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Abstract. Cyber-physical systems (CPS) are becoming increasingly
ubiquitous with applications in diverse domains, e.g., structural health
monitoring (SHM). Wireless sensor networks (WSNs) are being explored
for adoption to improve the performance of centralized wired-based SHM.
Existing work often separates the functions and designs of WSNs and
civil/structural engineering SHM algorithms. These algorithms usually
requires high-resolution data collection for the health monitoring tasks.
However, the task becomes difficult because of inherent limitations of
WSNs, such as low-bandwidth, unreliable wireless communication, and
energy-constraint. In this paper, we proposes a data collection algorithm,
which shows that changes (e.g., damage) in a physical structure affect
computations and communications in the CPS. To make use of WSNs
for SHM tasks, we focus on low-complexity data acquisitions that help
reduce the total amount of data transmission. We propose a sensor col-
laborative algorithm suitable for a wireless sensor in making a damage-
sensitive parameter to ensure whether or not it should (i) continue data
acquisition at a high frequency and (ii) transmit the acquired data, thus
extending system lifetime. The effectiveness of our algorithms is evalu-
ated via a proof-of-concept CPS system implementation.

Keywords: Cyber-Physical Systems · Wireless sensor networks · Struc-
tural health monitoring · Vibration data collection · Resource efficiency

1 Introduction

Wireless sensor network (WSN) are deployed to monitor and record physical
conditions of environments or entities, and provide monitoring results. Examples
include health care, emergency response, physical structure monitoring, intrusion
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detection and tracking, and so on [1,7,26]. Applying WSNs (as cyber aspects) for
monitoring engineering structural components (as physical aspects) is receiving
significant attention recently because of their low-cost, highly scalable, and flexi-
ble deployment [1–3,18,20–22]. Traditional structural health monitoring (SHM)
is based on wired sensor networks requiring extensive lengths of cables to trans-
mit recorded data to a centralized data repository (a.k.a. the sink) [2]. However,
the CPS co-design of SHM with WSNs is still under experimentation and explo-
ration stage.

On the one hand, detection of structural damage through SHM algorithms
used by civil, structural, or mechanical engineering is not as straightforward
as event detection in other WSN applications [2,23]. These algorithms, such as
detection, localization, and quantization of physical damage pose many chal-
lenges to WSNs, such as data acquisition at a high frequency, high time syn-
chronization accuracy, storage, and transmission of large data sets, etc. They
may also require the engineering domain specific knowledge, e.g., natural fre-
quency, mode shape, finite element analysis [2,3]. In traditional event and target
detection applications, each sensor node detects events/targets by comparing
the received signal intensity, in terms of light, sound, etc., emitted by events or
targets to a threshold. While in SHM, detection of event (i.e. structural damage)
is through vibration characteristics. To accurately identify vibration character-
istics, SHM algorithms work on the raw measured data of multiple sensor nodes,
and the measured data from each sensor node involved is no longer a single value
but a sequence of data with length generally more than hundreds of KB.

On the other hand, to date, most of the suggested WSN systems adopt cen-
tralized/global SHM , and rely on post experiment analysis for monitoring results
at the sink [1–4,24]. It is practically infeasible for WSNs if all of the sensors trans-
mit such a large amount of raw data to the sink. They incur huge communication
overhead to the highly traffic-sensitive WSNs. As a result, WSNs may need to
sacrifice their real-time performance, quality of monitoring, and lifetime.

The fundamental tool of vibration data collection is the fast Fourier trans-
form (FFT). Existing SHM algorithms are usually based on the FFT [2,4,14,
15,17,24]. Transmitting a huge amount of data collected via FFT method is not
potentially suitable for collaborative processing in WSNs, prior research in the
field usually does not focus in a significant way on the design of collaborative
damage-sensitivity indication (DPI). In this paper, we propose a low-complexity,
lightweight solutions to data acquisition so as to overcome the limitations of
FFT-based data collection in WSNs. We utilize quadrature amplitude modula-
tion (QAM) [5] and Goertzel algorithm for this purpose [6,8]. Then, we present
a simple collaborative data processing algorithm by which each sensor compare
their signals and produces a DPI that helps identity damage-sensitive locations.
When the DPI exceeds a certain threshold, the sensor requires transmitting their
acquired data sets to the sink; otherwise, they do not transmit the data but only
the DPI. The sink then analyzes the data and can know about a damage shortly.

