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Abstract—Wireless Sensor Networks (WSNs) are mostly de-
ployed to detect events (i.e., objects or physical changes) at a
high/low frequency sampling that is usually adapted by a central
unit (or a sink), thus requiring additional resource usage in
WSNs. However, the problem of autonomous adaptive sampling
regarding the detection of events has not been studied before. In
this paper, we propose a novel scheme, termed “event-sensitive
adaptive sampling and low-cost monitoring (e-Sampling)”
by addressing the problem in two stages, which lead to re-
duced resource usage (e.g., energy, radio bandwidth) in WSNs.
First, e-Sampling provides a solution to adaptive sampling
that automatically switches between high- and low-frequency
intervals to reduce the resource usage while minimizing false
negative detections. Our technique is to periodically study the
frequency content of different frequency bands through wavelet
decomposition, and set a new frequency accordingly. Second, by
analyzing the frequency content, e-Sampling presents an event
identification algorithm suitable for decentralized computing
in resource-constrained WSNs. In the absence of an event,
“uninteresting” data is not transmitted to the sink. We apply
e-Sampling to structural health monitoring (SHM), which is
a typical application of high frequency events. Evaluation via
both simulations and experiments validates the advantages of
e-Sampling in low-cost event monitoring, and in expanding
the capacity and scope of WSNs for high data rate applications.

I. INTRODUCTION

Since sensor nodes in future wireless sensor networks
(WSNs) are expected to work autonomously to support long-
lived and inexpensive acquisition of data from the physical
world, the problem of low-power consumption of the nodes
is an important issue. Due to severe resource constraints, in
particular, energy and bandwidth, a sound body of literature
has centered on extending the lifetime of WSNs from different
perspectives, e.g., aggressively reducing the spatial sampling
rate, the rate assignment, utility-based sensing and communi-
cation [1], [2], [3], [4], [5], [6], [7]. Although these schemes
all attempt to reduce the energy cost of sensors, they may not
be feasible in practice, due to the following serious limitations:

• Sensors cannot take actions independently to adapt their
rates and intervals. They all rely on a central unit (or a
sink) that knows everything (signal complexities at all of
the sensor positions) and periodically transmits suitable
sampling rates to them. Thus, this adaptation induces
extra communication overhead to traffic-sensitive WSNs.

• It is difficult to assign sampling rates or allocate band-
width to sensors in a specific region where an interesting
event occurs, especially in the case of ‘emergency’ alarm-
ing applications. Also, due to unreliable wireless commu-

nications, the sink may obtain incomplete or sometimes
suspicious information, leading to inaccurate judgments
on rate adaptation, and event detection in a timely fashion.

On the one hand, WSNs nowadays are being suggested for
many high-rate data collection applications, such as physical
activity monitoring, structural health monitoring (SHM), fire
event monitoring, etc. The WSNs are expected to monitor
events in these applications on a long-term basis. However,
sensors generate too much data for their radios in these appli-
cations, especially in those that involve audio, seismometers,
imaging, and vibration [2], [6]. In most cases, they cannot
send that data even one hop in real-time, due to limited
bandwidth. Frequent transmission of such raw data results in
significant data loss, due to channel contention and congestion.
Moreover, off-line computation at the sink is impracticable in
many applications. All of these applications bring challenges
to sensors’ resource circumstances. Thus, sensors should be
able to reduce data autonomously before transmission.

On the other hand, natural environments are often extremely
dynamic, where the presence of an event is also dynamic.
Some events may not appear once in hours, days, months,
even years, e.g., damage, fire, snow level, etc. Thus, sensors
are required to continuously adjust their activities to dynamic
systems (e.g., cyber-physical systems [8]). The challenge is to
represent an accurate picture of changes in the event process
and environmental variables. This can only be achieved if the
event is sensed or sampled from the environment at an accurate
rate. Thus, sampling rate should be regarded as a function of
both the dynamic phenomena and the application.

Motivated by the limitations and requirements, we design
e-Sampling (an event-sensitive adaptive sampling and
low-cost monitoring scheme), which leads to reduced resource
usage in WSNs in two stages. In the first stage, each sensor
has “short” and recurrent “bursts” of high-rate sampling, and
samples at a much lower rate at any other time. Whenever one
of the short intervals of high-rate sampling is long enough,
possibly due to the presence of an event, the frequency con-
tent of signals becomes important. Each sensor automatically
switches (takes actions on) its rates and both the high- and
low-rate intervals depend on the frequency content. Previously
discussed limitations are overcome, as e-Sampling enables
reliable analysis to estimate appropriate future sampling rates
and net reduction in acquired samples.

In the second stage, e-Sampling enables sensors to
compute a lightweight indication of the presence of an event
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by analyzing only the important frequency content in a decen-
tralized manner. A significant change in the content (called
event-sensitive or interesting data) indicates that a possible
event occurred in a given monitoring application. If the event
has truly occurred, the sink who receives the indications may
want detailed information from the sensors in specific regions
(e.g., which are located around the event) and ask queries;
otherwise, in the absence of the event, sensors reduce data
(called uninteresting data) transmission to the sink.

The major contributions of this paper are four-fold:
• We formulate the problem of adaptive sampling and low-

cost monitoring focusing on event-sensitive data, and
design e-Sampling to address the problem.

