
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 1

AdaPyramid: Adaptive Pyramid for Accelerating
High-resolution Object Detection on Edge

Devices
Xiaohang Shi, Sheng Zhang, Senior Member, IEEE, Jie Wu, Fellow, IEEE, Ning Chen, Ke Cheng,

Yu Liang, and Sanglu Lu, Member, IEEE

Abstract—Deep convolutional neural network (NN)-based object detectors are not appropriate for straightforward inference on
high-resolution videos at edge devices, as maintaining high accuracy often brings about prohibitively long latency. Although existing
solutions have attempted to reduce on-device inference latency by selecting a cheaper configuration (e.g., choosing a more lightweight
NN or scaling a frame to a smaller size before inference) or eliminating a background containing no object, they often ignore various
high-resolution features and fail to optimize for those videos. We thus present AdaPyramid, a framework to reduce as much on-device
inference latency as possible, especially for high-resolution videos, while achieving the accuracy demand approximately. We observe
that the cheapest configuration to achieve the accuracy demand varies significantly across both different frames and different regions
in a frame. The underlying reason is that object features (e.g., the location, size and category of objects) are more uneven in
high-resolution videos, both temporally and spatially. Moreover, we observe that the object size presents a prominent hierarchical
distribution in high-resolution frames. AdaPyramid thus partitions each frame hierarchically just like a pyramid and chooses a
content-aware configuration for each region, which is adapted online based on the feedback. We evaluate the performance of
AdaPyramid on a public dataset and our collected real-world videos. The obtained results show that under comparable accuracy to the
state-of-the-art solutions, AdaPyramid can decrease inference latency by 40% on average, with up to 2.5× speed-up.

Index Terms—Edge computing, neural networks, video analytics, object detection, online adaptation

F

1 INTRODUCTION

D RIVEN by fast-growing computational capability and
data availability, deep convolutional neural network

(NN)-based object detection technologies are developing
rapidly, playing a pivotal role in the modern intelligent
surveillance systems. Considering the privacy issue and
the limited bandwidth to accommodate enormous data,
videos ingested from the cameras are often analyzed on
edge devices in many scenarios [1], [2], [3], [4], [5], [6].
However, edge devices are often restricted in the capacity
of computation and storage and thus cannot match the
massive resource demand of today’s object detection tasks.
On one hand, state-of-the-art NN-based models often have
sophisticated structures, requiring massive matrix opera-
tions per inference. They are thus too computation-intensive
for edge devices. On the other hand, high-resolution (e.g.,
4K, 8K) cameras are much more pervasive nowadays and
they can be bought at much lower prices [7], [8]. Performing
inference on such high-resolution video frames incurs even
more overhead with prohibitively high latency.

• X.H. Shi, S. Zhang, N. Chen, K. Cheng, and S.L. Lu are with the State Key
Laboratory for Novel Software Technology, Nanjing University, Nanjing,
210023, China.
E-mail: {xiaohang, ningc, kecheng}@smail.nju.edu.cn, {sheng, sanglu}
@nju.edu.cn.

• J. Wu is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.

• Y. Liang is with the School of Computer and Electronic Information/School
of Artificial Intelligence, Nanjing Normal University, China.
E-mail: liangyu@njnu.edu.cn.

To alleviate the high inference latency with edge devices,
several acceleration solutions [9], [10], [11], [12], [13] have
been proposed. Nonetheless, existing approaches are not
sufficient in two aspects. Firstly, most of them cannot han-
dle high-resolution videos well. This is because they often
ignore the video features brought by high resolution and
thus fail to take advantage of these features proactively to
optimize their systems. Secondly, they rarely study how to
reduce the on-device inference latency of online videos with
an accuracy guarantee. The underlying reason is that the
accuracy evaluation on the fly is non-trivial without the
ground truth. Although it is widely adopted to choose the
NN that is as accurate as possible to label the frames [14],
[15], this method incurs too heavy an overhead to be practi-
cal, specifically on edge devices. Moreover, we also show in
this paper (§4.3.1) that it is very hard to estimate inference
accuracy precisely.

Distinctly from prior works, we present AdaPyramid, a
framework to reduce as much on-device inference latency
as possible, especially for high-resolution videos, while still
achieving the accuracy demand approximately. To this end,
we attempt to reduce the inference workload by choosing
the cheapest configurations under the accuracy demand.
Here, a configuration refers to a particular combination
of knob (e.g., resolution, sampling rate, and NN model)
values in a video analytics system and a configuration is
cheaper if it incurs lower latency. We conduct extensive
case studies and observe that the cheapest configuration
to achieve the accuracy demand varies significantly across
both different frames and different regions in a frame. We



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 2

claim that it is a prominent character of high-resolution
videos since high resolution often brings more uneven object
features both temporally and spatially (§3). We thus adopt
a ”partition+adaption” method. Specifically, we partition
each frame into different regions and then choose a content-
aware configuration for each region, which is adapted in an
online manner.

Furthermore, we observe that the object size in frames
presents a hierarchical distribution based on a visual law
called perspective effect, i.e., the objects near the camera
look larger while the ones far away from the camera look
smaller. Since high-resolution videos can cover a larger
geographic range, the size gap between the smallest object
in the bottommost region and the largest one in the topmost
region is greater. This observation brings opportunities for
designing our efficient partition strategy.

In addition to the configuration choice, we also integrate
the background elimination technique into AdaPyramid.
Here, background means the regions containing no object,
which are unnecessary to detect. In the COCO [16] valida-
tion set, the area of background occupies 57% of a frame on
average [17]. This technique can thus cut down the inference
workload significantly. To find the background, we need
to obtain object locations. Additionally, the location, size
and category of objects can also help profile the accuracy
of NN models on a specific region, and this enables good
configuration decisions. Therefore, it is beneficial to perceive
the video content to obtain object features above. In our
system, we obtain object features represented as the width,
height and centroid coordinates of the bounding box based
on prediction from previous frames. The key is to learn the
motion of objects, which is the advantage of object tracking
algorithms. For this reason, instead of devising a prediction
method ourselves like previous works [9], [12], we propose
to utilize existing tracking algorithms in the design of our
object feature predictor.

We encountered several key challenges when designing
the AdaPyramid system. Firstly, the frame partition comes
before the configuration choice stage and affects the overall
performance significantly. Despite its importance, the parti-
tion strategy is rarely studied except for the trivial method
which partitions frames uniformly. Although Remix [13]
proposes an exhaustive algorithm, its searching space is too
huge to afford even when it is executed offline. AdaPyramid
hence requires a partition guideline to reduce the searching
overhead. However, how a specific partition plan influences
the inference latency is very subtle. Secondly, it is non-trivial
to choose the cheapest configuration under an accuracy
demand in an online system. There exists an incompatible
contradiction that the exact accuracy of a configuration
can only be exposed after the actual inference while it’s
impossible to evaluate all the configurations for each region
due to prohibitive latency. Last but not least, we have to
solve two key problems when designing the object feature
predictor: 1) which object tracking algorithms [18], [19], [9],
[20], [21] can be utilized and 2) how to integrate them into
AdaPyramid. We thus make sufficient studies to address the
aforementioned challenges.

