nr. It is difficult to give an analytical assessment of the number of RNs that
can be placed by the PRSP, because the number of RN placements depend on how the
LNs and HNs are placed, nl, and nh.

5. ANALYSIS OF CYBER-PHYSICAL ASPECTS AND FAULT TOLERANCE
This section analyzes and addresses some aspects related to the cyber-physical system
(CPS). These aspects include fault tolerance through communication and connectivity
optimization, structural mode shape normalization, etc.

5.1. Fault Tolerance
5.1.1. Communication and Connectivity Optimization. We have already placed all of the

given sensor nodes in systematic ways for SHM. Although the strategy of direct trans-
mission may be considered reliable in generic WSNs, we do not use direct transmission
from an LN to the sink in this system because of cost-inefficiency. In wired-based cen-
tralized SHM, all kinds of analysis are performed offline at the sink. It is difficult to
do so in WSNs, as they are prone to fault or failure.

In SHM application, each sensor is required to collect data at a high sampling fre-
quency such as X00 times/s, X=1,2,. . ., while it is X times/s in generic WSN applica-
tions. In practice, if a sensor transmits such a large amount of data (i.e., information
about all mode shapes) to the HNs or the sink, its T will reduce quickly because of en-
ergy depletion for communication. In this cyber-physical system, LNs are configured
to compute locally using a decision making algorithm [Bhuiyan et al. 2012a] rather
than transmitting data over a large structure. They transmit their refined data (i.e.,
aggregated mode shape) which is small in amount (e.g., a few to X bytes) compared to
raw data (e.g., generally more than X000 bytes).

The system not only suffers from sensor faults or failures, but also from routing in-
consistency and connectivity problems in WSNs, where wireless communication is less
reliable in the structural environment. During the deployment, we provide an extent
of communication efficiency through the three-phase sensor placement (finding possi-
ble locations with reliable communication links and requiring a minimum number of
unnecessary retransmissions). Also, we provide a level of fault tolerance in the WSN
through RNs placement in the third phase. However, we are still required to provide
fault tolerance during network run-time, allowing for some situations, e.g.,

— If the number of RNs is limited, we cannot provide RNs at all of the optimal (e.g.,
Ej ≥ 0.7) or near optimal (e.g., Ej ≥ 0.4) locations. These locations are important for
SHM, or at required locations (e.g., junction or articulation point) that are important
for WSNs. Such locations may have only a single sensor.
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— In some events, e.g, a location is damaged or there is an event of earthquake, the LNs
may be requested by an HN to work for a prolonged period of time, As a result, they
may fail during operation.

— Communication links with a wireless sensor are not reliable. We think that links can
be highly dynamic and bursty in structural monitoring environments. The drop of
data packets can impair the quality of the monitoring. A packet-loss means the mode
shape information (which may contain interesting data about damage) is lost. It is
impossible to distinguish damage and its approximate location if some of the trans-
mitted packets are missing. In the situation of sending an “alert,” an SHM system
poses additional reliability requirements. Such problems exist in generic WSN appli-
cations, which often consider a flat sensing field with moderate dimensions. However,
the deployments reach an extreme by the pathological extension along the horizontal
or vertical dimension in a large structure monitoring.

We provide network maintenance (repairing) during the network run-time to miti-
gate such situations and ensure monitoring the optimal locations. We argue that the
real-time and local maintenance better suits WSNs since they are asynchronous and
reactive in nature.

5.1.2. HN-LN Tree Maintenance. If an LN fails, we assume that an HN is aware of the
failure, since each HN has the list of LNs through the HN-LN tree and also neighboring
HNs. Each HN strives to keep the HN-LN tree information up-to-date. An HN can locally
maintain the connectivity through the HN-LN tree. When the LNs report on the refined
data to its HN, the reports may be similar or different. However, the health state is
guaranteed to be known and monitored by at least one HN, even if k − 1 LNs or an HN
fails. When data packets sent by LNs to HNs are lost in the wireless link, alternative
links attained by connectivity maintenance (e.g., k-connectivity) can also be provided
to tolerate data packet-loss. Missing data packets in multiple consecutive times from
an LN are used to detect the failure of the LN.

Definition 5.1 (k-vertex HN). The WSN G is k-vertex HN connected if there are k pair-
wise vertex disjoint paths from any LN u to at least one HN. Equivalently, the WSN is
k-vertex HN connected if the removal of any k − 1 LNs (and all of the related links) does
not partition the network. That is, there will be a path from every LN u to an HN.

Depending on the HNs’ locations in the network topology obtained by our deployment,
no further node placement is needed. Let E be the set of all edges of G. We estimate
a distance-weight function on the edges [Cardei et al. 2008] that guarantees that two
edges with different end nodes have different distances. Under constraints C1 to C3
(described in Section 3.2) and Definition 5.1, when a sensor periodically reports its de-
cision data, the data delivery must be fault-tolerant to the failure of up to k − 1 nodes.
We use Algorithm 5 for network maintenance (or optimization on communication reli-
ability and connectivity) in case of sensor faults and routing inconsistencies.

The Algorithm 5 has two main steps or two sub algorithms. Step 1 repairs the net-
work in case the of sensor faults and link faults. If any routing inconsistency is found,
it is validated. Step 2 maintains the connectivity in the network. In a WSN, an HN runs
this algorithm in a distributed manner, whenever it is aware of three situations. (i) An
LN is failure. (ii) A connection between two LNs toward an HN or an LN and HN is broken.
(iii) There is data packet-loss consecutively due to link failure or other reasons.

An HN needs to handle the situations, because structural damage may occur in a
specific subnetwork that should be covered fully by the HN, and partially by one or
more HNs. This implies that the whole WSN does not need network maintenance. The
sink node may be informed by the HN about the maintenance, but it does not need to
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ALGORITHM 5: Optimization of Connectivity and Routing Inconsistency on HN-LN trees
Input: Connection on the HN-LN tree.
Output: k-Connected HN-LN tree.
Step 1: Sort all of the edges in a tree in order of distance to the HN;

for each sensor node f in HN-LN tree do // f denotes a faulty/failed node
mark f as a failed node;
find the nearest LNs of f , hit the links by PING protocol;
check LNs and RNs list for finding an RN at or near the f ’s location;
if there is an RN available then

activate the RN and connect it to the HN-LN tree;
go to Step 2;

else
find an alternative link and route maintenance;
request the LN located near the f to adjust Rc by choosing τ to cover f ’s location;
go to Step 2;

end
end

Step 2: k-connectivity maintenance; // e.g., k ≥ 2
for each edge (u, v) in the sorted order do

duplicate all its edges from a node u to any node v toward the HN in HN-LN tree
if u is k-vertex connected to the HN then
then

set each edge as an alternative link;
end

end
return k-vertex connected HN-LN tree;

intervene with the maintenance. Thus, C.cost (communication cost) as well as T will
not be affected.

In Step 1, all of the edges are sorted according to the distance weight and masks
the faulty or failed node. An HN has the information of the failed LN and the closest
neighbors of the failed LN. It communicates to those neighboring LNs and checks if there
are any available RNs in the sleeping mode. If there is an RN, the task is to provide a
scheduling technique for the RN’s activation with a bounded latency. When an LN fails,
a corresponding RN that is placed at the same location should be activated in a time-
bound, and should be connected to an HN. It ensures that vicinity of the failed LN’s will
be monitored. T can be longer as well.