• To make the best use of WSNs for diverse applications,
we present an algorithm, which is adaptive to adjust
the sampling rate autonomously and is computationally
inexpensive, and it does not require the sink’s mediation.

• We present an event identification algorithm suitable
for energy-constrained WSNs. For this reason, we study
SHM as a typical application of high frequency events.

• We demonstrate the effectiveness of e-Sampling in
simulations with real data traces collected by an SHM
system1 (a project that we have participated in). Also,
we implement a prototype WSN system by using TinyOS
[9] and Imote2 sensors [10], and deploy it on a specially
designed infrastructure to validate our algorithms.

This paper is organized as follows. Section II reviews
related work. We formulate our problem in Section III. Section
IV briefly explains the design of e-Sampling. Section V
presents the adaptive sampling algorithms. Section VI provides
a decentralized event indication algorithm. Evaluation through
both simulations and experiments is conducted in Section VII.
Finally, Section VIII concludes this paper.

II. RELATED WORK

Adaptive sampling has been a resource management issue
in WSNs [1], [2], [3], [5], [6], [11], [12], [13]. Optimal
sampling in WSNs focuses on how to assign the sampling
rate under given bandwidth constraints [1]. The most closely
related work, called FloodNet [12], provides the application-
layer design of WSNs, where the sampling rate is adjusted
according to the estimation error or regression accuracy of
the physical phenomenon measured [12]. It requires a daily
pattern and the sampling rates of a specific hour for estimating
the sampling rates of the very same hour of the next day. It
maintains an acceptable signal reconstruction at the sink to
detect an event. The data collection at a fixed period of time
(e.g., an hour), and then adjustment of sampling rates based
on the analysis of a large amount of data consumes significant
energy. Such adjustment may not be applied to many dynamic
or high-frequency events (e.g., an event of fire, damage/crack,
or a physical activity), which may occur for a short period
(e.g., 5 seconds). However, it has serious limitations on the
quality of signal frequency, which varies largely from time to
time, and also changes suddenly with dynamic events [7].

1http://www.cse.polyu.edu.hk/benchmark/

In another study [11], an optimization problem corre-
sponding to maximum entropy sampling is formulated, which
proposes a solution to the problem, using factor masks.
Utilization of application-specific filtering for data reduction
before transmission is effective for high rate applications [13].
However, the filter behavior is hard to predict, and applica-
tions perform poorly if filtering is too aggressive or poorly
calibrated. Backcasting is a prominent method that operates by
activating only a small subset of nodes that communicate their
information to the sink [4]. This provides an initial estimate of
the sensed environment, and guides the allocation of additional
WSN resources. A camera-based WSN provides two main
concerns of visual monitoring [6]: (i) it increases robustness
to unpredictable events by adding redundancy; (ii) it reduces
energy cost on each node by distributing image sampling tasks
among neighbors. However, the nodes are allocated a fixed
bandwidth and sampling rate, where they should keep long-
range communication links. Waiting for the allocation from
the sink from time to time and/or periodically, is expensive.

A recent work proposes a quality aware adaptive sampling
(‘QAS’ for short) algorithm, which improves the performance
of an existing algorithm proposed in [8] in terms of energy
consumption and data quality. In the algorithm, when a node
experiences stability in its environmental condition, it reduces
its sampling frequency. By doing so, the number of data trans-
missions between the nodes and the cluster head (CHs) are
assumed to be reduced. In fact, the sampling rate adaptation
requires a lot of data transmission in each cluster and brings
a burden on a CH. Moreover, it is also difficult to provide a
specific sampling rate to a region of interest, where an event
occurs. In the evaluation, we found that, once the sampling rate
becomes high, in the absence of an event, achieving the lowest
sampling rate is not possible in practice in these schemes.

Applying the methods above, if one wishes to analyze
event information at the sink, this mechanism is not suitable
for some real-time applications, especially for high-rate and
emergency alarming applications (e.g., the event of a fire
or damage, intrusion detection, road patrolling, etc.), where
the alarm is stringently required to be announced with very
low latency. The drawbacks of most of the existing sampling
methods are that the real-time requirement is not taken into
account. Enabling nodes to rely on the neighbors, the CH,
or the sink to assign or estimate their rates requires a lot of
packet transmission separately, thus inducing network latency
and energy cost in each round of monitoring.

The key aspect that differentiates e-Sampling from the
prior efforts lies in both data acquisition and decision making.
e-Sampling allows an ongoing estimate of frequency con-
tent. Sensors adjust sampling rates independently, and do not
wait for the sink or neighbors’ interruption.