Firstly, it is intuitive that the ideal frame partition plan is
highly correlated with the dynamic video content. However,
previous works [13] fail to characterize the content and

utilize it proactively, thus they can only resort to exhaustive
methods. The crucial problem is how inference latency is
jointly decided by the video content and partition plan, after
excluding the influence of configuration choice. Therefore,
we make sufficient exploration addressing this, which is
utilized to generate the partition guideline. To be more
specific, when partitioning horizontally, the top portion of
a frame should be partitioned into thinner regions than
the bottom portion, just like the pyramid. Based on this
guideline, AdaPyramid frees itself from exhaustive work
and is able to give fast and effective partition plans.

Secondly, AdaPyramid answers how to approach the
cheapest configuration under an accuracy demand in an
online video analytics system. We conduct extensive mea-
surement experiments and show the difficulty of profiling
the detection accuracy of configurations. To fill the gap
between the offline profile and the actual performance,
AdaPyramid takes advantage of the system’s feedback to
make continuous adaptations to the configuration choices.
Moreover, it applies a binary search-based method to enable
fast convergence to the ideal choice.

Lastly, we investigate the existing object tracking algo-
rithms and find that the ones with the typical detection-
based tracking structure are very suitable to AdaPyramid.
We develop a general framework to integrate them into our
system and present the rationale behind it.

Additionally, we are aware of multiple detailed technical
problems. For instance, the unavoidable object omission
problem incurs potential harm to the system, such as ac-
cumulated error. Additionally, AdaPyramid is based on
object feature prediction and cannot handle new objects
well. Various techniques are developed accordingly, which
greatly improve the overall performance.

We have implemented AdaPyramid on commercial mo-
bile platforms (e.g., Nvidia Jetson devices) in Linux as a
plug-and-play extension to the object detection module of
typical video analytics systems (e.g., intelligent surveillance
systems).

To sum up, the main contributions of this paper are as
follows:

• We propose AdaPyramid, a novel framework to re-
duce as much on-device inference latency as possible,
especially for high-resolution videos, while achiev-
ing the accuracy demand approximately.

• We conduct extensive case studies and make various
observations on high-resolution videos, which are
utilized to design techniques in our system. Specif-
ically, the ”partition+adaption” design is based on
the prominent spatial and temporal dynamics while
the pyramid-like partition strategy is inspired by the
hierarchical object size distribution in frames.

• We propose a suite of techniques: 1) we develop a
novel tracking-based solution to characterize video
content, which enables the design of other tech-
niques; 2) we reveal how inference latency is jointly
influenced by the video content and partition plan
and develop a pyramid-like partition strategy; 3)
we answer how to approach the cheapest configura-
tion online with an approximate accuracy guarantee
through a binary search-based method; 4) we solve



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 3

some detailed technique problems, which greatly
improve the overall performance.

• We implement our framework on the Nvidia Jetson
platform. Evaluation results on PANDA 4K dataset
show that AdaPyramid achieves up to 2.5× speed-
up with comparable accuracy to the state-of-the-art
object detection solutions.

2 RELATED WORK

Since performing object detection on high-resolution videos
is too computationally intensive for edge devices, many
solutions have been proposed to accelerate the inference.
Some of them are hardware-based. For example, various
accelerators such as GPU, FPGA [22] and ASIC [23] are
developed with specialized drivers, boosting the computing
resources on edge devices. In this paper, we place our
emphasis on software-based solutions, which can be broadly
classified into three categories: configuration choice, back-
ground elimination and the ”detect+track” framework.

Configuration choice. Model compression tech-
niques [24], [25], [26], [27], [28], [29] generate lightweight
NNs for inference speed-up. We can thus tune the knobs
of videos (e.g., decreasing resolution or frame rate) or
choose lightweight NNs to accelerate inference, which can
be denoted as choosing cheaper analytical configurations.
Nonetheless, such speed-up often comes with accuracy
loss. This intrinsic latency-accuracy tradeoff is considered
and balanced in many previous works [30], [31], [32], [10],
[33], [34]. Nonetheless, these works are not customized
for high-resolution videos and thus have much potential
to improve. Remix [13] considers high resolution and
adopts a nonuniform partition method similar to our work.
However, its goal is to improve accuracy with a latency
budget. Therefore, it is not suitable for those applications
requiring accuracy guarantees. Moreover, Remix is devised
based on the premise that NNs have a fixed input image
size for inference, which cannot completely apply to the
latest object detectors [35], [36], [37]. By contrast, our design
is inspired by extensive observations of high-resolution
videos. Additionally, Remix assumes that the video content
of different regions is relatively static, and thus cannot
handle videos with very dynamic content.

Background elimination. Background (i.e., regions con-
taining no object) of frames requires no effort of inference.
Therefore, the main process of this technique is to locate
ROIs (regions of interest, i.e., the regions which are possible
to contain objects) and then perform inference only on these
regions. Various papers [38], [9], [3], [39], [12], [11], [40]
propose different methods to locate ROIs. For instance, [9]
reuses motion vectors of video codecs. [11] uses a traditional
optical flow-based object tracking technique. [41] applies
reinforcement learning, while [39], [42] develop DNN-based
methods. Our work is based on object tracking in general.
However, we do not intend to design a new method like
existing works, but to propose a general framework to
utilize existing multi-object tracking algorithms. In this way,
the advantages of the latest algorithms can be integrated
into our system.

”Detect+track” framework. We can decrease the average
detection latency by replacing expensive object detectors

with lightweight object trackers for some frames, instead
of using detectors all the time. Many ”detect+track” so-
lutions [43], [44], [9], [45] are thus proposed where the
detector is just applied every several frames, while the
lightweight object tracking (e.g. lucus kanade methods) is
used to give results alternatively in between. Although the
detection latency can be significantly reduced, this frame-
work is not suitable for the scenarios with high accuracy
demand. It is very hard to maintain the accuracy since the
prediction accuracy of lightweight object tracking methods
is often limited, and the errors propagate and accumulate
before the next inference of the object detector. Besides, this
framework fails to handle the changes of object appearance,
the occurrences of new objects, and the occlusions of objects
well [11], which performs even worse if such phenomenons
appear frequently. Moreover, this framework cannot be well
applied to the scenarios with objects moving too fast as
well [46]. We do not adopt this framework and performs NN
inference on every frame to ensure the system performance
when high accuracy is demanded.

Video content characterization. Video analytics applica-
tions often focus on the foreground of frames, such as pedes-
trians and vehicles. Video content characterization means
obtaining the features (e.g., the location, size and category)
of these objects for the future utilization in system optimiza-
tion. For example, EdgeDuet [10] identifies whether a region
potentially contains small objects by using the detection
results of the last frame directly, and then offloads such
regions with high compression levels. Remix [13] obtains
the probability distribution of different object size levels in
a region to predict detection accuracy, by performing the
measurements from historical frames. ELF [12] develops
a attention-based LSTM to predict where the objects in
previous frames may appear in the current frame to estimate
the workload of different regions for parallel offloading and
inference. EAAR [9] reuses motion vectors of video codecs
to predict the regions where objects are likely to appear.