If there is no RN available, the HN requests those neighboring LNs to adjust both Rs

and Rc up to cover the location of the failed LNs. There may be routing inconsistency
in the tree, due to the link faults and sensor faults, or associated reasons. We provide
route maintenance to overcome from such a routing inconsistency. We apply the tech-
nique of data-path validation to account for the inconsistency [Gnawali et al. 2009].

The technique enables routing layers to remain reliable in highly dynamic topolo-
gies on many different link layers. In the technique, each data packet from a node
contains the distance to its neighboring nodes. Routing inconsistencies are perceived
when an alternative route is needed, even when the control traffic rate is very low. The
technique is suitable for validating the routing path problem in the HN-LN tree in a
subnetwork as it is localized.

Step 2 is about optimizing the k-connectivity on the HN-LN tree to a desired connec-
tivity, e.g., k=3. On the one hand, when an LN fails, at least two links may be broken
that correspond to the failed LN. On the other hand, when one link is broken, the HN can
choose one of two alternative links, which entails the minimum cost. In Step 2, similar
to the connectivity algorithm in [Cardei et al. 2008], at first, an HN duplicates all the
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Fig. 3. The maximum amount of data packets dropped by the WSN per packet transmitted to the sink as a
function of the transmission rate.

edges on the HN-LN tree. It examines all the edges in decreasing order and removes an
edge (u, v) if, after its removal, node u remains k-connected to the root HN. Then, the
algorithm computes its Rc for any LN such that the LN can directly communicate with
any other LN that is joined by an edge in the HN-LN tree. The maintenance process can
continue until reaching k-connectivity.

By using the WSN flow technique, a query on whether or not two vertices are k-
connected in the HN-LN tree can be answered in O(E + V )-time for any fixed k [Cardei
et al. 2008]. Therefore, the complexity of Algorithm 5 is O(e(e+ n)) = O((e))2, where e
and n are the number of edges and nodes in the HN-LN tree, respectively.

5.2. Communication Cost (C.cost)
In the WSN, we calculate the number of packet transmissions in two cases. (i) A refined
decision packet from an LN travels through an intermediate LN or directly to an HN.
The HN acknowledges to the LN that the decision packet is received or informs of a
corrupted packet. (ii) The amount of packets that exchange between nodes for the
network maintenance in achieving required fault tolerance, routing validation, and
connectivity improvement.

If a packet travels across 3 links until it reaches the common ancestor HN or the sink,
there will be a cost of 3 packets per unit time. Note that these 3 links are comprised
of the only path in between the two indicated nodes. We thus define C.cost as the total
communication cost in the WSN. Let δ be the HN-LN tree hierarchy as the sum of the
individual communications between all pairs of nodes adjacent in G:

C.cost(G, δ) =
∑

(u,v)∈EG

ω(u, v) · pathCostδ(u, v) (4)

Since neighboring nodes in the same HN-LN tree may be physically distant, we define
the costs of the tree links used in the PathCostδ computation to be du,v. Thus, the
C.cost reflects the required radio energy consumption. C.cost includes the cost of the
total number of retransmitted packets and acknowledgments in instances of dropped
packets. Thus, C.cost increases as the packet drop rate increases, i.e., the higher the
packet drop rate in a system, the higher the C.cost in the system. To have a under-
standing of the packet drop rate, we provide an example in the following.

We investigate the impact of network congestion on data dissemination in different
experimental WSNs. Our interest is on the packet drop rate in the SHM environment.
In TPSP, we conduct an experiment on an outdoor structure with 22 Imote2 sensor
nodes. The sensors are placed on different locations of the structure. The experiment
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Fig. 4. (a) Boundary nodes; (b) communication between boundary nodes and HNs to optimize connectivity
and inter HN-LN tree connectivity, and normalize mode shape.

is performed over a 7-hour period. Each node is with a 3-axes accelerometer, sampling
at 560Hz with a 140 cutoff frequency (see Section 7 for more details).

SPEM finds 11 sensor locations, selects 8 locations among them on the 8 floors, and
places 16 sensors. Two sensors are placed on each floor. SPEM collects acceleration
data at 560Hz for 24 hours [Li et al. 2010]. It integrates topology control and data
routing techniques with the SHM framework, where all of the sensor nodes must be
connected and the data routing in the WSN has a many-to-one pattern.

Another approach, C-SHM, conducts experiments on a small-scale structure with re-
duced and adjustable transmission power levels [Liu et al. 2011b]. The structure has
10 floors; at each floor, an Imote2 is deployed to sample the structure’s horizontal accel-
erations in a synchronized manner at a frequency of 512Hz. Each sensor connects its
1-hop neighboring nodes within the transmission range, and transmits the data hop-
by-hop. A WSN with 64 nodes is deployed on the 4,200ft-long main span and tower of
the Golden Gate Bridge (GGB) [Kim et al. 2007]. The nodes collect ambient vibrations
data synchronously at a 1000Hz rate. The sampled data is collected reliably over a
64-hop network.

We analyze the number of packets sent by each node and determine the packet drop
rate for the first 10 nodes with regard to the sink location, and illustrate the results in
Figure 3. Note that C-SHM is with the network of 10 nodes. We calculate the maximum
packet drop rate over each link for each node. It is essential to remark that this rate
may vary, due to the specific environments and the interference in the environment,
distance from the sink, communications techniques, etc.

In GGB, the nodes closer to the sink experience the packet drop between 27% and
50%, while the last node experiences a packet drop rate over 90%. The maximum packet
drop is about 53% at the last node in SPEM, 37% in C-SHM, and 9% in TPSP. The
average packet drop rate found in TPSP is 4.1%. Figure 3 shows that as the packet
transmission rate increases beyond a certain network capacity threshold, congestion
occurs more frequently and the number of packets dropped per received data packet
at the sink increases remarkably. For example, 7.5 packets are dropped across the
network for every data packet received at the sink in GGB, while it is 0.3 packets in
TPSP. This may be one of the reasons that GGB requires 9 hours to collect a single
round of monitoring data from the network of 64 sensors. This system’s large latency
may arise from the fact that the SHM method is centralized/global and is designed
separately from the WSN system. In TPSP, the experiment is repeated the next day
with all of the nodes placed at the same locations. We found similar results.
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5.3. Structural Mode Shape Analysis under the WSN
5.3.1. Reference Mode Shapes and Overlapping Mode Shapes. In this subsection, we dis-

cuss what kind of information are sent by the nodes in the WSN toward the sink, how
this information is produced, as well as what are the associated difficulties in the col-
lection. We use a distributed damage detection algorithm suitable for WSN proposed
recently by [Bhuiyan et al. 2012a] to analyze the performance of mode shape under
sensor faults. However, existing distributed damage detection algorithms can also be
utilized in this approach [DeVore 2013; Hackmann et al. 2013; Hackmann et al. 2012;
Rice and Spencer 2009; Ni et al. 2008; Xing and Mita 2012].

In the algorithm, the signal processing are implemented in each sensor node. Each
node continuously analyzes the accelerometer samples {ax}, {ay}, and {az} captured in
each consecutive time window through two procedures: (i) by counting the maximum
absolute value of the vibration velocity and its corresponding time stamp; (ii) the dom-
inating frequency of the vibration velocity spectrum for each coordinate i = x, y, and
z. The parameters are then compared with a reference value (or a vibration-threshold).

Based on the comparison, the node needs to deliver a decision (either “1” for an
unusual condition or “0” for a normal condition). Besides, the nodes are enabled to
compute a local aggregated mode shape based on its collected samples, and compare
it with a reference mode shape (which will be described later). Thus, the two kinds
of information are normally delivered to the HNs for a possible damage detection in
a substructure. The HNs also delivers the final aggregated information based on the
decisions transmitted by all of the nodes in the substructure.