III. PROBLEM FORMULATION AND MODELS

Consider a set S of N sensor nodes given to monitor
events in a data-intensive WSN application. Assume that they
are deployed by some generic deployment strategy (such as
uniform, random, or deterministic [14]) at feasible locations
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TABLE I

SYMBOL/VARIABLE DESCRIPTION
Symbol Description
Fh high frequency content of input signals
Rh sampling at a high rate
Rl sampling at a low or adjusted rate
Rm minimum required sampling rate
Rc current sampling rate (i.e., continue activities at this rate)
d time interval index, d = 1, 2, . . .
Dh the duration of each burst of high-rate sampling
Dl the duration (short interval) of low-rate or adjusted sampling
I given a whole monitoring round or time interval

L = {l1, l2, . . . , lN}, where sensor i is placed at location
li, and l0 is a suitable location of the sink. Let X be the
communication range, where the maximum and minimum
communication ranges of a sensor are Xmax and Xmin,
respectively. Xmin is used to maintain local topology, where
every pair of sensors within Xmin are allowed to share
and compare their decision with their neighbors. Sensor i
corresponds to a node and any two nodes are connected if
their corresponding nodes in Xmin can communicate directly.
The intention of adopting adjustable X is to reduce energy
cost for frequent long distance transmission. Advanced sensor
platforms, such as Imote2, support discrete power levels [10].
A. Energy Cost Model (Ei)

One objective is to minimize network energy cost, hence
to maximize the network lifetime. We achieve it by reducing
the total energy cost, denoted by Ei, on a sensor i in differ-
ent aspects, including sampling, analog to digital conversion
(ADC), computation, and communication. At first, we briefly
describe how energy is consumed by a sensor communication
component in packet transmission/reception. The maximum
energy cost of a sensor depends on a routing protocol used by
the data collection application. This falls into the domain of
power aware routing [15], [16]. Consider a routing algorithm
[16]: we define q[i] as the ith hop sensor on the path q,
and γq as the amount of traffic flowing along path q within
each round of monitoring data collection. Then, q[i]q[i+ 1]
is the distance between any two sensors q[i] and q[i + 1].
q[i]q[i+ 1] ≤ Rmin is used for data delivery to the neighbors
and q[i]q[i+ 1] ≤ Rmax is used for data delivery to the sink.
Let es and er be the energy cost for receiving and transmitting
data, respectively. Thus, Ei is decomposed into the following
parts:

Ei = et + ecomp + eADC (1)

(i) et is the total energy cost per bit for transmission over
a link between a transmitter and a receiver. Hence,
et =

∑
∀q,∃i,q[i]=li

γq · es(q[i]q[i+ 1]) +
∑

∀q,∃i,q[i]=li

er(q[i])

(2)
We do not consider the distance between two nodes when
calculating energy cost for receiving data.

(ii) ecomp is the energy consumed by the computation that
is mainly due to the onboard processor, such as a micro-
controller, DSP chip or FPGA [17]. These devices consume
energy proportional to the number of processing cycles, as well
as the maximum processor frequency f , switching capacitance
µ, and hardware specific constants k and β, respectively
[17]. The number of cycles required to perform a task on
the amount of samples (m) are estimated according to the

Sampling point
Signal

Discrete sampling interval

{

Fig. 1. Illustration of one dimensional signal indicating, sampling interval,
sampling points, and how to sample it.

computational complexity O(m), which describes how many
basic operations, i.e., averages, additions, multiplications, etc.,
must be performed in executing the task. The computational
energy to complete a task can be calculated according to:

ecomp = O(m) · µ(f
k
+ β) (3)

(iii) eADC is the energy consumed by the ADC. In the
sampling, there are two most important modules, namely the
ADC and the sensor itself, when they need energy. As in
most cases, if the samples come at fixed time intervals, the
average energy can be related to the energy per sample and
the number of samples acquired. However, in case of event-
sensitive adaptive sampling in e-Sampling, the energy cost
can vary due to m and Rc (for symbol description, refer to
TABLE 1). Rc can be either Rh or Rl, as it is set for an
estimated time after selection of a sampling rate. Thus, eADC

is proportional to m and the sampling rate used [18], [17].
We calculate the remaining energy (Erem

i ) reserved for
sampling on sensor i at the beginning of a given monitoring
round I . Let Ereq

i be the maximum energy required on i
(which is equivalent to Ei) for a set of a actions in I . We define
the system lifetime T to be the total rounds of monitoring data
collection before any battery runs out of energy:

T = Erem
i /Ereq

i (4)
B. Problem in e-Sampling

Given a set S of N sensors for monitoring events, S =
{s1, s2 . . . sN}. Each sensor si has a actions it can perform,
and these actions are denoted as Ai = {R1

i , R
2
i , . . . , R

a
i }.

In the adaptive sampling context, these actions represent
sampling rates that i opts to perform at any particular point of
time within T , and adjusts its Dl and Dh. This means that si
is allowed to adjust its actions by analyzing its recent samples
of Fh and the samples it believes it will observe.

The following are the key constraints: (i) action selection
constraint—a sensor i can only select one sampling action at
any particular point of time; (ii) energy constraint—a sensor
i requires a certain amount of energy Ereq

i to take a sampling

action in I that must not exceed Erem
i , i.e.,

a∑
o=1

Ro
iE

req
i ≤

Erem
i ; (iii) computational complexity, O(m).

Key objectives are to minimize
N∑
i=1

Ei and overall monitor-
ing latency, and to maximize T .