Nonetheless, these works [10], [13], [12], [9] fail to ex-
ploit the potential of motion prediction in advanced ob-
ject tracking algorithms [20], [21] for the online accurate
characterization of the comprehensive fine-grained features,
influencing the feature-based optimization. Moreover, they
often ignore the object omission problem during the con-
tent characterization (see §4.2.3), thus hurting the detection
accuracy when background elimination is incorporated. By
contrast, AdaPyramid remedies the above insufficiency.

3 MOTIVATIONS

In this section, We present the key observations of high-
resolution videos to motivate us in the system design. To
explore this, we conduct the following case studies.

3.1 Case study setup
We use a traffic surveillance video with high resolution
from PANDA 4K dataset1, containing a road with mov-
ing pedestrians and vehicles. The resolution is 3,840×2,880
while the frame rate is 12. For a video, we need to choose the

1. It is generated by scaling the gigaPixel-level surveillance videos
in PANDA dataset [47], [48] from 26,753×15,052 (32,609×24,457) to
3,840×2,160 (3,840×2,880).



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 4

temporal

3×3 partition

spatial

spatial

Config. 
pool

Recall > 0.8

Which is the 
cheapest config. ?

…

(a) Case study setup.

0
100
200
300

0
50

100
150
200

0 2 4 6 8
×102

0
10
20
30

0 2 4 6 8
×102

0 2 4 6 8
×102

Op
tim

al
 L
at
en

cy
 (m

s)

Frame Index

(b) Case study result.

Fig. 1: Case studies for exploring features of high-resolution videos. In Fig. 1a, each frame is partitioned into 3×3 grids
uniformly. We then perform object detection on these regions separately with the cheapest configuration (represented with
black dots) to achieve the accuracy demand, using Jetson AGX Xavier. The latency of such cheapest configuration, denoted
as the optimal latency, is plotted for each region of all the frames in Fig. 1b.

cheapest configuration with an accuracy demand anywhere
and anytime if we want to achieve the lowest latency, which
can be regarded as the optimal scheme. We thus make some
explorations and observations from the spatial and temporal
angles in this high-resolution video.

Fig. 1a shows the setup illustration. We partition each
frame into 3x3 grids uniformly and perform inference on
them respectively to detect pedestrians and vehicles. De-
tection results are marked with white bounding boxes. We
use a typical edge device called Jetson AGX Xavier [49]
as the inference device and Pytorch [50] as the inference
engine. To obtain the ground truth of object detection, we
use YOLOv5x as the oracle model to label the frames due to
its nearly SOTA performance, instead of impractical manual
labeling.

In this case study, the configuration is two-dimensional,
which is a combination of NN and scaling ratio. The scaling
ratio denotes the ratio of the width (or height) after scaling
to the width (or height) before scaling. To construct the pool
for configuration choice, we select YOLOv5n, YOLOv5s,
YOLOv5m and YOLOv5l as optional NNs, which are four
YOLOv5 [35] variants released officially. From variant v5n
to variant v5l, the detecting capability gets stronger but
with higher latency. We take the scaling ratio from 0.1 to
1 with a stride of 0.1, which corresponds to 10 different
input resolutions. Finally, we get 40 configurations covering
various detection capabilities in a fine-grained way. We then
evaluate every configuration in the pool on every region of
video frames. For each one of the total 9 regions, we pick
the configurations with a Recall higher than 0.8 and choose
the cheapest one among them. We denote the lowest latency
of such cheapest configuration while meeting the accuracy
demand as the optimal latency. For those regions containing
no object, we regard the optimal latency as zero since they
require no detection effort. We repeat this search for all the
frames and plot the optimal latency for each region of all
the frames in Fig. 1b.

3.2 Case study result.

In Fig. 1b, each sub-figure is plotted for one region in the
corresponding place in Fig. 1a. We denote the region at the
ith row and jth column as region (i, j) (i, j ∈ {1, 2, 3}). Since
no pedestrian or vehicle appears in regions (1, 3) and (2, 3)

all the time, latency is always zero, indicating that these
regions are in the background and should be eliminated in
the inference.

Observation 1: There exist prominent dynamics and
unevenness in high-resolution videos. In the remaining
regions except (1, 3) and (2, 3), we can observe prominent
dynamics and unevenness. On one hand, latency varies
greatly across different regions. Specifically, the optimal
latency of top regions is higher than that of bottom regions
by an order of magnitude. This indicates that the cheapest
configuration to achieve the accuracy demand varies signif-
icantly across different regions in each frame.

On the one hand, latency fluctuates remarkably in each
specific region. For instance, in the region (1, 1), the highest
optimal latency during inference is more than 10 times the
lowest. This indicates that the cheapest configuration to
achieve the accuracy demand varies significantly across the
same regions of different frames.

Therefore, if we adopt configurations as the unit of a
whole frame, much more latency would be incurred to
maintain the accuracy of the top regions. This motivates
us to adopt the partition way and choose configurations
for each one of the regions separately. Moreover, if we
adopt a fixed configuration in all the frames, we would
undertake more than 10 times the overall latency in the
region (1, 1) to guarantee inference accuracy. This motivates
us to adapt configurations over the frames to reach the
optimum. Hence, we should adopt a ”partition+adaption”
design.

Observation 2: Object size distributes hierarchically in
high-resolution frames. Object size decreases significantly
from bottom to top, especially in high-resolution frames,
presenting a hierarchical distribution. This trend brings
opportunities to the design of a more sophisticated partition
strategy. In this paper, such property inspires us to design
the hierarchical pyramid-like partition strategy instead of
the existing exhaustive search methods.

Discussion. To explain those observations above, we
argue that they are prominent properties, especially in high-
resolution videos. According to the perspective effect, the
objects near the camera look larger while the ones far away
from the camera look smaller. Since high-resolution videos
often cover a larger geographic range, the size gap between
the smallest and largest objects is greater. Therefore, the



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 5

Guide 
Adapter

High-Res 
Input

⋱ Feature
Predictor

Basic 
Detector

New-object
Detector

Executor 

Pyramid-like 
Partitioner

Config. pool

Configuration 
Adapter

Object 
features

Partition 
decision

Config. & Partition 
decisions

Inference 
result

Inference 
result

Object 
detection

1

2
3

45

6
Result 
evaluator

7

Object 
features

Fig. 2: AdaPyramid system overview.

object size decreases greatly from bottom to top, presenting
strong unevenness and a hierarchical distribution. From the
temporal aspect, the object size fluctuates in a larger range,
resulting in remarkable dynamics in the time dimension.
We also show the strong correlation between object size
and the cheapest configuration to maintain accuracy later.
That answers why the cheapest configuration to achieve the
accuracy demand varies significantly both temporally and
spatially.