If a node makes a decision “1” and the aggregated mode shape largely differs from
the reference one, the nodes store the parameter values and all acceleration samples
captured in the time window. The amount of data transmitted over the network (that
is placed by the proposed placement algorithms) is small. In an exception, the node can
be issued an “alert” about possible damage by an HN. In such an exception, the node
should deliver all of the values and samples through the HN upon request by the sink.
In such an exception, we use a Huffman compression method to reduce the amount
of data delivered [Huffman 1952]. In the exception, we check that the amount of data
transmission by nodes placed in a substructure does not exceed the given channel
capacity threshold (although we consider an adjustable channel capacity in our work).

An HN can examine whether or not there are significant changes in the mode shape. If
there is a “damage” state, it makes a request to the LNs in the subnetwork to continue
taking measurements and transmitting the mode shape. Meanwhile, it transmits an
alert to the neighboring HNs and the sink. Each HN can execute the command as re-
quested by the sink. There are three reasons for decision sharing with the neighboring
HNs, as follows.

— There is a chance that an LN can be connected to two or more HNs. Thus, two or more
HNs may (or may not) have the same decisions (i.e., alert when there is a change in
the mode shape of a substructure). Thus, each can buffer the decisions received from
the neighboring HNs and compare them.

— If a damaged location is in the boundary area, the LNs overlapped by the two HNs
can get the same decision from the LNs. In this way, the damaged area can easily be
localized and the sink is able to analyze exactly where the location of the damage is.

— In case of an HN failure, the health state can still be transferred to the sink through
the neighboring HN. Some LNs that belong to different HNs can be overlapped (as
shown in Figure 4) in this cyber-physical system.

Since some sensor nodes may overlap with each other, the mode shape can also be
overlapped. Thus, we should tackle this. We need to normalize the overlapped mode
shape and optimize the communication between overlapping LNs and HNs.
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5.3.2. Mode Shape Normalization. We not only estimate information about locations and
mode shape based on EIM, but also normalize it for different subnetworks in the WSN.
As described earlier, the covering area of an HN is the area of a substructure. The
true mode shapes should be identified in the majority substructures, while the noise
modes will randomly appear in the substructures. We consider that each sensor is
given a reference mode shape of the vicinity of its location that it can compare with the
identified mode shape during monitoring. A reference mode shape is the aggregated
mode shape of the structure when the structure is in the normal condition (i.e., without
damage).

In this work, the creation of the reference mode shape at the sink is not based on
the direct raw data transmission (from the node toward the sink), but based on aggre-
gated local mode shapes achieved through the network. Since each node is required to
provide its location quality indicator during the placement by using the mathematical
model shown on the Appendix C, we also enable the node to compute and set the refer-
ence mode shape through the same model (without requiring other models or further
computation) at the initial system setup. Each HN collects all of its LNs’ mode shapes
during the initial system runs. Then, the mode shape information of a substructure
can be found by the mode shape aggregated by an HN. Based on all the mode shapes
collected from all of the HNs, the sink can have the reference mode shape of the whole
structure. Thus, when a specific mode shape is identified, without noise, it is considered
as a true mode shape. Without having a true mode shape, it is difficult to disambiguate
the actual health state from a faulty sensor’s decision.

Creating localized mode shapes through the HNs can benefit a WSN-based SHM
system in three ways:

— By reducing the amount of time for creating a reference mode shape. If the refer-
ence mode shape is computed at the sink, based on the direct data transmission,
it may take more time than a normal monitoring time window to transfer all of
the samples at the sink. This is mainly due to wireless traffic and channel capac-
ity constraints. We think that it can interrupt the initial monitoring operations
and the overall quality of monitoring.

— By enhancing the reliability on the damage detection. If some of the data pack-
ets cannot be recovered at the sink, it is not possible to create a true reference
mode shape. The monitoring operations may be meaningless, due to incorrect
information in the reference mode shape.

— By enhancing the chance of damage detection. Vibration accelerations can vary,
from one location to another, from one substructure to another, and from one
environment to another. If a global reference mode shape is captured at the sink,
it may reduce the chance of capturing the variation at some specific locations or
substructures of the structure. Creating the reference mode shape by each node
locally, and by each subnetwork placed in a substructure may, help overcome this.

In other words, SHM requires correlated data because a damaged area may spread
over many sensors’ measurement areas. Generally, in a centralized SHM system, tack-
ling an event of a sensor fault or failure, or data packet loss, is costly. Such events
further enhance the network data traffic. In this cyber-physical system, if a sensor
fails and there is no RN available at the failed sensor location, the damage information
can still be collected by overlapping sensors. In this case, we need to improve both the
coverage and connectivity to tolerate the failure and to collect the mode shape of the
faulty sensor location. Since we consider a distributed solution, we address the mode
shape normalization, allowing for the overlapping area in the WSN to assess the actual
health state accurately. A more detailed explanation of the mode shape normalization
can be found in Appendix D.
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6. PERFORMANCE EVALUATION
6.1. Methodology
We first evaluate our proposed algorithms in TPSP through simulations. While the
algorithms are general, we adopt the parameters of the sensors in our simulations
similar to the Imote2 [Crossbow Technology 2007]. We use real data sets collected by
the SHM system on the GNTVT, a high-rise infrastructure monitoring project of Hong
Kong PolyU1 [Ni et al. 2009]. Our objective is to observe the performance in different
metrics: placement quality (Ej), network lifetime (T ), communications cost (C.cost),
fault tolerance, and mode shape (Φ) identification.

We consider (N =) 110 sensors (including 12 HNs, 80 LNs, and 18 RNs) for the simu-
lations. The algorithms in TPSP are mainly designed to deploy a heterogeneous WSN
(with an intention to have a high quality and long-term structural monitoring). How-
ever, we also evaluate the algorithms in a homogeneous WSN placement and compare
the network performance results with the results achieved under the heterogeneous
WSN. In the homogeneous WSN, all of the sensor nodes have the same capabilities.
We define the sensor capability in terms of the amount of energy and the transmission
range. In the heterogeneous WSN, the HNs are given double the amount of energy and
communication range of LNs.

In the simulations, all geometric properties in the data sets are exactly adopted
without further approximation. At the initial setup, a mode shape computed by each
node is stored locally as a reference mode shape. Since a node is required to provide
its location quality indicator by using the mathematical model shown on Appendix C,
we enable the node to compute and set the reference mode shape through the same
model. Then, we implement all of the algorithms, including EIM, using the MATLAB
toolbox. GNTVT has a total height of 610m, including a 450m main tower. We set the
simulation environment to 450m×50m.

For the simulation settings, we use the raw FEM model to generate Φ and MATLAB
software module (SPEM) of the GNTVT system [Ni et al. 2009; Li et al. 2010]. We
modify it as needed in TPSP, since SPEM restricts the module for the N locations. In
TPSP, the computational procedure begins with the location for the HNs.

In the WSN, we set k = 3 in simulations. Rc is set to a maximum 30m and Rh is set
up to 80m. We follow discrete power level settings of the Imote2 [Crossbow Technology
2007]. Initially, Rs = 20m; it is increased to 30m, as there is a need of sensing re-
dundancy, especially in the case of sensor fault/failure. When estimating total energy
consumption, we consider all of the sources of energy consumption, including sens-
ing, communication, and node idleness. The estimation also includes the additional
energy consumption for network maintenance (e.g., fault tolerance), retransmission
due to packet loss, as well as clock synchronization. To observe the additional energy
consumption in different approaches, we calculate C.cost, which is normalized to 100.