IV. DESIGN OF OUR SCHEME

We design e-Sampling as follows. In the beginning of an
interval, sensors start short and recurrent bursts of sampling
at a high-rate (Rh), and examine these samples to analyze
Fh. The sensor probes the entire bandwidth that is opposed to
check only the bandwidth visible at some sampling point (see
Fig. 1) when sampling at another time at a low/adjusted rate
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1 DecentralizedControl{               //1st stage data reduction 

2  While (True) {

3    S.RateComp in Dh = True {    

4    Run the Algorithm 1;      // Sampling rate and interval adaptation

5    Compute new Rc;       //set a new sampling rate

6    Compute Dl;}}}          //set the duration for the new rate

7 ComputeEventIndication{           //2nd stage data reduction

8     Run the Event Indication Algorithm

9        If indication.Strength ≥ 40%

10           transmit the indication;                  

11      else transmit an acknowledgment;}   

          // start Sampling Rate Computation at the

 beginning of the system or at a certain interval            

Fig. 2. Overview of e-Sampling showing two stages data reduction.

(Rl). Dh is the duration of each burst of sampling at Rh that
is followed by Dl, where the sampling rate used is calculated
based on findings in Fh. The time between two neighborhood
sampling points is called a ‘discrete sampling interval.’

Whenever an event occurs, Fh becomes important and Dh

is long enough. Thus, sampling rate is kept at Rh until Fh is
unimportant. In this case, Dl shortens in this interval. Before
Fh is known, Dh is followed by a relatively long Dl.

Once Fh becomes unimportant, the sampling condition is
again relaxed: Dh shortens and Dl lengthens. Thus, Dh and
Dl, and Rh and Rl are automatically switched, depending on
Fh. Using this technique in event detection, an analysis of
Fh is preserved in each discrete interval and, subsequently, a
better sampling rate is selected, while reducing false negative
detections. This reduces energy cost of sensors in almost all
aspects (e.g., sampling, ADC, computation, and transmission).

The procedures of e-Sampling are simply shown in
Fig. 2, and are executed by each sensor node individually.
e-Sampling reduces the amount of data in two stages:
during the period of sampling (lines 1-6) and during the period
of decision making on an event (lines 7-11). Both stages are
performed at individual sensors. The ADC task is performed
within an interrupt routine, and the main program performs the
sampling rate selection computation. When enough samples
are acquired, “DecentralizedControl” is executed to select a
sampling rate. All of the sets of Fh are stored in the sensor
local memory (or flash memory). A sensor may keep them
within the memory until it receives a confirmation message
from the sink, or the memory is full. After each complete
sampling period I , a sensor calculates an event indication.

V. ADAPTIVE SAMPLING: 1ST STAGE DATA REDUCTION

In this section, we propose the autonomous adaptive sam-
pling algorithm (Algorithm 1). In the algorithm, in step 1, a
sensor first starts acquiring samples at a high rate, and stores
them into buffer. We need to discuss the sampling interval:
how to adjust the interval for a duration in which a sensor takes
samples at a high or low sampling rate. For both sampling
rate and interval adaptation, each sensor acquires data in d-th
given time interval. Each of such intervals consists of two sub-
intervals: (i) Dh starts with a short investigative sub-interval in
which an Rh is adopted; (ii) Dl (the remainder of the interval
in each time interval) starts when the sampling rate is adjusted
to a lower rate, based on the frequency content. Thus, the
adjusted Rl for Dl is adopted based on the required rate, Rm.
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Algorithm 2:

1: A sensor starts data acquisition

2:

3:

4:

Algorithm 1: Adaptive Sampling (Rate and Interval Adaptation) 

An analysis is performed on the data points acquired during
Dh to estimate the highest frequency content Fh. After ana-
lyzing, the sensor executes step 2. If the sensor discovers that
Fh is important, then the minimum required rate is the high
rate, i.e., Rm = Rh. It is determined as:

Rm = c · Fh (5)
where c ≥ 2 is a confidence factor chosen to satisfy Shannon’s
sampling theorem [3]. However, Fh is generally unknown
before sampling, due to the absence/presence of an event.
To know this, step 3 is executed and contains Algorithm 2,
which helps to get the current rate, Rc, and to make a decision
whether or not the current rate should be continued or adjusted.
If Fh is still important (there is possibly an event), the sensor
continues sampling at the current rate, Rm = Rc; otherwise,
it adjusts the rate to a lower rate, Rl. After getting the lower
rate, the sensor continues sampling at this rate in step 4, until
the next d-th.

For increased robustness, Rh or Rl is estimated by taking
into account the sampling rate in the k previous intervals:

Rc = max(Rm(d− j)), j = 0, ..., k − 1, d ∈ I (6)
For simplicity, the sequence of operations in adaptive sam-
pling, intervals, sub-intervals, and resulting dynamic sampling
rate are presented in Algorithm 1. In the d-th interval, either
Dh or Dl can be zero (see the right plot of Algorithm 1).

A. Sampling Rate Selection
In Algorithm 1, the analysis on the samples of Fh helps

compute a choice of sampling rate in a fast and efficient
manner. We can achieve it through splitting the samples.