4 SYSTEM DESIGN

4.1 Overview

AdaPyramid aims to reduce as much on-device inference
latency as possible especially for high-resolution videos,
while achieving the accuracy demand approximately. To
realize this goal, it adopts a ”partition+adaption” design.
Specifically, it first partitions the frame into several regions.
It then eliminates the background and chooses the cheapest
configuration to maintain accuracy for each region. Such
workflow is repeated and adapted for each coming frame.
Fig. 2 shows the system design of AdaPyramid while Fig. 3
is an illustration of the processing pipeline for a frame.

Feature Predictor Ë (§4.2). AdaPyramid first captures
a high-resolution frame from the camera. Feature predictor
then predicts the features of objects in this frame, which is
represented as the width, height and centroid coordinates.
This predictor proposes a general framework for utilizing
the motion prediction workflow of existing multi-object
trackers. In the end, features are submitted to pyramid-like
partitioner Ì.

Pyramid-like Partitioner Ì (§4.4). This module decides
how to partition a frame into several regions. It follows
the guideline that the top portion of a frame should be
partitioned into thinner regions than the bottom. It then
eliminates the background of each region. The final shape
is like a pyramid. Besides, the object features are further
submitted to the configuration adapter Í.

Configuration Adapter Í (§4.3). This module decides
the cheapest configurations with an accuracy demand for
each region across the frames. Starting from a conservative
configuration obtained with the offline profile and object
features, it continues to search based on the online feedback
until the desired one is approached. Then the configuration
choice and partition plan are submitted to the basic executor
Î for inference.

(a) Object features (b) Partition plan

(c) Config. choice (d) Inference result

Fig. 3: An illustration of the processing pipeline for a frame
in AdaPyramid. In Fig. 3a, object features marked with blue
bounding boxes, are predicted for the current frame. Next,
in Fig. 3b, the partition plan is generated by the pyramid-
like partitioner. The partitioned regions are marked with
white bounding boxes. After that, in Fig. 3c, the configu-
ration adapter decides the configuration for each region,
where their detection capabilities are marked with differ-
ent colors. Finally, the per-region and new-object detection
results are merged to produce the whole-frame inference
result in Fig. 3d, which is marked with yellow bounding
boxes.

New-object detector Ï (§4.5). This module aims to
detect new objects in the current frame, since the prediction-
based detection above cannot handle objects never seen
before. It is based on the observation that new objects just
appear in specific regions of a surveillance video. Therefore,
the inference is just performed on these regions, greatly
reducing the overhead.

Result merging and feedback. Results from both per-
region detections in the basic executor Î and new-object
detection in the new-object detector Ï are merged finally
to produce the whole-frame result (Fig. 3d). This is then
used to update trackers of feature predictor Ë and guiding
configuration adapter Í.

4.2 Object Feature Prediction
4.2.1 Why AdaPyramid adopts object-level video content
characterization?
Previous works [51] have shown that the performance of
video analytics systems is sensitive to different features.
Therefore, the characterization of video content may guide
the design and optimization of these systems, which has
shown up in the latest works [13], [12], [51], [10], serving as
their foundation of performance boosting.

Instead of obtaining the probability distribution of dif-
ferent object size levels or the possible regions where ob-
jects may appear in some existing works [13], [9], [10],
AdaPyramid aims to predict the features for every single
object, called object-level video content characterization.
This form contains fine-grained features of each object and
is more informative intuitively. We adopt this manner since
it contains extensive information, supporting the design of
system techniques better. Moreover, it is predicted per frame
to keep the freshness of features and can thus handle videos
with dynamic content.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 6

Object 
Detector

Current 
frame

Predicted 
features

Actual 
features

Association 

Predicting 
Alg.Trackers

Tracking 
Result

Update 
Trackers

Fig. 4: The detector-based tracking structure of a typical
multi-object tracking algorithm.

Our 
system

Current 
frame

Predicted 
features

Actual 
features

Association 

Predicting 
Alg.Trackers

Update Trackers

Fig. 5: A framework showing how to integrate a multi-object
tracking algorithm into AdaPyramid.

4.2.2 How to utilize the power of existing object tracking
algorithms?

To support configuration choice and background elimina-
tion techniques, AdaPyramid obtains features of objects in
the current frame represented as the width, height and
centroid coordinates of the bounding box. This is based on
motion prediction of such objects in previous frames, which
is well studied in existing object tracking algorithms [18],
[19], [9], [20], [21]. Therefore, AdaPyramid utilizes their
power to predict object features.

The goal of object tracking is to figure out whether the
objects in the current frame are the same objects in the
last frame, which requires associating the objects in these
adjacent frames. We investigate the existing multi-object
tracking algorithms sufficiently and find that those with a
detection-based tracking structure (Fig. 4) fit AdaPyramid
very well. Specifically, such algorithms first apply the object
detector to perform inference on each frame, and then
associate the detection results between adjacent frames to
achieve the object tracking goal. To achieve the association,
the tracker instances apply the specialized predicting algo-
rithm (e.g., Kalman Filter) to obtain the predicted object
features in the current frame. The prediction is based on
the accumulated detection results of previous frames. The
predicted object features are then associated with the actual
detection results, obtained by actually performing inference
on the current frame with the object detector, to generate the
tracking result (e.g., object features with ID). In this process,
the accumulated motion information in the tracker instances
is also updated, given the association results.

Since the object detector module exists in both AdaPyra-
mid and those tracking algorithms, it is possible to reuse the
module for integration. Additionally, we need to decouple
the predicting workflow (i.e., generating predicted features
with trackers based on the predicting algorithm) out of the
tracking structure to obtain object features in AdaPyramid.
Fig. 5 proposes a general framework to integrate a tracking
algorithm into AdaPyramid. Although different tracking al-
gorithms have various concrete implementations and some-
times the modules are mixed up, they are separated in the

logical aspect. We can thus easily perform the decoupling
and integration. In Fig. 5, the predicted object features are
input into AdaPyramid, which are utilized by our system
to perform optimized object detection on the current frame
for the actual object features. Finally, the actual features and
predicted features are associated, and the association result
is then utilized to update the trackers.

4.2.3 How to handle the omitted objects hurting the system
performance?
Problem proposition. In the process of performing object
detection on a video, objects are often omitted in the results.
We present two reasons to account for this phenomenon.
On one hand, the analytical configuration is too cheap to
detect some objects that are very small or partially occluded.
On the other hand, some objects are fully occluded by
some obstacle when moving and are thus impossible to be
detected. Since the feature prediction of objects is based on
their locations in the previous frames, such omissions bring
challenges to the correct prediction of the current frame.
This problem is non-trivial to handle because it is hard to
tell whether an object is omitted or just leaves the view field
permanently.