Both the data acquisition and DPI reduce the volume of wireless vibra-
tion data transmission towards the sink. We present a proof-of-concept CPS
implementation by using TinyOS [9] and Intel Imote2 [10]. Evaluation results
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Fig. 1. A CPS model: finite element model (FEM) [3] of our designed structure and the
sensor deployment on the physical structure; (b) the network deployed on the structure.

reveal that the overall capability of the WSN is functional enough to enable
monitoring engineering structure with 40 % to 60 % of system lifetime extension
compared to existing FFT-based approaches.

The rest of this paper is organized is as follows. Section 2 presents the CPS
model. Sections 3 and 4 present the data acquisition and DPI identification,
respectively. Section 5 provides an empirical analysis of the advantages of our
CPS on a designed structure and on the Imote2 sensor platform. Finally, we
conclude this paper in Sect. 6.

2 Cyber-Physical Co-design of SHM with WSNs

In this section, we present our CPS model and describe its different components,
including WSN network model.

Definition 1 (Finite Element Model (FEM)). A computer-based numerical
model for calculating the behavior and strength of structural mechanics, such as
vibration and displacement. Using FEM, a complex structural model is simplified
by breaking it down into small elements. These elements are blocks that contain
the information of the entire property of the structure [3,19].

Definition 2 (Damage). Damage is a significant change to the geometric prop-
erties of a structure, such as changes to captured frequencies and mode shapes.

Definition 3 (Mode Shape: Φ). Each type of mechanical structure has a spe-
cific pattern of vibration at a specific frequency, called mode shape. It basically
shows how a structure will vibrate, and in what pattern. Φ is the matrix of FEM
target mode shapes, e.g., Mode1 (or Φ1) : {2.56, 7.45, 10.56, 6.34}Hz [19].

A major feature of a CPS is the tight combination and coordination of the
computational resources and the physical elements [3]. We illustrate Fig. 1(a) as
a representative model of the CPS. There are three major components.
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– First, the underlying physical structure consists of a large set of elements.
Civil or structural engineering domains use finite element model [2,3] to cal-
ibrate these structural elements (see Definition 1). Physical laws as specified
by nature govern the physical elements.

– Second, there is a set of sensors or computing platforms that are capable of
sensing as well as monitoring changes in the structural physical elements. The
platforms may be systematically deployed by an engineering-driven method
[3,19,25].

– Finally, a communication network connects these computing platforms. The
platforms use a routing algorithm to forward their data to the sink [12]. The
platforms and the network form the cyber-part of the system.

The central focus of SHM system is the detection and localization of damage
event (changes in the elements) in a variety type of structures (see Definition 2).
SHM techniques rely on measuring structural response to ambient vibrations or
forced excitation. Changes in the structure produce an effect on vibrations data.

Taking into account a large scale CPS (both WSN and physical structure),
the structural response may not be the same in the whole structure. It may vary
in different parts of the structure in different time. It would be impractical to
consider every sensor communicate to all others in such a CPS. We consider a link
quality model regarding dynamic structural environments and interference. This
adopts the idea of the log-normal path loss model [18], which is a popular radio
propagation model, enabling us to have the formation of IEEE 802.15.4 links
into three distinct reception regions: connected, transitional, and disconnected.
Then, the strength of a radio signal decays with some power of distance.

Using the link model, sensors find the local topology if they need to exchange
data each others. Consider RM and Rm are the maximum and minimum commu-
nication ranges of a sensor, respectively. Rm is used to maintain local topology,
where sensor within Rm can share their signals with their neighbors for DPI
identification or other purposes. RM is used when the sensors communicate to
the sink directly. The intention of adopting adjustable communication range is
to reduce energy consumption for communication.