We inject random faults into the WSN to investigate to what extent Φ is recovered
and T is prolonged, and C.cost for recovery from the faults. We estimate failure rate,
which denotes the fault injection randomly, estimated by the percentage of the number
of faulty sensors to the total number of sensors given. If one wishes, failure rate can
also be given by switching off, sensor debonding, minimizing battery power, etc.

We use an improved version of the SnoozeAlarm function (described in Appendix B)
for SHM that offers wakeup/sleep cycle functionality to reduce long-term energy con-
sumption [Rice and Spencer 2009]. We enable the sensing unit to continuously collect
the vibration acceleration data and make a simplified decision (“1” for “no damage”)
and aggregated mode shape. If there is an event, the LNs send an interrupt wakeup
message (by using the radio-triggering wakeup module, described in Appendix B) to-
ward the HNs and neighboring nodes. If a node receives wake up messages, it activates
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its communication channel at once. Otherwise, sensor nodes sleep for a period of time
and then wake up for a relatively short period, during which they can communicate
with their neighbors and HNs. In the case of giving higher communication capabilities
to HNs, they have more communication tasks to perform, and the duty cycle of HNs is
0.5% longer than the LNs. Otherwise, the sleep/wakeup duty cycle for the radios is the
same value for both HNs and LNs.

To obtain simplified decisions and estimates of mode shapes for substructures, high-
precision time synchronization is required to avoid phase differences in the sensors’
collected data. We use a modified FTSP (flooding time synchronization protocol [Maroti
et al. 2004]) to fulfill the needs of time synchronization in a hierarchy (in the HNs
and then LNs of the network). Instead of flooding time-sync messages to the nodes
directly, the sink node multicasts a time-sync message to select HNs using the relevant
semantics. HNs can transmit the time-sync message down the hierarchy of HNs, thus
synchronizing only the required subnetwork of the network.

Particularly, if there is damage detected in a substructure by nodes in the subnet-
work, the subnetwork can be given a priority to be active longer than normal, and to
collect data for the extended time. The nodes in the subnetwork are synchronized with
their HNs, and then the sink that may promise high precision in the event detection
in a distributed manner.

For comparison, we implement another three placement approaches:

— SPEM [Li et al. 2010] (an approach from SHM domain-specific sensor placement per-
spective). The SPEM is an EIM-based solution (which is also utilized in TPSP) for
sensor placement is exactly the one described earlier.

— pSPIEL [Krause et al. 2011] (an approach from both the high-quality location and
communication-efficiency perspective). As described in Section 2, to the best of our
knowledge, pSPIEL is the approach that simultaneously considers sensing location
quality and communication efficiency in a realistic scenario. Similar to pSPIEL, the
target in TPSP (although it is especially designed for SHM) is to find locations
for sensor placement at which sensors may provide both high sensing quality and
communication-efficiency in practice. In other words, a deployed network by using
TPSP should be able to provide high quality monitoring besides requiring a low com-
munication cost for the monitoring tasks.

— UniRan (an approach from both uniform and random placement and hierarchical
WSN architecture perspective [Xu et al. 2010]). As described in Section 2, two sets
of sensor nodes are placed at the best locations: a set of sensor nodes (like LNs in
TPSP) are placed by obeying uniform distribution to collect sensing data, and a set
of relay nodes (called cluster heads, like HNs in TPSP) are placed by using random
distribution to relay the data from the first set to the sink. The approach improves
the energy consumption rate problem in the uniform placement method by placing
the relay nodes in a random manner, which is finally called the uniform random
placement approach (“UniRan” for short). It examines the network performance in
both homogeneous and heterogeneous WSN placement cases.

Considering all of the perspectives and the similarities, we choose the approaches for
comparison. To make a fair comparison, we consider the same number of sensors (i.e.,
N = 110) for all of the three approaches. In TPSP, we conduct two simulation cam-
paigns: one is for the case of homogenous WSN placement, and one is for the heteroge-
neous WSN placement. Results analyzed from both cases are compared to the results
from all other approaches.
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6.2. Simulation Results
We begin by analyzing the simulation results of the placement performance of our
TPSP algorithm. In Figure 5(a), a variation of the location quality indicators for the
eight sensor locations as a function of the number of iterations is plotted. Through
an iterative procedure in the EIM, locations (such as location 78, location 102) having
relatively low quality indicators are progressively eliminated from the candidate set
until the number of remaining locations is considered to be adequate. The remaining
locations (such as location 168, location 7) with high quality indicators show to be more
effective in providing sensing quality in SHM.

We observe that sensor location 168 progressively returns the high location quality
indicators as the number of iterations increases. In the simulation results shown in
Figure 5(a), the lowest quality indicator is 0.6 is in the beginning, which is nearly
1.0 at the end. However, in most of the simulations, the sensor location 168 returns
location quality indicators from 0.85 to 1.0. This specifies that this location is one of
the best locations for a sensor placement.

The location quality indicators related to other sensor locations have shown a sim-
ilar tendency. That is, Ej increases consistently with increased iteration numbers, in-
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dicating that their importance is identified through the elimination process associated
with the iterative procedure in the EIM. It is important to mention that the sensor
locations, which initially show high location indicators but finally show lower location
quality indicators than many other sensor locations, are removed from the sensor lo-
cation set.

After observing the results in Figure 5(a), we summarize the total number of sensors
deleted are based on the low location quality (the percentage of the location quality in-
dicator) in Figure 5(b). The corresponding curve depicted in Figure 5(b) goes down
when the location quality of a sensor decreases (or as the iteration numbers increase
in Figure 5(a), the location quality indicator decreases). It is evident that, as a candi-
date location is deleted from the sensor location candidate set, the individual location
quality associated with the remaining locations may vary accordingly. We can see that
the location quality of the 1st 10 sensors is higher than the location quality of the 2nd
10 sensors, the location quality of the 2nd 10 sensors is higher than the location qual-
ity of the 3rd 10 sensors, and so on. It also indicates how many sensors are eliminated,
compared with the location qualities during the placement operation.

Based on the results in Figure 5(b), we show a dynamic performance comparison of
the three approaches. We consider the number of sensors (including HNs, LNs, and RNs
in TPSP) vs. the mean location quality on Ej in Figure 5(c), and the number of sensors
vs. the mean of the maximum location quality in Figure 5(d). The results are gathered
from both simulation campaigns in TPSP. As shown in in Figure 5(c), TPSP achieves
almost the same location quality with that of SPEM, while SPEM has a better quality
than traditional EIM, pSPIEL, and UniRan.

In the simulations, the maximum location quality in a case of 50 sensor nodes pro-
vided by UniRan is about 0.713, which is about 0.82 in pSPIEL, 0.93 in SPEM, and
0.96 in TPSP. In the case of 20 sensor cases, location quality in TPSP is close to 1, which
is 0.76 in UniRan, and 0.84 in pSPIEL. Although pSPIEL shows to provide better loca-
tion quality than UniRan, both approaches provide poorer results than the TPSP and
the EIM based approaches. It is evident that the placement approaches (like pSPIEL,
UniRan) proposed for generic WSN applications may not be directly applied to SHM
applications.
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Our next observation deals with T , as shown in Figure 6(a), Figure 6(b), Figure 6(c),
and Figure 6(e) in the homogenous WSN placement case of all of the approaches, and
in Figure 6(d) and Figure 6(f) in the heterogeneous WSN placement case for TPSP and
UniRan. In the first simulation campaign of TPSP, we first estimate the minimum,
mean, and maximum lifetime of each sensor in the network, and then estimate the
mean minimum and mean maximum lifetime of the WSN. For comparison, we take
into account the mean minimum lifetime (or the worst-case lifetime) achieved in the
simulations. We think that the values obtained from the total energy consumption of
a sensor node may not always correspond to a maximal system lifetime. The intention
in estimating the minimal lifetime for comparison is to have an understanding of the
network performance of TPSP in the worst case.