Common practices [12], [9] often ignore this object omis-
sion problem, and make a prediction just for the objects
which are successfully detected in the last frame. Specif-
ically, if the predicted location of an object fails to be
associated with that of a factually detected object, the corre-
sponding tracker is discarded. This means that if an object
is omitted in the last detection, it will also disappear in the
feature prediction for the current frame. This method is intu-
itive but cannot be applied to AdaPyramid, which contains
configuration choice and background elimination as two
main components. Firstly, the predicted object features are
incomplete for this simple discarding mechanism. Secondly,
even if the omitted objects appear again in the following
frames, they are identified as brand-new ones. Without
the accumulated information in the trackers, their motion
cannot be predicted very precisely. Since the configuration
choice is guided by the predicted object features, it may
thus be influenced due to the incomplete and inaccurate
predicting result.

Even worse, the background elimination is highly de-
pendent on the feature prediction since it aims to remove
as large regions containing no object as possible. In this
case, if an object omitted in the last detection fails to be
predicted for the current frame, the region containing this
object may be wrongly skipped during the inference. It is
thus omitted again in the current detection. In this way, it
may be missed in all the following frames. Fig. 6 provides
an example. In Fig. 6a, target objects in the yellow bounding
box can be detected initially and are then fully occluded by
some trees in Fig. 6b. When they return to the view field
(marked with a red bounding box) in Fig. 6c, they fail to
be covered by the actual detection region (marked with a
green bounding box) and are thus omitted. Here, the actual
detection region refers to the regions which are left after
the background elimination and are actually detected. Such
irreversible, permanent omissions of objects in the detection
may be accumulated as time goes on, incurring significant
accuracy drop.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 7

(a) (b) (c)

Fig. 6: Illustration for the potential problem with object
occlusions. Figs. 6a-6c presents the change of the actual de-
tection region before, during and after the occlusion occurs.

Problem solving. To alleviate this problem, we propose
to reserve the trackers if the predicted object locations
generated by them fail to be associated with the inference
result. Such trackers continue to generate predictions in
the following frames and are finally discarded only if the
number of failing time in the associations exceed a threshold
p. Through the reservation method, we provide a second
chance for those trackers and expect them to succeed in
the association when handling the following p frames. We
can thus filter out most of the omitted objects and separate
them from the ones leaving the view field permanently. As
a consequence, the accuracy is improved significantly, par-
ticularly due to the sufficient mitigation of the accumulated
object omission problem.

Although a high threshold p can help the omitted objects
get more chances to be reassociated, this does not mean
p should not be as high as possible. If the trackers corre-
sponding to objects out of the view field are reserved for too
many frames, the number of wrongly predicted features also
increases. When eliminating the background, some regions
which should have been eliminated are reserved since they
contain such wrongly predicted features. Consequently, it
hurts the inference latency. We thus conduct a tradeoff study
in §5.3 to guide us to set p appropriately.

Moreover, the accumulated errors can be further elimi-
nated by periodically applying the most expensive configu-
ration for inference, providing the calibration signals in this
close-loop system. However, additional inference overhead
is also introduced. Since the tracker reserving design has
suppressed the accumulated errors effectively, validated in
Fig. 12a, we leave this calibration study as future work.

4.2.4 Cold start
Accurate prediction requires there being enough motion
information accumulated in the tracker instances. However,
the tracker instances are newly created when the system
starts to capture frames, and thus cannot predict object
features accurately for the detection workflow. To handle
this cold start problem, in AdaPyramid, we apply the most
expensive configuration on the whole frame for the first
several seconds. In this way, the trackers are updated with
the approximate ground truth for a sufficient number of
times, and consequently can make accurate predictions then.

4.3 Configuration Adaptation

With an accuracy demand, this module aims to choose
the cheapest configuration from a pool when performing
inference on a specific region. Obviously, the foundation

0 2 4 6 8
Input frame size (Pixels) ×106

0

500

1000

1500

2000

La
te
nc

y 
(m
s)

YOLOv5n
YOLOv5s
YOLOv5m
YOLOv5l

Fig. 7: latency of YOLOv5 series object detectors with differ-
ent input frame sizes (number of pixels).

of making choices is to evaluate how a configuration per-
forms on this region, which is called a profile. Although
conducting the profile directly on the current frame is the
most accurate method, its overhead is prohibitive since we
have to make the choices online. Therefore, common prac-
tices [31], [30] often rely on offline profiles for the configu-
rations. However, they rarely expose the gap between the
offline profile and the actual performance. We then conduct
extensive measurements on PANDA 4K dataset with Jetson
AGX Xavier to evaluate the difficulty of obtaining a precise
offline profile for both inference latency and accuracy. In
the measurements, we use YOLOv5n, YOLOv5s, YOLOv5m
and YOLOv5l as the candidate NNs, while YOLOv5x is
used for the labeling. After that, we give our configuration
adaptation algorithm inspired by the evaluation result.

4.3.1 Why is the offline profile not sufficient for configura-
tion choice in an online video analytics system?
Measurement 1: Inference latency can be estimated pre-
cisely. We scale each frame to different sizes and measure
the average inference latency on every frame size with
candidate NNs. The scaling ratio ranges from 0.1 to 1 with
a stride of 0.1.

We observe that the latency is almost consistent across
different frames if they have the same size. This is rational
since a typical NN performs the same operations on frames
if the size of the input feature map is determined, regardless
of the content. Furthermore, Fig. 7 shows that the latency
of a NN increases linearly with the input size, denoting the
number of pixels. This is because the time overhead of the
main components in NNs such as convolution and pooling
layers is linearly related to the size of the input feature map.
Besides, some other components contribute relatively fixed
overhead, such as some initialization operations and the
classification network in Faster R-CNN. Therefore, the infer-
ence latency L(·) of a network n can be estimated precisely
by fitting a linear expression with the measurement on a
specific GPU, formulated as:

L(n, S) = k(n)S + b(n) (1)

Here, S is input frame size while k(n) and b(n) are the
coefficients related to network n.

Measurement 2: Inference accuracy cannot be esti-
mated precisely. We have obtained object features from
the predictor (§4.2) as the content characterization. Existing
studies [12], [13], [51], [10] have proved that the accuracy
profile is sensitive to object size and category. We thus
measure the inference accuracy of candidate NNs on dif-
ferent sizes of pedestrians and show the results in Fig. 8.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 8

1 2 3 4 5 6 7 8 9 10
Object Size Level

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
ca

ll

YOLOv5n
YOLOv5s
YOLOv5m
YOLOv5l

(a)

1 2 3 4 5 6 7 8 9 10
Object Size Level

0.0
0.2
0.4
0.6
0.8
1.0

Re
ca

ll

(b)
Fig. 8: Accuracy of NNs when detecting pedestrians with
different object size levels on PANDA 4K dataset. Fig. 8a
shows the average accuracy of NNs while Fig. 8b further
shows the YOLOv5s accuracy distribution on every object
size level.

Object size is divided into multiple levels whose ranges are
presented in Table 1.