3 Wireless Vibration Data Acquisition

In this section, we first describe our solutions to the vibration data acquisi-
tion. We then analyze the FFT performance with the QAM. Finally, we provide
vibration data reduction method.

3.1 Our Solutions

The sensors deployed for SHM applications usually keep on sensing accelerations
at a high-frequency in one period and produce a large amount of raw data. In
the literature, fast Fourier transform (FFT) and wavelet transform have been a
valuable tool for the analysis of vibration signals. FFT is used for the frequency
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domain analysis of signals. They require a relatively large buffer for storing the
intermediate results since the whole spectrum is considered simultaneously. To
achieve a frequency resolution below 1 Hz, one would need to use more than 256-
point FFT when monitoring with sampling rate of 256 Hz. However, most of the
existing WSN-based SHM systems are suggested data acquisition at 560 Hz or
more. We assume that there is no memory space for performing, say, 512-point
FFT on a sensor node. In fact, event of interest, e.g., damage, is concentrated on a
relatively small portion of the vibration spectrum. In addition, we have observed
that the changes in vibration frequencies are very small, thus requiring relatively
accurate monitoring. Next, we present two solutions as second order infinite
impulse response (IIR) based on Quadrature Amplitude Modulation (QAM)
and Goertzel algorithm, respectively, which reduces amount data acquisition
and transmission.

3.2 Fourier Analysis of QAM

In FFT, the wavelet transform induces greater computational complexity and
does not investigate the high frequency range. Accuracy of FFT depends on
the length of the considered time window, which also determines the memory
requirements. We analyze FFT under quadrature amplitude modulation (QAM)
to monitor only single frequency [5]. QAM, when used for digital transmission for
radio communications applications, is able to carry higher data rates than ordi-
nary amplitude modulated schemes and phase modulated schemes [5]. Radio
receivers using QAM are based on monitoring a narrow frequency band and
detecting changes in the amplitude and phase of the signal. Obviously, the appli-
cation domain of digital radio communications is different in that the changes
in the received signal are discrete and controlled by the transmitter. Currently,
the monitored quantities are continuous and are expected to drift slowly.

The idea of monitoring on a single frequency f begins with correlating the
acceleration measurements xs[n] with pure sine waves of orthogonal phases:

cs(f) =
1
N

N∑

n=1

xs[n] · cos(2π(f/fs)n + φs) (1)

ss(f) =
1
N

N∑

n=1

xs[n] · sin(2π(f/fs)n + φs) (2)

where fs is the sampling frequency of interest and φs is the additional phase
difference that indicate the fact that wireless sensors have independent clocks.
The amplitude of vibration Xs can then be computed as:

Xs(f) =
√

cs(f)2 + ss(f)2 (3)

In order to make it more suitable for computing online, the following expo-
nentially decaying window can be used, which can also be considered as the
lowpass filter required in QAM:
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c̃s(f, 0) = 0 (4)

c̃s(f, n) = (1 − κ) · c̃s(f, n − 1) + κ · xs[n] · cos(2π(f/fs)n) (5)

where κ controls the effective window length of the method. There is a trade-
off between accuracy (selectivity between adjacent frequencies) and the rate of
convergence: small κ results in long windowing and slow response to changes,
but also higher frequency resolution.

One important advantage is that Xs(f) is insensitive to φs and also shows
small time differences between sensor nodes. As in QAM, also the phase informa-
tion can be computed from the intermediate values cs and ss. This method also
resembles discrete cosine transformation (DCT) and discrete sine transformation
(DST) [13], where

cs[k] =

√
2
N

N∑

n=1

xs[n] · cos(
πk(2n + 1)

2N
) (6)

and

ss[k] =

√
2

N + 1

N∑

n=1

xs[n] · sin
(

π(k + 1)(n + 1)
N + 1

)
(7)

The frequency bin k can be selected according to the monitoring frequency
f as:

k ≈ 2N
f

fs
> 0. (8)