Figure 6(a) shows T of different approaches in the homogeneous WSN placement
case, where we estimate the mean T . In Figure 6(b) and Figure 6(c), we compare the
mean maximum T and mean minimum T , respectively. We can observe that, in the
case of the mean minimum T , TPSP achieves longer lifetime (about 35% to 45%) than
SPEM, UniRan, and pSPIEL. The mean maximum T is much longer (about 45% to
73%) than all of the approaches. We decrease the communication load (thus, communi-
cation cost) on sensors so as to reduce energy consumption. We ensure the placement of
sensor nodes at the reliable and communication efficient locations (similar to pSPIEL).

As the basic design of TPSP, the HNs (high-end nodes) are deployed with a higher
amount of energy than the amount of energy given for the LNs. It is interesting to
mention that, in the second simulation campaign, when the HNs are given double the
energy and communication range of that the LNs, the amount of energy consumption
by HNs did not cross the limit that was set to the LNs. However, we found that the
HNs have a degree (average 7%) of higher energy consumption. This is because the
HNs have additional tasks and have longer distance communication than that of the
LNs.

As the performance on the mean minimum T is analyzed in Figure 6(d), we can ob-
serve that T increases from 27.1% to 43.2% in TPSP. Compared to other approaches,
T is 27.1% longer than UniRan, 36.3% longer than pSPIEL, and 43.2% longer than
SPEM. When estimating the mean maximum T , we found that T in TPSP is 42.3%
longer than UniRan, 54.6% longer than pSPIEL, and 72.2% longer than SPEM. The
network lifetime depends on the sensor node duty cycle. We consider collecting contin-
uous vibration monitoring data. If we scheduled the sensing unit at each individual
sensor node to enable a duty cycle of 2% or less (for monitoring 10 minutes a day), a
more maximized lifetime would be achieved.

The performances on T in Figure 6(e) and Figure 6(f) are analyzed in three mea-
sures: (i) SPEM (similar to EIM) is without fault tolerance support; (ii) SPEM is with
fault tolerance support; (iii) TPSP (including the RN placement) and UniRan (including
the relay node placement). Note that in the first two measures, we do not execute the
third phase of TPSP, meaning that all of the sensors are placed in the second phase
after HN placement. The injected failure rate is up to 40%. It is found that T (mean
minimum) is affected under faults as N increases, as shown in both Figure 6(d) and
Figure 6(e). Based on the results in Figure 6(e), we make an observation about what is
the influence on the T when the first sensor node fails. We found that T is affected by
0.23% in TPSP, by 0.51% in pSPIEL, by 0.76% in UniRan, and by 0.91% in SPEM. This
implies that TPSP consumes lower energy consumption than other approaches in case
of the first sensor node failure.

Figure 7(a) and Figure 7(b) plot C.cost when the failure rate is up to 40%. We ran-
domly remove 40% of the sensors. Here, k = 3. C.cost in pSPIEL is much lower than
SPEM and UniRan, while TPSP attains a low communication cost compared to all of
them in case of the fault tolerance. When a node fails, the network is not separated;
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Table II. Time complexity on the number of nodes placed and net-
work maintenance.

Algorithm Nodes Time
HNs Placement O(nhd) O(nh

Md)
LNs Placement O(nl) O(n3

l M)
Grouping and HN-LN tree O(nl + nh) O((nl + nh)

2)
RNs Placement O(nr) O((nh + nl) · d)
Connectivity Maintenance n O(e(e+ n))
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Fig. 8. Network performance results based on the placement algorithms’ attained through simulations:
(a) required computation time for RNs’ placements; (b) required computation time for sensor grouping into
HN-LN tree and tree maintenance.

whether an RN continues working at the location or not, connectivity and coverage of
the closest nodes in the corresponding HN-LN tree are improved. The whole WSN is
not affected by the failure, i.e., sensor nodes located in the specific substructure are
involved in the improvement. The required amount of C.cost in different approaches
helps to observe the total amount of additional energy consumption.

Table II summarizes the assessments of time complexity and the number of sen-
sors placed through different algorithms in TPSP. Figure 8(a) plots the computation
time and the number of RNs deployed as functions of the total number of sensors.
We observe that the results of evaluation of algorithms coincide with the analytical
assessments shown in Table II. We see that the number of RNs has an asymptotic be-
havior as the number of sensors increases. This means that there is a saturation point
in increasing the number of sensors when, for a new RN is deployed beyond this point,
there is always at least one route of already deployed LNs connecting the RN to the
HN. Figure 8(b) shows the computation time of the HN-LN tree construction and the
tree maintenance for sensor fault tolerance.

We next recover the first four mode shapes (Φ) with a total of (N =) 110 sensor
locations, as shown in Figure 9 under the proposed TPSP approach. The data sets of
GNTVT are used for this purpose. Although N is large, the adopted data can efficiently
rebuild mode shapes of GNTVT because of the sensor placement method and the WSN
architecture. The synchronization accuracy of the data is considered reliable [Araujo
et al. 2012] and the obtained mode shapes by TPSP are close to the actual mode shapes
of the GNTVT.

The above results hint that TPSP achieves almost the same performance in SHM as
that achieved by CSE with EIM-based placement; besides, TPSP ensures the achieve-
ment of the multiple objectives in the WSN. By examining each sensor location state in
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Fig. 9. The GNTVT structure and its four global mode shapes, identified by analyzing data sets in both
SPEM and TPSP.

the obtained mode shapes separately, the quality of SHM (e.g., damage detection) can
be analyzed. In CSE, accurate mode shapes identification specifies the high damage
detection ability of an SHM system.

7. REAL EXPERIMENTS
7.1. Methodology
To validate the efficiency and effectiveness of the TPSP, we computed sensor place-
ment for monitoring a real building structure: the Lee Shao Kee (LSK) tower, which is
located at the Hong Kong PolyU campus (see Figure 10). Our objective in conducting
the experiment is to observe cyber-physical aspects: real Φ identification on different
sensor locations, Ej , C.cost, and T .

As a baseline deployment, we select 22 locations that seem to capture the overall
vibrational characteristics. To address the generally high requirements of SHM appli-
cations, we design a particular type of wireless sensor nodes called SHM motes. Each
SHM mote is tailored by an Imote2 platform [Crossbow Technology 2007], a sensor
board, and a radio-triggered wakeup, as shown in Figure 11. The LSK tower has 14
floors, and the SHM motes are deployed on the floors to monitor the structure’s hori-
zontal accelerations under ambient vibrations. We have conducted the experiments on
two different days.