1) Wavelet Packet Decomposition for Signal Splitting:
We split the acquisition of samples into frequency bands
at a sensor’s current sampling rate to estimate Fh. The
wavelet packet decomposition (WPD) technique is used for
this purpose, which is leveraged to break the signal into
frequency bands (see Fig. 3). The wavelet packet transform
decomposes the set of samples into separate frequency bands
by recursively applying high-pass (H(z)) and low-pass filters
(L(z)), where H(z) and L(z) are the z transforms of finite
impulse response (FIR) filters h[n] and l[n] [19]. A complete
sub-band decomposition can be viewed as a decomposition of
the acquired signal, using an analysis tree of depth, log r. A
tree-based WPD is illustrated in Fig. 3. The filters are desired
to be power complementary, meaning that the summation of
their responses is equal to one over the frequency domain.
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Fig. 3. The two-dimensional wavelet packet decomposition: (a) two-level
decomposition; (b) multi-level decomposition.

This is why we choose wavelets that have as few vectors as
possible. The effect of scaling functions in wavelets is a kind
of filtering operation on signals, which acts as a low-pass filter,
screening out Fh. This ensures that all signal information is
being examined equally.

In Fig. 3, the decomposition can continue downward mul-
tiple levels r, generating b = 2r frequency sub-bands. These
indexes r and b are exploited to distinguish each sub-band
in the wavelet packet tree, sbr(t). The low-pass and high-
pass filtering operations, which generate the sub-bands, are
explained mathematically as discrete convolutions:

s2br+1[n] =
∑
p
h[2n− p] sbr[p]

s2b+1
r+1 [n] =

∑
p
g[2n− p] sbr[p]

(7)

Notice that the signal is decimated by a factor of two after
each filtering operation, indicated by 2n in each equation. This
means that half of the coefficients are discarded after filtering,
and the total number of coefficients in all bands at each level
r is about the same for each level. This decimated wavelet
packet formulation enables greater computational efficiency
by keeping the number of coefficients about the same for
each level of decomposition, although the number of bands
increases by a factor of two. However, the filters are never
perfect half-band filters. Therefore, proper construction of the
filters is critical to truly represent the signal in these bands, due
to the aliasing effect induced by decimation, and the slightly
overlapping frequency responses as illustrated in Fig. 3(b).
Specifically, filters should be selected as the decomposition
filters of a quadrature mirror filter (QMF) bank [20]. These
are two out of a set of four filters: two decomposition and
two reconstruction filters, which meet the criterion of being
power complementary, as well as cancelling out any aliasing
due to decimation [19]. For reconstruction, at each level the
series s[n] is transformed into another of the same length, i.e.,

{s[n]} → y[n]
= {

∑
p
s[p]h[n− p];

∑
p
s[p]l[n− p];} (8)

B. Threshold and Estimation of Sampling Rate
The filters break the signals into 2r frequency bands, as

previously discussed using the WPD. Once the bands are
generated for some r level decomposition, where there will be
2r bands, coefficients in all bands are subjected to a threshold
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ω which is a function of the data size m, noise variance σ,
and error constant τ , taken from the first high-pass band as:

ω = σ
√
2 logm

σ =
median({s11(W )|:∀W∈s11}

τ

(9)

Any coefficient not above ω is set to zero and τ ∈ [0.5, 1] [21].
Now, the highest band index b with any non-zero coefficient,
denoted by bh, is identified, indicating an estimate of Fh of
signals. We utilize this index and compute an appropriate
sampling rate, called a control rate, for the signals as follows:

Rm = c · Rh

2r
· (bh + 1) (10)

We only identify one band, i.e., the highest band with
any content in it, bh, the computational load induced by
determining a sampling rate. Algorithm 2 completes this task
by selectively computing bands; computing only two bands
at each r instead of 2r bands at each r. If there is Fh in
the high-pass band, the high-pass band is passed on and split
again. If there is no such Fh, the low-pass band is further
split. As a result, the WPD tree is allowed to be traversed; only
computing two bands at r, and completely avoiding computing
unnecessary branches, the computation time is O(m).

By using Algorithm 2, an appropriate sampling is iden-
tified, i.e., Rc is either Rh or Rl in each discrete interval.
By implementing this technique, computational complexity is
now linearly related to the number of samples needed. The
computational complexity in actual filtering becomes only that
of the discrete wavelet transform, as approximated by:

O(m) ≈
R∑

r=0

2[
m

2r−1
Q+Q(Q− 1)] (11)

Here, Q is the length of the QMF filter. This result is obtained
by counting the operations needed to perform the filtering.
This compares favorably with the FFT (fast Fourier transform)
algorithm, which requires O(m logm).

VI. EVENT INDICATION: 2ND STAGE DATA REDUCTION

In this section, we describe sensor decentralized computing
for providing an indication of the absence/presence of events.
In e-Sampling, sensors do not need to know the types of
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events during rate. However, in different applications, they
need to know application-specific adaptation, since detection
of different types of events requires different sampling rates.