3.3 Fourier Analysis Through Goertzel Algorithm

The algorithm derived above suffers from the burden of synthesizing cosine and
sine signals. We use a method called the Goertzel algorithm [6,8] that is used
to convert the raw accelerations into amplitude of vibrations, it can reduce the
amount of transmitted data significantly, thus to reduce energy consumption. It
is able to monitor a single narrow frequency band with even fewer requirements.
More specificity, we calculate only specific bins instead of the entire frequency
spectrum through the Goertzel algorithm, which can be thought of as a second
order infinite impulse response (IIR) filter for each discrete Fourier transform
(DFT) coefficient. The transfer function of the filter is omitted here for bravery.
The Goertzel algorithm is a recursive implementation of the DFT.

Let fi be the frequency of interest (or vector of frequencies of interest), and fs
be the sampling frequency. The key parameters of the Goertzel algorithm embed-
ded in the sensor nodes are the sampling frequency fs, the distance between two
consecutive bins on the frequency axis (db), and the vector of frequencies of
interest fi. These parameters should be defined by the end-user operating at the
sink and then broadcast to all of the sensor nodes in a WSN. During the data
acquisition, in the algorithm, each sensor nodes iteratively execute the following
equations:

yk[0] = yk[−1] = 0 (9)
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Fig. 2. Implementation steps of the Goertzel algorithm.

yk[0] = xn[n] + 2 cos(2πk/N) · yk[n − 1] − yk[n − 2],∀n ∈ [1, N} (10)

|Xk[k]|2 = y2
k + y2

k[N − 1] − 2 cos(2πk/N) · yk[N ] · yk[N − 2] (11)

where yk[n], yk[n − 1], and yk[n − 2] are the only intermediate results needed
for computing the signal power |X[k]|2 at frequency bin k. The sensor nodes
calculate the number of samples N that must be collected to obtain the resolution
r = 1/db as:

N =
fs
db

(12)

k ≈ N
f

fs
(13)

Due to the approximation in (13), the actual monitored frequencies could
differ from the ones originally selected. This is not the case of a WSN since
the frequencies of interest are chosen as integer multiple of the bins distance
db. Figure 2 illustrates the implementation steps of data analysis utilizing the
Goertzel algorithm, as described above.

The Goertzel algorithm has several advantages over the analysis of QAM
and and original FFT. The cosine is computed only once and the following com-
putation is in terms of simple multiplications and additions. It is more efficient
when only few frequency bins are needed: for K bins, Goertzel requires O(KN)
operations while FFT takes O(Nlog(N)). For example, if N = 512, Goertzel is
more (time) efficient if K ≈ 9.

4 DPI: Damage-Sensitive Parameter Indication

Definition 4 (Finite Element Model (FEM)). Every structure has a ten-
dency to vibrate with much larger amplitude at some frequencies than others.
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Fig. 3. Natural frequency sets fk
i and fk

j captured by sensor si and sj , respectively,
that are directly compared according to their orders: (a) comparable current natural
frequency sets; (b) non-comparable.

Each such frequency is called a natural frequency denoted by f . f is internal
vibration signal characteristic of structure and is different for different struc-
tures (such as from building to bridge, from indoor to outdoor).

We calculate a damage-sensitive parameter on the signal amplitude to repre-
sent the “damage”/“undamaged” and the area of damaged location (if any) of
the structure. An important property of SHM is that the accurate identification
of DPI requires data-level collaboration of multiple sensors. Data-level collabo-
ration means that the collected data from multiple sensor nodes are processed
simultaneously. If we allow all of the sensors share their data and transmit to the
sink, it needs significant energy consumption, thus, the network lifetime reduces.

We allow sensors within Rm can share their data. Every sensor computes the
DPI that can provide estimate of a possible physical change in a set of frequency
contents. A sensor finds changes by computing a frequency specific comparability
function as shown in Fig. 3. This requires a pair-wise comparison (i.e., a sensor
si to another sensor sj within Rm). After making comparison, each sensor is able
to be aware of a possible “damage” in its vicinity of the structure. Its neighbors
may also have the similar awareness. They can decide whether or not the set of
acquired data is important, i.e., whether or not to transmit the set of acquired
data to the sink.