Fig. 8a shows that accuracy decreases as object size gets
smaller with a specific NN. Although we can profile the
average accuracy with extensive measurements given a size
level and a category, this doesn’t mean accuracy can be
precisely predicted. Fig. 8b shows that even with object size
and category determined, accuracy still varies significantly
across different frames, especially when object size is very
small. For instance, accuracy ranges from 0 to 0.6 at size
level 1, which is almost impossible to predict. This is because
various factors, such as lightness, object occlusion and even
whether a region is focused well, also affect the inference
accuracy in addition to the factors we have considered
already. Although introducing more factors is beneficial for
precise prediction, it is still too complicated to construct
a comprehensive model to characterize how accuracy is
affected by them.

To summarize, it is not adequate to choose configura-
tion just based on the offline profile due to the difficulty
of accuracy estimation. We then present how to comple-
ment such insufficiency with the configuration adapter in
AdaPyramid.

4.3.2 Configuration pool À

Before giving the concrete design of configuration adapter,
we first show how to construct the configuration pool. In
AdaPyramid, the configuration is a combination of NN and
scaling ratio. We denote the NN set as N and the scaling
ratio set as R. The configuration pool P can be constructed
as N × R (× is the Cartesian product). Although the con-
figuration is two-dimensional here, we must mention that it
can be easily extended to the multi-dimensional version.

Here, NN set N can be customized as the case may
be, but it should better be able to cover every level of
detecting capability. To construct R, we first denote the size
(i.e., number of pixels) of the smallest object in the obtained
features of a specific region as s. We then give the scaling
ratio set R as {r1, r2, r3, · · · } where ri =

√
si
s and ri ≤ 1.

Here si = (a+b2 )2 pixels if object size at level i ranges from
a2 to b2 pixels (e.g., s1 = 122 pixels, s2 = 282 pixels).

For a specific configuration p = (n, ri), we can offline
estimate how it will perform on a specific region. We denote
the size of this region as S. After the scaling operation,
region size contracts to size ri2S while the smallest object
size contracts to ri

2s = si, which is at the range of level

Size Level 1 2 3 4 5 6 7 · · ·
Min Size 02 242 322 402 482 562 642 · · ·
Max Size 242 322 402 482 562 642 722 · · ·

TABLE 1: The ranges of different object size levels in pixels,
e.g., level 1 ranges from 02 to 242 pixels.

i. According to §4.3.1, inference latency can be precisely
estimated as

L(n, ri
2S) = k(n)ri

2S + b(n). (2)

Since k(n)ri2 indicates how much faster L(·) increases with
S, it can be explained as the price of configuration p. To
estimate the inference accuracy, we measure the average
accuracy with Recall for each NN on different size levels
of objects based on public datasets (COCO [16] dataset in
our implementation) and denote the measured accuracy for
level j and network n as a(n, j). For example, according
to this measurement, accuracy on the smallest object of the
region above can be estimated as a(n, i). We note that the
estimated accuracy may not be very precise, but it can still
be used for guidance.

4.3.3 Configuration adapter Í

We now give the design of configuration adapter in
AdaPyramid. We attempt to search for the cheapest con-
figuration with an accuracy demand for a specific region,
beginning from the one guaranteed to achieve this accuracy
goal, denoted as the conservative configuration. We adopt
this search direction from the expensive ones to the cheap
ones out of particular consideration. We have learned from
§4.2.3 that object omissions in one frame may introduce
accumulated permanent omissions in the following frames.
Therefore, we propose to keep the configurations applied in
the search process to be more expensive than the desired
result and this guides us to design our search direction.

Conservative start. We first propose how to choose the
conservative configuration. Although the most expensive
one in pool P can meet the accuracy demand, the process
of searching is very time-consuming since the distance
between the starting configuration and the result can be
very long. To address this challenge, we can approximately
regard the measured Recall of a network for a specific size
level of objects as the probability of being detected. There-
fore, although we have learned from §4.3.1 that inference ac-
curacy cannot be estimated precisely, we can still guarantee
that a specific size level of objects can be detected with high
probability by setting a very strict accuracy demand. Since
the smallest object is normally nearly the most difficult to
detect, we choose the conservative configuration according
to this object in order to guarantee the accuracy demand.
Specifically, we choose the cheapest configuration from
pool P whose estimated accuracy on the smallest object is
higher than a strict threshold γ (0.95 in AdaPyramid) as
the conservative configuration. Here, the smallest object size
is provided by the predicted object features of the given
region. We argue that such a setting of the conservative
configuration can not only guarantee accuracy, but also
reduce much search overhead by utilizing the predicted
object features.

Starting from the conservative configuration, there still
exists much potential for reducing latency by searching for



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 9

cheaper configurations. For instance, in Fig. 8a, YOLOv5l
achieves a Recall of 0.95 on level 5 objects but can still
achieve 0.83 on level 2 objects. This indicates that even if
we contract a region with level 5 objects to a quarter of its
original size, we still have a high chance of detecting the
objects in it, since an object at level 5 is approximately 4
times larger than an object at level 2. According to Eq. (1),
scaling a region to a quarter of its original size means
around 75% latency reduction. We then show the searching
algorithm in AdaPyramid, which is a process of continuous
adaptation across the frames.

Continuous adaptation. AdaPyramid searches the de-
sired configuration by tuning the accuracy threshold γ.
It then chooses the cheapest configuration whose offline
estimated accuracy on the smallest object is higher than
γ. Here, the threshold γ for the smallest object is just a
knob for searching configurations with various capabilities.
Additionally, we argue that although the estimated accuracy
may not be very precise, it can reflect the relative rela-
tionship between the capabilities of different configurations.
Therefore, a high γ can filter out relatively strong configura-
tions, and vice versa. To realize fast searching, we develop a
binary search-based method, which alternates between the
proactive and passive stages.

AdaPyramid first enters the proactive stage. It decreases
γ for every coming frame by a stride k set to k1 initially.
If no remarkable accuracy loss occurs, it continues with the
same stride. Otherwise, γ is first recovered to the threshold
of the last frame. After that, it resumes to search with half
the initial stride, i.e., k1

2 . Each time the searched configu-
ration shows remarkable accuracy loss, γ is first recovered
and then resumes to be decreased with half the previous
stride. When k decreases below a very low value (0.01 in
AdaPyramid), we consider that the configuration is very
close to our desired one and we switch to the passive stage.

In the passive stage, we first keep the configuration
searched in the previous proactive stage in the next second,
assuming video content shows no significant change in such
a short interval. However, if remarkable accuracy loss oc-
curs in this process, AdaPyramid will increase the accuracy
demand continuously by a stride of k2 until such a loss is
eliminated. After that, it enters the proactive stage whose
process is similar to the first one but with an initial stride of
k2. Here k2 is smaller than k1, as there is no need for drastic
configuration adjustment after the first proactive stage. We
set k1 to 0.2 and k2 to 0.05 in our implementation and the
configuration can converge to the desired one within 12
frames in most cases, which is less than 1 second for videos
with a frame rate of 12 (see §5.4).

It should be noted that if the searched configuration
is not strong enough, object omission problem may be
incurred along with the accumulated error. Fortunately,
our predictor with the tracker reserving design (§4.2.3) can
provide fault-tolerance for a relatively aggressive searching.