We provide 3 HNs with double the communication and processing power, while we
provide 13 LNs and 6 RNs that are resource-constrained. Note that the Imote2’s pro-
cessor (PXA271) speed is scaled down [Crossbow Technology 2007] for both the HNs
and LNs. Using the synchronized sensing middleware service [Rice and Spencer 2009],
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(c)

(b)

(a)

Fig. 10. Heterogeneous WSN deployment on the LSK building: (a) an example of the FEM model where 3
HNs (red circle), 13 LNs, and 6 RNs (black) are placed; (b) the sink location; (c) the placement of a sensor.

the Imote2 is programmed to capture acceleration responses of the structure. The
LIS3L02DQ accelerometer [STMicroelectronics ] on the Imote2 sensor board applies
an AA filter and yields digital outputs. The cutoff frequency of the AA filter is fixed
with respect to a sampling frequency. The motes run the TinyOS [Levis P. ] and are
configured to sample the accelerometers in a synchronized manner at a maximum fre-
quency of 560Hz. We observe the WSN with 22 sensor nodes plus the sink mote.

We find 3 optimal places for the 3 HNs. Then, we place 13 LNs on the structure. Fi-
nally, we find 5 places for 5 RNs. The placed motes connect themselves into three HN-LN
trees (see Figure 10(a)) and form a WSN. Sensor faults are injected in the experiments
by removing a connected LN from the fifth floor and disabling the sensing module on
the second day. Meanwhile, the sensors that are placed on the 3th, 4th, 5th, 6th, and
7th floors are expected to be improve their connectivity. Upon deployment, the motes
can communicate with each other. To take advantage of the energy savings of the deep
sleep mode, while still allowing the sink node access to the HNs and HNs to the LNs,
a sleep/wake cycle technique, SnoozeAlarm, is adopted [Rice and Spencer 2009] with
an improvement, by which the motes are scheduled to switch sleep/wake up. All of the
motes operate their radios with a low duty-cycle, similar to the setting in the simu-
lations. The technique is implemented on the Imote2 motes. In an exception, if there
is damage detected by a mote, the triggering wakeup module (as shown in Figure 11)
is used to issue interrupt wakeup messages to the neighboring motes. A detailed de-
scription about the duty-cycle and the module can be found in Appendix B. The time
synchronization technique is similar to that used in the simulations.

7.2. Data Collection
The data collection from the deployment is based on the TinyOS, which we extend to
collect data on the vicinity of each sensor’s location and the tree construction. Once per
epoch, every sensor sends out a broadcast message containing its unique identifier and
a decision message towards its HNs. We conducted the experiments on different days.
On the first day of deployment, we first place the sensors according to the placement
in TPSP, identify the location of each, and mark them. All of the sensors are allowed to
collect structural measurements. Our intention is to create a reference mode shape for
the vicinity of each sensor location. Each sensor computes the mode shape and stores
it in its local memory, which remains in the memory after the SHM operation is over,
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Fig. 11. The SHM mote integrated by Imote2 used in our experiments.

(a) Global mode shapes in TPSP.  (b) Global mode shapes in SPEM. 
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Fig. 12. (a)-(c) Identified five global mode shapes with different frequencies in TPSP, in SPEM, and in
pSPIEL, respectively; (d) performance on the location quality.

and we use it for observation. A reference mode shape of the structure is identified,
based on the collected mode shapes from each sensor on the first day, when there is no
damage in the structure, or there is no sensor fault in the network.

On the second day, all of the sensors are deployed at the same places that were
marked on the first day. Now, every sensor (LN or RN) is given the reference mode shape
and is allowed to take measurements, and they refine a set of true mode shapes. They
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make a decision from the set, and compare the final mode shapes with the reference
one. If there is a significant discrepancy in the mode shape that they detect, they
transmit the information to their HNs.

Upon message reception from all the LNs, the HN compiles a bitstring (implying from
which LNs or RNs it has heard in the current epoch) and mode shape information. An HN
then makes a decision based on the discrepancy in the mode shape. This transmission
log information is then transmitted, along with its decision, and all of the LNs’ working
state, via direct routing or through another HN to the sink. Having the true mode shape
of structure, after analyzing, the sink is able to decide on the health state of the whole
structure.

Since deployment has been conducted temporarily on different days in TPSP, after
placing a sensor node at a high quality location, we remove the sensor node at the end
of the day. On the first day, we had to mark the location manually for further usage on
the second day, and so on. There are reasons to mark the locations for future usage. In
the simulations with the collected real data sets, it was not difficult to find a location
(where a sensor node provides a high quality indicator) and to identify the location for
further sensor placement. However, in practice, it is hard to find a high quality location
and make an aggregated mode shape for a substructure, due to structural dynamics.
Identifying the accurate location information for the future usage by employing GPS
(geographical information system) is not always possible. It is both time and energy-
consuming to find the locations every day.

For example, in our initial deployment setup, we have tried to obtain a reference
mode shape computed directly at the sink. It has taken more time (5 to 7 times longer)
than a normal monitoring time window to transfer all of the samples at the sink
(mainly due to wireless traffic and channel capacity constraints). It is important to
note that there will be no need to mark the locations and place the sensor nodes at the
same locations, when the SHM end user deploys a WSN system permanently.

7.3. Experiment Results
Figures 12(a) to 12(c) demonstrate the identified first five mode shapes under the sen-
sor fault injection in TPSP, SPEM, and pSPIEL, and reveal some remarkable changes
which are affected by the fault. In the experiments, the mode shapes corresponding to
the ambient vibration at frequency set [0.3Hz, 0.8Hz] are extracted in the three HNs,
and then are sent to the sink. The experiments calibrate the FEM of the structure with
the collected real data. We found that there are four overlapping sensors between the
first and second HNs. The results reveal that the TPSP can recover from the failed (5th)
sensor situation and get the mode shape of the location, while both SPEM and pSPIEL
fail to capture full mode shape information. Although there is no RN available at the
5th location, and no recovery mechanism for the situation in both SPEM and pSPIEL,
mode shape identification of the 5th sensor location is guaranteed in TPSP, as shown
in Figure 12(a).

Figure 12(d) demonstrates a performance comparison between all four approaches
in terms of location quality for the 22 sensors, which contrasts the location quality
during sensor placement. It can be seen that the quality for the remaining locations
reduces as the number of sensor placements increases. Observing the results of lo-
cation quality in Figure 12(d), pSPIEL provides better location quality than UniRan.
Compared to others, the performance of TPSP ensures the achievement of almost the
same performance as the placement methods from CSE domains, which validates the
correctness of our simulation results for the placement algorithms.

In Section 5.2, we have presented the performance of TPSP in terms of packet drop
rates, and we compared the performance results of TPSP with other approaches. Here,
we analyze the network lifetime (T ) of TPSP and different approaches. As seen in
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(a) Mean minimum T with varying 
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Fig. 13. Experimental results obtained through the WSN placement: (a) mean minimum T ; (b) mean max-
imum T ; (c) mean T ; (d) mean communication cost.

Figure 13(a), the mean minimum T in TPSP is better than pSPIEL; pSPIEL performs
better than SPEM and UniRan. The mean minimum T in pSPIEL is closer to T in
TPSP in 12-sensor and 18-sensor cases, though not in 6-sensor and 22-sensor cases.

Looking into the detail, the effect of the 5th sensor failure can be seen in the 6-sensor
case. The neighboring LNs communicate to recover from the situation of the 5th sensor
failure. This is because we have at least an RN sensor placed at the same location,
and connectivity is maintained without degrading transmission energy. Similarly, the
mean maximum T and mean T can be seen in Figures 13(b) and 13(c), respectively,
where T is much larger in TPSP than in other approaches.

Figure 13(d) compares C.cost of the four approaches in the presence of sensor fault.
As we can see, C.cost is higher at the beginning; this is because the failed sensor be-
longs to the first HN-LN tree. C.cost increases gradually as N increases afterward. Al-
though there is no RN available at the 5th sensor location, and no recovery mechanism
for the situation in SPEM, UniRan, and pSPIEL, mode shape identification of the 5th
sensor location is not guaranteed in all three approaches. TPSP can efficiently mitigate
this situation.