The comparability function is defined as the ratio of acceleration amplitudes
measured by any pair of sensors, si and sj in its local area:

|fr−k
si − fr−k

sj |
|fr−k

si + fr−k
sj | � c(si, sj , f)% (14)

where f is the monitoring frequency, r and k are the previous and current sets of
frequencies of the sensor si and sj , respectively. c% is a “threshold” defined by
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Fig. 4. A CPS system deployment: (a) the location of the sink; (b) sensor deployment
on the test structure.

SHM system user, which is due to the measurement noise and generally ranges
from 5 to 15.

This is related to the structure as a medium for vibrations traveling through
it: comparability function describes how well an impulse travels from sj to si. This
point-of-view applies while considering a single impulse from a single
sensor. The features can also be considered as properties of a “mode shape”, i.e.,
certain resonance frequencies corresponding to standing waves or mode in a struc-
ture [3,22]. Each sensor location status can be identified by analyzing each mode
shape. Such shape mode contains several elements information around the loca-
tion. The comparability function establishes a one-to-one mapping relationship
between frequencies among different sensors since frequencies of the same sensor
cannot be contained in the same set.

5 Performance Evaluation

We validate our approach by implementing a proof-of-concept CPS on top of
the Imote2 [10] sensor platform using the TinyOS operating system [9]. We
utilizes the ISHM services toolsuite [16] developed by the Illinois Structural
Health Monitoring Project (ISHMP), which provides subsystems for reliable data
transmission and time synchronization.

We evaluate both cyber and physical aspects of our system. The objective
of this evaluation is in both aspects: (i) accuracy of mode shape identification;
(ii) the network lifetime. We define the network lifetime to be the total rounds
of data collection before any battery runs out of power [11,12]. This can be cal-
culated by required energy for the rounds of monitoring to the energy reserve on
each sensor. We calculate energy consumption for both data acquisition, com-
putation, and transmission of each sensor. The maximum energy consumption
by a node si to send data correctly to a node sj is evaluated by a model [12]:

The Imote2 is an advanced wireless sensor platform. It consumes 382μA in its
deep sleep state [10], plus 382μA for the accelerometer. Each Imote2 is deployed
with a standard 3x AAA battery pack providing 2400 mAh of charge. We employ
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Fig. 5. Vibration signals in time domain captured by 5th sensor after forced excitation
with a hammer on the first floor.

Table 1. Natural frequencies for the test structure

Mode 1 2 3 4 5

Analytical 1.2121 3.412 6.5911 11.211 15.2414

Identified 1.1822 3.331 6.5812 12.201 13.983

8 Imote2s on the different floors of the test structure as shown in Fig. 4. An
additional Imote2 as the sink mote is located at 30 m located in the lab and a
PC as a command center for the sink mote and data visualization. Each mote
capture structure’s horizontal accelerations and runs a program (implemented
in the nesC language) to process the acceleration data acquired from on-board
accelerometers. The accelerometer chip on the Imote2s ITS400 sensor board is
programmed to acquire samples at 1120 Hz. Digital acceleration data, acquired
within frames of 2048 points, is then stored in the local memory for each period
of monitoring. Java and Matlab are used to calculate and visualize the whole
structural health condition.

5.1 Results of Physical Aspects

We analyze the experiment results of the SHM system’s physical performance,
discussing the systems ability under reduced data collection while keeping moni-
toring performance similar to FFT based approaches [4,14,15,17,22,24] adopted
by engineering domains. Sensors periodically sample vibration signals. An exam-
ple of raw signals taken during the experiment is shown in Fig. 5.