4.3.4 Result evaluator Ð

Since ground truth is unavailable when performing infer-
ence online, we cannot obtain the accuracy exactly. It is
thus non-trivial to tell whether a searched configuration
shows remarkable accuracy loss. In AdaPyramid, we ap-
proximately use the predicted object features as the ground

truth since motion prediction for a short interval is accurate
enough to serve as the evaluation labels. Besides, the fault-
tolerant tracker reserving design (§4.2.3) further ensures
the effectiveness of this approximation. Experiments (§5.3)
also show that the accuracy evaluated with our approxi-
mate ground truth is close to the optimum. We consider a
searched configuration as having shown remarkable accu-
racy loss if the evaluated accuracy is lower than a threshold
α, namely the accuracy demand set by the users, including
end users, service providers and application developers.
Given the general importance of setting reasonable service
quality guarantee (such as an accuracy demand, or a delay
constraint), AdaPyramid allows users to achieve better ex-
perience by flexibly adjusting accuracy demands in specific
applications, especially for providers and developers.

Therefore, although it is nearly impossible to obtain ex-
act accuracy in practice, we can tune α to approximately sat-
isfy our accuracy demand. Additionally, we should not set
α to be very low, since it incurs significant object omissions
in the current frame, which may introduce accumulated
permanent omissions in the following frames (see §4.2.3).

4.4 Pyramid-like Partition
Frame partition comes before the configuration choice
above, and determines the ceiling performance of config-
uration adaptation. Here, the ceiling performance means
the lowest latency the system can achieve by choosing the
cheapest configurations with an accuracy demand for each
partitioned region. It is thus a very critical component.

Before presenting our partition design, a question must
be answered: should partition plan be updated dynam-
ically? Since the video content varies across frames, we
should better update the partition plan for each coming
frame. However, this strategy is not suitable for AdaPyra-
mid. On one hand, making an update per frame incurs
additional time overhead for this online system, hurting the
overall performance. On the other hand, the configuration
adaptation before is designed specifically for a fixed region.
If the partition plan is updated very frequently, there isn’t
enough time for the configuration to converge to the desired
version. Consequently, AdaPyramid adopts a fixed partition
plan. We then provide our partition design.

4.4.1 Guideline of design
To guide the design, we propose that the key is to expose
how inference latency is jointly decided by the video content
and partition plan. However, the underlying relationship is
very subtle and is rarely studied. Therefore, We conduct
sufficient exploration of it here. In short, we utilize the
hierarchical object size distribution in frames and develop
an efficient partition strategy.

To control variables, we put the exploration under the
fixed partition granularity. Here, partition granularity is a
two-tuple denoted as (tv, th), where tv and th denote how
many times the frame is partitioned vertically and horizon-
tally respectively. For example, (0, 2) means partitioning
a frame into regions with one column and three rows.
Additionally, we assume that the cheapest configurations
with an accuracy demand are chosen after the partitioning.
We make this assumption to exclude the interruption of
configuration choice on system performance.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 10

We define resource waste for a region as the unnecessary
latency generated by overly expensive configuration for
larger objects, which is chosen to take care of the smaller
ones. Specifically, we denote the cheapest configurations
with the accuracy demand chosen for the smallest and
largest objects as p1 = (n1, r1) and p2 = (n2, r2), and obtain
resource waste R as L(n1, r1)−L(n2, r2). We argue that by
reducing as much resource waste as possible, the goal of
reducing as much latency as possible is also achieved.

For further analysis, we denote the size of a given region
as S. According to Eq. (1),

L(n1, r1) = k(n1)r1
2S + b(n1). (3)

We then denote the sizes of the smallest and largest ob-
jects in it as s1 and s2 respectively, and introduce p3 =
(n1,

√
s1/s2r1), which means scaling the region with a ratio

of
√
s1/s2r1 and applies network n1. From another point of

view, p3 can also be explained as scaling the region with a
ratio of

√
s1/s2, which contracts the largest object from the

size of s2 to s1, and then applies configuration p1 = (n1, r1).
Since configuration p1 on objects with size s1 can achieve
the accuracy demand, configuration p3 on objects with size
s2 can also achieve the accuracy demand. Considering that
p2 is the cheapest configuration to achieve the accuracy
demand on objects with size s2, the latency of p2 is not
higher than that of p3, i.e.,

L(n2, r2) ≤ L(n1,
√
s1/s2r1)

= k(n1)(
√
s1/s2r1)

2

S + b(n1)

= k(n1)r1
2S · s1

s2
+ b(n1).

(4)

Finally,
R = L(n1, r1)− L(n2, r2)

≥ L(n1, r1)− L(n1,
√
s1/s2r1)

= (1− s1
s2

)k(n1)r1
2S.

(5)

Eq. (5) gives a lower bound of resource waste on a specific
region. This implies that for the regions with the same width
and height (same size S, of course), more resource waste is
incurred in the top regions.

To explain this conclusion, we first present a visual law
called perspective effect. It tells us that objects on top re-
gions look larger, and vice versa. Moreover, for a particular
category of objects, its visible height h(·) and width w(·) is
linearly related to its centroid position on the vertical axis,
denoted as yobj [13]. Here, the direction of the vertical axis
is from the top of the frame to the bottom. Therefore, the
width of an object can be estimated as

w(yobj) = pwyobj + qw. (6)

Here, pw and qw are the coefficients, which can be fitted with
the frames collected from this specific camera. The height of
the object can be estimated in the same way.

Now, on one hand, top regions contain smaller ob-
jects applied with expensive configurations, indicating that
k(n1)r1

2 is larger in top regions. On the other hand, in
regions with the same height yr , the width difference of the
largest and smallest objects can be estimated as pwyr , which

is irrelevant with objects. This means that the absolute width
difference between the largest and smallest objects is the
same across regions. That is to say, the relative width ratio
between the largest and smallest objects is larger in top
regions as the average object width is smaller there, and
similarly for the relative height ratio, indicating that s1

s2
is

smaller there. We can then obtain that resource waste R is
larger in top regions. This inspires us to partition the top
portion of a frame into thinner regions than the bottom,
whose shape is like a pyramid.

4.4.2 Design of pyramid-like partitioner Ì

Based on the guideline that the top portion of a frame
should be partitioned into thinner regions than the bottom,
we present the design of our partition algorithm. Since the
object size varies mainly in the vertical direction, AdaPyra-
mid adopts the non-uniform strategy only when partition-
ing horizontally. When partitioning vertically, it partitions
uniformly as there is no remarkable hierarchical object size
variance in the horizontal direction.