8. CONCLUSIONS
Our study goes beyond the literature in at least three important aspects. First, we
studied the sensor placement problem as a multiple-objective optimization problem
for monitoring engineering structures, which provides new insights into the way we
can get a distributed WSN-based SHM, and it addresses cyber-physical system issues.
Second, we exhibited how the objectives of low communication, fault tolerance, and
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prolonged lifetime in a multidisciplinary WSN deployment approach can be achieved.
Third, we evaluate the proposed approach via both simulations and a real implementa-
tion to validate its efficiency and effectiveness, where we ensure the similar placement
quality with that of engineering domains.

This work can be extended in two directions in the future. One direction is to develop
a distributed and real-time data collection strategy for SHM based on the connectivity
tree. Since SHM is a data-intensive application, modeling network data traffic is a dif-
ficult task. Another direction is to develop SHM-specific redundant sensor scheduling
techniques, which will wake up one or more redundant sensors in the areas of interest
(e.g., damaged area) in the case of a sensor fault/failure. This may help to meet both
coverage and connectivity requirements in a WSN-based SHM system.
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APPENDIX
A. COMMUNICATION EFFICIENCY AND LINK RELIABILITY
Besides the energy required (modeled in Section 3.3) for communication between ad-
jacent sensors, an important communication metric is the quality of a wireless link,
which is typically characterized by the packet throughput, or alternately, packet-loss
over the link [Gnawali et al. 2009]. Packet-loss is dependent on distance du,v, with
losses being higher for sensor nodes with larger separation or communication distance.

On the one hand, it is well-known that a deployed network performs well in a con-
trolled situation but poorly in practice, even at low data rates. In many monitoring
environments, especially in different structural environments, links can be highly dy-
namic and can be bursty [Srinivasan et al. 2008][Munir et al. 2010]. Thus, during the
data routing, the reliability requirement should be guaranteed.

On the other hand, in the case of SHM application, if a data packet transmitted by
a node placed at an optimal location drops on the way, an important data (containing
accumulated mode shape or a simplified decision on an extremity of a damage state)
may be lost. Since the sensor placement for an SHM approach is characterized by
the high location quality indicator so as to fulfill the CSE domain requirements, the
placement affects not only the routing protocols employed for data collection, but also
the reliable collection of the transmitted data at the sink. The situation becomes more
serious if an SHM end user expects to collect all the recorded vibration signals (such
a volume of data generated may require compression, as to reduce the amount of data
transmitted [Ceriotti et al. 2009]).

We attempt to achieve communication efficiency and link reliability in two stages:
during sensor placement, and during network run-time. In the first stage (during the
sensor placement at high quality locations), we predict that the sensor placement has
reliable communication links, and the number of unnecessary retransmissions is min-
imized. We can calculate Ru,v as the probability of the expected number of retrans-
missions between locations of any two sensors u and v, as suggested by [Krause et al.
2011]).

Ru,v = ρ

∫
α

1

αu,v
p(αu,v)dαu,v. (5)

In (5), αu,v is the probability for a successful packet transmission between the locations
of any two sensors u and v, and (αu,v)

−1 is the expected number of retransmissions,
since the success packet transmission probabilities between any two locations depend
on a probability distribution P (αu,v) with density p(αu,v) instead of a fixed value for
αu,v [Krause et al. 2011]).
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Using the formula in (5), we obtain the link quality denoted by Qu,v between any
two sensor locations u and v. When analyzing Qu,v for sensor locations u and v, we can
set Q′

u,v as an acceptable (required) link quality, i.e., we define Q′
u,v as a threshold at a

specified cut-off point for the link quality. If an obtained link quality between any two
sensors u and v is above the acceptable link quality ( > Q′

u,v), the link is considered a
high quality (or reliable) link.

The above model is suitable for our needs in deploying a WSN system for SHM, as
it allows the estimation of the predictive energy cost and the communication cost of
un-sensed locations. The method used to find high communication-efficient locations
for sensor placement was very similar to the sensor placement on structures. This
also ensures the quality of sensor placement on structures to some extent. However,
there are still difficulties in applying the model during sensor placement on structures,
considering distance as the parameter to determine link quality.

It is possible that once a sensor node is placed with the high link quality, the de-
ployed node may connect some of its neighboring nodes with the lowest communication
cost. However, there are hurdles with (5) during sensor placement on a structure. The
link quality can be low at some locations with high quality indicators, i.e., it is impos-
sible to have reliable links in some locations in different structural environments, in
at least in two instances: (i) there are physical structural constraints (see constraint
C5 in Section 3.4), including obstacles (wall, pillars, piers); (ii) there is physical inter-
ference. On the other hand, the link quality may be low at some sensor locations, with
high location quality indicators in some instances. We have an algorithm to handle
these hurdles in Section 4.3.

In the second stage (during the network run-time), there exist significant network
dynamics, such as communication link faults and congestion (though the placed sen-
sor nodes are not mobile), making the static routing protocols unsuitable [Srinivasan
et al. 2008]. Particularly, link faults in the trees of the network are highly possible in
structural environments. The trees are built along with the sensor placement rooted
at the HN(s), and then at the sink. We assume that some of the routing paths through
the trees may be altered alter during monitoring operations. We validate the paths to
account for the changes.

We apply the technique of data-path validation [Gnawali et al. 2009], which en-
ables routing layers to remain efficient and reliable in highly-dynamic topologies on
many different link layers. If there are inconsistencies in the routing paths, the routing
layer dynamically repairs the topology with a low overhead, and forwards the packet
normally. It does not require system-wide validation to recover from a routing path
inconsistency; thus, it is suitable for the substructure-oriented monitoring.

B. LOW-POWER WAKEUP MECHANISM OF SENSOR NODES
To ensure an extended network lifetime, the network typically operates with low power
consumption, and in many cases, does not require large radio transmission band-
widths. Low power consumption has to be achieved via the work/sleep mode along
with a low duty cycle < 0.1% ∼ 2% >, and low duty cycle operation is usually feasible
for WSNs since many SHM applications only require the collection of 5 to 10 minutes
of data a day to reduce power consumption.

Although this duty cycle setting is suitable in some cases (e.g., monitoring the states
of industrial machine structures), this brings at least two concerns in monitoring some
other structures (building, bridge, aircraft, etc.) that should be addressed.

First. it is hard to tune the duty cycle interval in a balance between real-time func-
tioning and energy saving. Short interval offers higher sensitivity, but consumes
more resources, due to frequent sampling and transmissions. Long interval reserves
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more energy at the price of increased risk of missing important events and data.
Complex environments and a variety of application scenarios makes the trade-off
hard to balance.
Second. a fixed duty cycle scheduler lacks situation awareness. A WSN may not be
able to perform persistent monitoring with quick events identification and situation
assessment on a fixed duty cycle scheduler. Because some structural events (earth-
quake, cracks in a structure, gust of wind, hit by other events) may occur at any
moment. Aircrafts, ships, vessels, etc., require continuous monitoring. If the moni-
toring is performed for such a short or long period a day, the WSN may fail to detect
the events.

A sleep/wake cycle technique called “SnoozeAlarm” is used by [Rice and Spencer 2009;
Jang et al. 2010] in their SHM approaches that can overcome the above concerns to
some extent. SnoozeAlarm provides sleep cycle functionality, which greatly reduces
long-term energy consumption. Sensor nodes sleep for a period of time, and then wake
up for a relatively short period, during which they can interact with the network.