In flood monitoring, the detection of a flood warning level is
a rare event. In snow monitoring, status of snow coverage also
requires event-sensitive sampling. Snow is a kind of composite
event (i.e., ice, water, and air) measured at different frequen-
cies in {0.5, 100}kHz [3]. Fire is also a composite event
that requires very high frequency sampling. Physical activity
monitoring is another high-rate application that may require
switching components into sleep mode between samples, or
adjusting the sampling rate to a lower rate during non-physical
activity. Any WSN applications, like above, that acquire data
at high rates, will clearly use a lot of resources. We consider
monitoring events in data-intensive SHM application.
A. Structural Health Monitoring (SHM)

Wired sensor networks have long been used by civil or
structural engineering domains for SHM. In a typical SHM
system, the objective is to monitor structures (e.g., buildings,
bridges, aircrafts, nuclear plants, etc.) and to detect possible
events (e.g., damage, crack) of them at an early stage, which
prevails throughout the engineering domains. SHM algorithms
work on data acquired at a high fixed-rate and let sensors work
for a fixed period of time, say from 10 minutes to hours or
days [8]. The algorithms are carried out globally by the sink to
identify events. This global monitoring, with handling a large
amount of data transmission, brings difficulties to WSNs.

Based on our experience obtained from the collaborations
with civil researchers1, they generally concern whether the
WSN-based SHM system can replicate the data delivery
functionality of original wire-based counterpart, and have less
interest in addressing the constraints of the WSNs, and embed
in-network processing algorithms. Therefore, the method of
data acquisition in traditional SHM [14], [22] can be improved
by our sampling algorithms. e-Sampling presents a WSN
in which the nodes are equipped with some sensing units
for SHM. We consider a 3-axis accelerometer that acquires
vibration data.After data reduction in the 1st stage, it is still
infeasible for a resource-constrained sensor to transmit a set
of Fh. We use the sensor decentralized computing to provide
an indication shortly based on Fh, i.e., analyzing those ranges
of samples.

A sensor has all of the acquired samples sequenced in the
database. Each sensor is designed to maintain a local database.
We utilize a query-interface-based database for wireless sensor
[23], by which all of the samples are aligned. A sensor first
distinguishes the samples in Fh and then reads them from
the database. Thus, only the samples of Fh, are processed to
extract an indication. The indication decision is normalized
and graded as the percentage of the strength of the event
detection, as follows: 0% ≤ VLOW ≤ 20%, 21% ≤ LOW
≤ 40%, 41% ≤ MED ≤ 60%, 61% ≤ HIGH ≤ 80%, and
81% ≤ VHIGH. If the strength is more than expected (e.g.,
“MED” (medium)), a sensor makes a pairwise comparison by
sharing it with the neighbors in Rmin. If the strength is less
than that, a sensor does not transmit the indication to the sink.

Let qCur be the current condition of monitoring the environ-
ment (e.g., physical structure). The following three equations
are iteratively executed by each sensor during the monitoring:{

qCur = η · q1 − q2 +
∑hn

h=h1
F (h)

q2 = q1
q1 = q0

(12)

where F (h) is the recent set of samples of Fh, h = 1, 2, . . . n;
thus, the range of frequencies acquired at Rh is [h1, hn]. q1 and
q2 store the results of the two previous iterations, which have
been acquired at either Rh or Rl. η is used in the iterations as
the application-specific data collection-coefficient. We define
the embedded indication function denoted as ∆su(e) in order
to ensure that there is absence/presence of an event in the
vicinity of a sensor u. Let Ref be the reference sample set of
Fh that has been acquired when there is absence of an event
in the application. ∆su(e) is calculated as follows:

∆su(e) =
|qCur − qRef |

qRef
(13)

Assuming that a sensor u has n ∈ N neighbors in Rmin.
We normalize the output of ∆su(e) and put into the grade. In
this work, a sensor u shares its ∆su(e) with the n sensors iff
the strength is MED. It can be set as needed by the user. By
comparing the strength among all pairs (u ↔ v) of sensors in
Rmin, it is possible to correctly locate the event.

To allow a sensor to make a decision whether to transmit
the indication to the sink or not, we define a transmissibility
function given in (14). The function is calculated by:

F sv
su =

n∑
v=1

(∆sv(e))
2

n∑
u=1

(∆su(e))
2
, n ∈ N (14)

We also normalize the output of F sv
su to 100% as the strength

of the event indication, which is a confirming decision. If the
strength is MED, a node transmits the indication to the sink.
This also can be set by the user. The use of these decentralized
computations prevents the nodes from transmitting a long
sequence of acceleration signals (usually up to 60KB of data
for each sensor node) to the sink node for off-line analysis.

VII. EVALUATION

A. Simulation Studies

1) Methods and System Parameters: To evaluate
e-Sampling in realistic simulations, we adopt real
datasets. The datasets consist of the vibration signals
collected from a sophisticated SHM system, deployed on a
high-rise Guangzhou National TV tower (GNTVT)1. These
datasets are collected by a set of 200 and a set of 800
sensors. Its basic abstraction and the sample sets efficiently
provide for sample processing and application-specific format
extensions. In the 200-sensor case, the sensors are deployed
in a deterministic manner [14]. We use the datasets for the
100-sensor case in our simulations. The core of our simulation
relies on the sample set data structure that contains data
collected at a low to high sampling rate. Filter coefficients
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Fig. 4. Autonomous sampling rate adaptation of the 4th sensor node.

tabulated in [20] are the quadrature mirror filters (QMF) used
for the sampling rate selection, and of a length up to 16.

Simulations are performed with Matlab Toolbox using a
finite element model (FEM) [14] of the structure, and within
a 50m × 400m rectangular field, taking into account the
area of structural environment, e.g., high-rise building, bridge,
aircraft, etc. We inject different levels of physical event (such
as damage) information at 10 sensor locations (by modifying
input signals randomly in the datasets).