In the first experiment, we vibrate the structure with a hammer when sen-
sors involve in collecting the vibration data. We recover the mode shape of the
structure offline, as shown Table 1. In our approach, after comparison of dam-
age sensitive parameter (DPI), if there is a possible “change” appeared in the
acquired set of signals with a single sensor only, the sensor may be faulty. If
the change is present with multiple sensors, there is possibly “damage”. In both
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Fig. 6. Captured mode shapes considering different frequencies and time

cases, sensors transmit their data to the sink. We inject structural physical dam-
age by removing the plate on the 5th floor and a side-beam between the 4th and
5th floor.

Figure 6 shows a set of the natural frequencies captured from the 5th sensor
location that indicates the bending mode of the structure around the location
(under damage injection). This implies that if there is a possible damage at
some location of the structure, it can be seen by analyzing the mode shape
information of the structure. We can see that, when we analyze the captured
mode information (see Definition 3) of all of the locations of the structure, the
damaged with its spreading area and intensity can be found. If there is no damage
in the structure, some minor changes in the structure can be seen, that is also
due to noise effect.

We present here only the first set of data, as shown in Fig. 7(a), under the
damage injection and there is no DPI algorithm, meaning that all of the sensors
send their data to the sink directly. In Fig. 7(b), the results is obtained when
sensor are allowed to execute DPI algorithm. We can observe that the 1st, 2nd
and 3rd sensors did not transmit any data to the sink since they did not find
significant difference in the acquired vibration signals. This indicate that when
there is no damage in the other part of the networks (particularity, in case of
large scale WSN deployment), there is no need to transmit all of the data to the
sink so as to prolong the network lifetime.

5.2 Results of Cyber Aspects

Here, we analyze the experiment results of the SHM system’s cyber performance,
discussing the system’s ability to extend network lifetime. We allow all of the
sensors to sleep after each monitoring period to perform power management.
The TinyOS 2.0 drivers for the Imote2 supports to put all of the hardware
to sleep when deactivated. Lifetime is calculated by the energy consumption



Resource-Efficient Vibration Data Collection in Cyber-Physical Systems 145

Fig. 7. Measured natural frequencies for the damaged structure

Fig. 8. Performance on network lifetime: (a) FFT-based vs. proposed approach;
(b) excluding DIP vs. including DIP during data collection.

for computation, transmission, measurement, and overhead, where the overhead
statistics with current consumption data for the radio, sensor, and CPU taken
from the corresponding data sheets is combined [10].

After analyzing the results as shown in Fig. 8(a), we found that the FFT-
based data collection consumes so much energy of each sensor, which results in
a reduced network lifetime. This is because transmitting the raw data in each
round, i.e., transmission of natural frequency sets and frequent retransmissions
caused by packet losses require significant energy consumption. However, our
approach achieves higher lifetime than the FFT-based solution. As shown in
Fig. 8(b), the lifetime is further extended when we allow the sensors to compute
DPI before transmitting the data. They do not transmit data if DPI does not
exceed a given threshold.
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Looking into more details, changes in the structural elements are only cap-
tured by the 4th, 5th, 6th, and 7th sensors, as shown in Fig. 5(a) (circled marked),
but all sensors transmit their all acquired data. Recall that a sensor does not
transmit its acquired data to the sink as the calculated DPI if lower than the
threshold. When sensors are allowed to compute DPI, the 1st and 2nd sensors
could not capture the changes (circled marked in Fig. 5(b)), possibly there is
no impact of the changes. In this case, these two sensors do not transmit their
all data but DPI, even they reduce their sampling frequencies. In this way, the
required energy for data collection and transmission is greatly reduced.

6 Conclusion

In a cyber-physical system (CPS), considering a resource-constrained WSN to
exchange generally a large amount of raw data and transmit to the sink for
off-line analysis would quickly drain the energy of the WSN and reduce their
lifetime. Particularly, the monitoring situation would be serious when a large-
scale CPS is assumed. In this paper, the WSN is employed to acquire data by
using two-order data analysis and produce damage-sensitive results (or para-
meters) utilizing sensor collaboration. The effectiveness of the CPS was evalu-
ated via real experiments, which showed that proposed CPS achieves almost the
same quality of monitoring as the tranditional engineering SHM methods while
extending network lifetime significantly.
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