In the technique, some specifically designed wireless nodes, generally called sentry
nodes, are deployed. They continuously monitor the events (the sensing unit is with a
duty-cycle of 100%) and send wakeup messages when an event is detected. The remain-
ing ones are put into the SnoozeAlarm mode: they periodically wake up to listen for a
while. Because they need to determine whether there are possible wakeup messages
from the sentry nodes, and decide to work or to sleep accordingly.

However, the SnoozeAlarm also has some disadvantages from placement perspec-
tives. (i) It cannot provide the coverage of some important locations, due to the duty
cycle that two types of nodes wake up at different times. As a result, the important
locations that are covered by one type of node, which are in sleep mode, are not moni-
tored. (ii) The sentry nodes require continuous power supply. (iii) For monitoring pur-
poses, it needs network-wide flooding, and the deployed sensor nodes are required to
be within the single hop communication range of at least one sentry node. Otherwise,
routing paths between the nodes may be unavailable for the nodes, which will wake
up in alternative times.

The TPSP can improve the disadvantages. Using the idea of the SnoozeAlarm and
the vibration-threshold (obtained by the signal processing algorithm used in Section
5.3), we develop a radio-triggered wakeup module [Liu et al. 2013]) similar to the
“radio-triggered circuit” used by [Ansari et al. 2009]. The module shown in Figure
11 is connected to Imote2 main board via an external pin of Imote2 (without requiring
any extra interface). When a node’s captured vibration parameters exceeds the given
vibration-threshold (obtained by the signal processing algorithm used in Section 5.3),
the module is enabled at once to generate interrupt wakeup messages to wake up the
corresponding node once it makes a positive decision “damage,” or collects a positive
decision “damage.” In other words, a node receives wireless packets sent from others
that contain decisions similar to its own, or contains enough signal energy informa-
tion in the case of raw data transmission. The energy consumption of the radio trigger
wakeup units is less than 1mA. More details about this radio-triggered wakeup mech-
anism can be seen in [Liu et al. 2013].

In TPSP, HNs can work like the sentry nodes. Both HNs and LNs (including RNs)
are enabled to work at the same time with minor modifications on the duty cycle. After
collecting the data and making the decision, if there is a “no damage” state, the LNs
(and RNs) should immediately enter into sleep mode. If there is damage, most of the
locations in a substructure can be covered and monitored, since the two types of nodes
can work. Both HNs and LNs are given limited battery-power in TPSP. However, the
HNs can be given continuous power supply, if one wishes.
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On the one hand, to detect a structural event in real-time, the sensing unit of all of
the sensors can be set to continuously collect vibration data, or can be set to be more
frequently active than the radio units. The radio unit is set to work along with a duty
cycle of 2%. On the other hand, due to having more communication tasks, the duty
cycle (4%) of HNs’ radio units is slightly longer than the duty-cycle (2%) of LNs and
RNs. By functioning at a low duty cycle, i.e., the fraction of time that a node’s radio
is active/on, the node is able to save energy and consequently maximize their lifetime,
whilst ensuring the quality of monitoring. Note that if both HNs and LNs have the
same communication capabilities, the duty-cycle can be set to the same value.

C. COMPUTATION OF EJ

According to the EIM, a mathematical mode shape of a structure denoted by Φ is
based on excitation and is characterized with noise effects. Ambient or force excitation
as input vibration is captured by a sensor.

Assume that there are M feasible locations on the structure, and we need to find N
locations. Each of the N(< M) sensors can measure the vibration signals generated by
the N locations. The vibration data can be represented by a column vector, and then
the mth mode shape Φm measured by jth sensor can be seen as:

Φm = [ϕm
1 , ϕm

2 , ..., ϕm
j ]T (6)

Φm conveys the individual contribution of the jth sensor location to the measurement
data matrix X that is given by:

X = Φm · q + σ (7)

which is comprised of the structural element displacements (i.e., response) that corre-
sponds to the sensor locations on the FEM model. The vector q represents the contri-
bution of response that is estimated, and σ represents the measurement noise, as in
[Yi et al. 2011].
X is optimized as the best estimation of vector q is obtained. It can be obtained by

minimizing the error covariance matrix, defined as follows: [Meo and Zumpano 2005;
Kammer 1990]:

X ′ = E[(q − q̂)(q − q̂)T ] = [(Φm)TR−1Φ]−1 = Q−1 (8)

where q̂ is the estimation of q, E(·) denotes the expectation operator, R is the covariance
matrix of the noise, and Q is the Fisher Information Matrix (FIM). Q can be rewritten
as follows:

Q = (Φm)TR−1Φ (9)

In order to decide which sensor location leads to a higher signal strength, Q is used to
determine the contribution of each sensor location to the measurement data matrix.
In that case, Q is modified as follows:

Qj
T = Q− (Φj

m)TΦ (10)

where Φj
m is the jth row of the mode shape associated with the jth candidate sensor

location. The determinant of the new FIM (Q) is:

det(Qj
T ) = det(Q) det(1− Ej) (11)

where Ej is the EIM location quality indicator that corresponds to the jth sensor loca-
tion, defined as:

Ej = (Φj
m)TQ−1Φj (12)
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D. MODE SHAPE NORMALIZATION
Before describing the mode shape normalization, we refer to Definition 3.2 and Ap-
pendix C for more details about the mode shape. Consider that the structure is cov-
ered by overlapping subnetworks. The HN has the set of mode shapes collected from all
of its LNs’ final mode shapes. After aggregation of the final mode shapes sent by the
LNs within a subnetwork, a decision is made by at least an HN independently for each
substructure.

Assuming that the boundary nodes located in a substructure under an HN is partially
overlapped by the nodes located in s neighboring substructures, where s = 2 or more.
The mode shapes from the boundary nodes may be influenced by the s substructures.
Hence, ϕm

s for the mth mode shape that is associated with s individual substructures.
Mode shapes of any two adjacent substructures, Φm

i and Φm
j , respectively, are given as:

Φm
i = [ϕn,1

i , ϕn,2
i , ..., ϕn,p

i , ϕo,1
i , ϕo,2

i , ..., ϕo,q
i ]

Φm
j = [ϕn,1

j , ϕn,2
j , ..., ϕn,p

j , ϕo,1
j , ϕo,2

j , ..., ϕo,q
j ]

(13)

where n is the number of non-overlapping sensors in the ith and jth substructures. o is
the number of the overlapping sensors, and p and q are the number of overlapping and
non-overlapping sensors in the ith and jth substructures, respectively. Mode shapes
from any two adjacent substructures can be rescaled to one, in terms of overlapping
sensors. Because any overlapping sensor nodes have the same values for different sub-
structures. For example, the ith and jth substructures are normalized as:

Ωi[ϕ
o,1
i , ϕo,2

i , ..., ϕo,q
i ] = Ωj [ϕ

o,1
j , ϕo,2

j , ..., ϕo,q
j ] (14)

Hence, the final mode shapes can be given by associating all of the mode shapes of s
substructures as:

Φm
s =

s∪
i=1

ΩlΦ
m
i (15)

In the presence of noise in the structural environment, the normalized solution in
(13) for any q > 1 does not exist in practice. Thus, the normalization factor Ωl(1, 2, · · ·n)
is approximately determined, for example, as a solution in the least-square sense. Us-
ing the normalization factor R, the local mode shapes are scaled and assembled to
obtain the global mode shape. At the overlapping nodes in the WSNs, the local mode
shapes are averaged to obtain the associated values of the global mode shape.
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