The hardware constants for the processor and transceiver
are from the Intel Xscale PXA271 [10], and the ADC is of
a Maxim converter defined for multiple sampling rates [18].
The Imote2 uses a CC2420 radio chip for communication. We
model each sensor with six discrete power levels in the interval
{-10dBm, 0dBm}, considering the Imote2’s power settings,
which can be tuned within the IEEE 802.15.4. The study of
different routing protocols is out of the scope of this paper;
for evaluation, we use the shortest path (SP) routing model. A
detailed description can be found in [16], [15]. The constants
and parameters are set as follows: processor speed is 13MHz;
β = 0.83V; payload size = 32 bytes; q[i]q[i+ 1] = 30m;
τ = 0.7; c = 2.5; r ≤ 16.

Comparison: For rigorous comparisons, we implement
five schemes as follows. (i) SPEM [14]: this is a SHM
scheme validated on the GNTVT and simulated with fixed-
rate sampling. (ii) FloodNet [12]: a decentralized control
algorithm for information-based adaptive sampling; (iii) QAS
[7]: a quality aware adaptive sampling (an improved algorithm
given in [24]). (iv) e-Sampling: this proposed scheme.
(v) e-Sampling-C: this is a semi-centralized version of
e-Sampling that excludes the 2nd stage data reduction, i.e.,
sensors transmit the set of Fh data to the sink directly.

2) Simulation Results: We first study the sampling rate
adaptation of a sensor, based on Fh identification in Fig. 4.
We analyze the results on the acquired vibration signals by
the 4th sensor, each of which is a sine wave in the range of
Fh (the left-hand plots). It is seen that for each signal, the
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different sampling rates calculated over a monitoring round.
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correct Fh and sampling rate is selected by the algorithm.
After analyzing the set of Fh at different selected rates (circle
marked), important Fh in the periodic stretched out portions
indicates Dh (the right-hand plot). This indicates that such
high frequency content may convey event information.

We next study the energy cost and energy saving of different
hardware components of a sensor, as shown in Fig. 5. By
using the datasets with varying sampling rates (between 250
and 4100 Hz), SPEM consumes energy about 0.54mAh. It is
interesting to mention that when the sampling rate is about
250 Hz (=Rc) and a burst of sampling rate reaches 4000 Hz
(= Rh) and gets back again to 250 Hz (Rc → Rl), the energy
cost reduces to about 0.07mAh in each interval; hence, saving
about 87%. In the same situation, we found that Rl =1110 Hz
in QAS and Rl =960 Hz in FloodNet. This indicates that the
selected minimum sampling rate is still high in these schemes,
although there may be no event, i.e., the lowest sampling
rate cannot be selected in these schemes. The energy cost
reduces to about 0.02mAh in FloodNet and about 0.015mAh
in QAS, which is very small, compared to e-Sampling.
SPEM monitors events at fixed-rates that consumes higher
energy than both FloodNet and QAS, while e-Sampling
outperforms all of the other schemes. The components (e.g.,
transmitter, ADC) in e-Sampling consume less baseline
energy than others.

We next examine the performance of the event indication.
Fig. 6(a) demonstrates the results under event injection, ob-
tained from the first 13 sensors. We see the highest strength
of event indication at the 6th sensor location among those
sensors. In Fig. 6(a), the strength of the 6th sensor is VHIGH
(i.e., more than 81%) and its neighboring sensors also show a
high degree of strength. The strengths of the neighbors hints
that the presence of an event is highly possible in the vicinity
of the 6th sensor. This is why the 3th, 4rd, 6th, and 7th sensors
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Fig. 7. (a) The SHM mote integrated by Imote2; (b) twelve-story test
infrastructure and the placement of 10 SHM motes on it; (c) network topology.

obtain an extent of strength, say, more than 40%. Thus, they
also transmit the indication to the sink, while 1st, 2nd, and 10th
to 13th sensors do not transmit, even if they do not participate
in pair-wise decision sharing.

Looking for more details on the WSN performance, Fig.
6(b) depict that the lifetime increases with the number of
sensors. We can see, as expected, e-Sampling performs
much better (from 55% to 70%) than the other four schemes.
FloodNet slightly outperforms QAS. Their poor performance
hints that data collection under event-sensitive sampling and
decentralized computing is oblivious to the demand from high-
rate applications.

B. Proof-of-Concept System Implementation

1) WSN Deployment for SHM Applications : We implement
a proof-of-concept system using the TinyOS [9] on Imote2
sensor platforms [10]. We specially design a test infrastructure
in our lab and deploy 10 SHM motes (Integrated Imote2) on
it, as shown in Fig. 7(a). Three abilities of e-Sampling
are justified experimentally, whether or not (i) lowering the
sampling rate can lead to a maximized system lifetime, (ii)
e-Sampling can identify the correct sampling rate in the
presence of an event, and (iii) a node is able to automatically
and autonomously adjust its sampling rates and intervals.

An additional Imote2 as the sink node is deployed at
30 meters away. A PC as a command center is used for
the sink and data visualization. Each mote runs a program
(implemented in the nesC language) to process the acceleration
signal acquired from on-board accelerometers (LIS3L02DQ).
The digital acceleration signal is acquired within frames of
4,096 data points and is then stored in the local memory for
each round of monitoring. The LIS3L02DQ is with a built-
in ADC, which is followed by digital filters with selectable
cutoff frequencies. According to civil engineering, SHM can
also be performed by acquiring data within frames of more
or less than 560 data points. We consider 4,096 data points to
meet higher requirements posed by diverse WSN applications.

We inject events at the 4th sensor location by removing the
plate from the 4th floor of the structure to observe the sampling
rate adaptation and event indication. The sensor attached on
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TABLE 2

Performance of Energy Saving in the WSN-based SHM

Enegy Saving  Deployed sensor no. # 

  1 2 3 4 5 6 7 8 9 10 

In the 1st stage  42.3% 27.2% 15.4% 12.1% 21.9% 25.7% 33.8% 62.1% 62.2% 75.1% 

In the 2nd stage 53.8% 48.2% 22.5% 13.2% 17.3% 23.5% 43.1% 59% 83.1% 85.2% 

Energy Wasting  (-) 4.2% (on average)

the 4th floor and its neighbors are expected to provide an
indication. We also inject a high-magnitude manual excitation
on the structure at some point of time by using a hammer.

2) Experiment Results: When we inject an artificial event
on the structure by the hammer strike, e-Sampling can
successfully identify Fh at the point of time. The sampling rate
and corresponding Dl is also adjusted accordingly. This leads
to an increase in the adjusted sampling rate (1100 to 1400 Hz).
This is best observed by examining the sampling rate waterfall
plot in Fig. 8. When the sampling rate is minimum (from 0
to 150 Hz), Dl is relatively long. The data set (m) analyzed
during Dh is taken to be 4,096 data points. By using (3), the
Imote2 at 13 MHz completes the task in an estimated 0.2 ms.

As with the structural event injection, the sampling rate
varies with Fh. The adaptive sampling is performed on all
of the 10 sensors’ signals, and the results of energy saving
caused by data transmission reduction are shown in TABLE
2. Examining Fig. 8 and TABLE 2, it is evident that the
amount of data is significantly reduced, based on the changing
bandwidth requirements of the sensors. A reduction of up
to 82% of data is seen at some sensors, in comparison to
the 560Hz fixed sampling rate in SPEM. Adaptive sampling
enables a net data reduction of 37.4% for the entire acquisition
signal, translating to a predicted 34.7% energy saving. This
reduction is due to decreased hardware activities in the 1st
stage. This translates to a reduction in the energy cost from
22.6mAh to 17.5mAh. The event indication enables another
net data reduction of 44.6% in the 2nd stage, translating
to a 41.38% energy saving. About 4.2% energy wasting is
estimated from errors, query, and data copy from/to the buffer.

Fig. 9(a) depicts the strength of the event (i.e., damage)
indication at each node, with a comparison between pairs of
nodes. The sampling rate is adapted up to 2500 Hz in the
experiment. The obtained strength of the 4th sensor is VHIGH
(i.e., more than 80%) and its neighboring sensors show some
degree of strength between MED and HIGH. Fig. 9(b) shows
the lifetime of the 4th sensor under different sampling rates.
It also hints a tradeoff between lifetime and latency on the 4th
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sensor that validates the simulation results in Fig. 5.
Fig. 10(a) shows the total energy cost of sensors in different

schemes for a round of monitoring. The e-Sampling signif-
icantly reduces energy cost compared to other three schemes,
including e-Sampling-C, from 0.38 mAh to 0.13 mAh.
e-Sampling consumes 0.007 mAh (33 mAh for 682 ms)
to perform its computations. However, this computation saves
the mote an average of 0.265 mAh during transmission, since
it reduces the time that the radio is active and transmitting in
9369 ms. In SPEM, while collecting data at a fixed rate and
transmitting the data in each round, frequent retransmissions
for the packet losses increase energy cost. QAS requires
slightly higher energy cost for all aspects than FloodNet
except, computation. However, the amount of energy cost re-
quired in FloodNet is significantly higher than e-Sampling,
even higher than e-Sampling-C. Analyzing the results of
energy cost, the WSN lifetime is depicted in Fig. 10(b), which
is evident that this event-sensitive adaptive sampling scheme
has high energy-efficiency in the WSN.

VIII. CONCLUSION

We have designed e-Sampling, a novel scheme of adap-
tive data acquisition and low-cost monitoring in WSNs as
an alternative to the traditional event-insensitive schemes.
e-Sampling is capable of high-rate data acquisition and
multi-hop wireless transmission in an energy-efficient way. It
is quite flexible, as it supports diverse WSN applications—
while it is able enough to run on small and low power micro-
controller-based sensor nodes. Evaluation results showed that,
when both algorithms of adaptive sampling and decentralized
event indication are used, e-Sampling saves up to 87%
of the energy consumed by Imote2 sensors. There were

some limitations in this paper that will be improved in the
future: (i) analyzing the performance of the current scheme
for monitoring different high-frequency events and the event
detection accuracy; (ii) a detailed analysis of the proposed
algorithms and comparison of their performance with more
related schemes under a sophisticated energy model.
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