Specifically, to partition horizontally, we let the relative
width (or height) ratio between the smallest and largest
objects be the same across different regions. We denote this
ratio as β. Following the notations above and Eq. (6), for a
region ranging from yup to ydown vertically, the width of the
smallest and largest objects can be estimated as w(yup) and
w(ydown). Therefore,

β =
w(yup)

w(ydown)
=

pwyup + qw
pwydown + qw

. (7)

Since we plan to partition horizontally for th times, we
denote the th partition positions on the vertical axis from
top to down as y1, y2, · · · , yth . According to the partition
algorithm,

w(0)

w(y1)
=
w(y1)

w(y2)
= · · · = w(yth−1)

w(yth)
=
w(yth)

w(H)
= β. (8)

Here, H denotes the height of the frame, while w(0) and
w(H) are the estimated width of the smallest and largest
objects in the frame. Thereby,

w(0) = β(th+1)w(H). (9)

Consequently, β can be computed as w(0)
w(H)

1
th+1 . In turn, we

can obtain the nth partition position on the vertical axis.
Specifically, w(0) = βnw(yn). Then, according to Eq. (6), yn
can be computed as w(0)/βn−qw

pw
.

We also compare our algorithm with the uniform strat-
egy to evaluate its effectiveness. This evaluation is con-
ducted on the traffic video in §3. The granularity is set to be
(0, 2) to exclude the interruption of vertical partition, which
is the same in both strategies. Additionally, the cheapest
configurations to achieve the accuracy demand are chosen
for each region of frames by searching exhaustively to
exclude the interruption of configuration choice. Finally, the
total detection latency for every frame is plotted in Fig. 9.
We can see that our pyramid-like algorithm realizes lower
latency on almost all the frames.

To explain this effectiveness, for the top regions applied
with expensive configurations indicating larger k(n1)r12,
our algorithm achieves smaller (1− s1

s2
)S and thus prevents



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 11

0 100 200 300 400 500 600 700 800
Frame Index

0
200
400
600
800

La
te

nc
y 

(m
s) Uniform method

Pyramid-like method

Fig. 9: Pyramid-like partition is better than uniform partition
in terms of latency.

them from encumbering the overall latency (see Eq. (5)).
Specifically, since we let the relative width (or height) ratio
between the smallest and largest objects be the same across
different regions, s1s2 is the same as well. Moreover, the top
regions are thinner, and thus have smaller size S. Conse-
quently, this design follows the guideline above and gives
the expected performance.

4.4.3 How to determine the partition granularity?

We have presented the partition algorithm with fixed parti-
tion granularity. So, how do we determine the granularity?
Intuitively, a frame should be partitioned as finely as possi-
ble. In this case, the object size is very similar in each region,
indicating little resource waste based on Eq. (5). However,
a partition that is too finely grained may slice many objects
into pieces, incurring significant accuracy loss. Therefore, an
appropriate partition granularity should handle this trade-
off carefully.

AdaPyramid determines granularity by evaluating dif-
ferent choices at the bootstrap stage. Specifically, we obtain
the converged inference latency for each choice. Remember
that configuration adapter enables fast convergence, we
thus leave very little time (1 second in AdaPramid) for the
evaluation of each choice. We observe in experiments that
when tv or th exceeds 2, AdaPyramid suffers significant
accuracy loss in most videos. Such loss in turn forces more
expensive configuration to meet the accuracy demand, thus
leading to much higher latency. Based on this observation,
we just evaluate a limited amount of 9 choices whose tv and
th range from 0 to 2. Therefore, the time cost for determining
partition granularity is limited.

4.4.4 Background elimination

After determining the partition plan, AdaPyramid elimi-
nates the background for each region. Remember that we
have obtained the predicted features of objects, represented
as the width, height and centroid coordinates of the bound-
ing box. According to the features, we first assign each
of them to the region whose overlap with the bounding
box is the largest. We then adjust the boundaries of each
region adaptively to exactly cover all the objects assigned
to it. Additionally, some padding is reserved to handle
the prediction deviation [12]. Fig. 10 shows an illustration.
Note that this adjustment may introduce overlap between
neighboring regions. Thereby, the objects in overlapping
areas may be detected repeatedly. To handle this problem,
we use the non-maximum suppression (NMS) technique to
remove duplicated bounding boxes when combining the
detection results of regions.

padding

Background

Objects Background 
elimination

Fig. 10: An example of background elimination. The left
sub-figure illustrates the original partitioned region while
the right sub-figure is the result of background elimination.
Padding is marked as a white band, which is added to make
it tolerant for prediction deviation.

4.4.5 Discussion
AdaPyramid performs the pyramid-like partition by utiliz-
ing the offline profiled linear relationship (see Eq. (6)) based
on perspective effect. We should note that this profiled
relationship may not exactly apply to every object in the
frame, especially in complicated scenes. For instance, in a
shopping mall scene with multiple floors, the relationship
profiled for objects on the same floor may not apply to the
objects on different floors. However, this profile can still pro-
vide a good statistical result and experiments (see Fig. 16)
show that the performance gain based on it is considerable.
Besides, a more sophisticated partition strategy requires
further understanding of the semantics in the frame, which
may inevitably generate more system overhead and imprac-
tical for an online object detection system like AdaPyramid.

4.5 New-object Detection
In previous sections, the designing of the partition and con-
figuration choice techniques is based on predicted object fea-
tures. However, this prediction cannot handle new objects
never seen before. Existing solutions often seek to locate
them in the whole frame. For example, some works [12],
[10] conduct NN-based detection for new objects. Although
they have proposed to compress the frame (e.g., scaling to a
lower resolution, or applying a lower compression quality)
to reduce detection overhead, such reduction is often limited
if there needs to be a guarantee that new objects should
be located relatively accurately, especially when handling
objects of very small sizes. In this case, the time cost is
not efficient to improve the accuracy brought by new-object
detection.

New-object detectorÏ. Fortunately, surveillance cam-
eras are usually stationary in a fixed angle and position.
We thus observe that new objects can just appear in some
specific regions of a frame, bringing the chance of greatly
reducing computation overhead by removing the regions in
which it is impossible for new objects to appear.

Since the regions in which it is impossible for new
objects to occur are camera-specific, we do the marking
for each camera in the offline stage. It is thus a one-time
effort. Since cameras are deployed at different positions with
different angles, the camera-specific marked regions also
vary significantly. However, we argue that the ratio of such
regions to the whole frame is minor in most cases. This is
because the regions are located with a great probability at
some special positions, such as the frame boundaries and
exits of buildings. Thereby, the detection work is limited.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 12

500 1000 1500 2000 2500
Latency (ms)

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900

F1
 sc

or
e

AdaPyramid
SimpleNN
Remix

(a)

500 1000 1500 2000 2500
Latency (ms)

0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92

F1
 sc

or
e

AdaPyramid
SimpleNN
Remix

(b)

Fig. 11: Inference latency and F1 score on PANDA 4K dataset
(11a) and collected videos (11b) with Jetson AGX Xavier.

With the offline marking, AdaPyramid then performs
inference on marked regions. Since object omissions in the
current frame may incur accumulated omissions later, we
do not want to miss any new object. To this end, the new
object detector works for each frame. Besides, we choose the
cheapest configuration from pool P whose offline estimated
accuracy is higher than 0.9. We set this high threshold to
make sure the detection of new objects is accurate enough.

It should be noted that besides the NN-based methods,
some traditional methods such as frame difference, optical
flow and edge detection methods [11], [38] are also used
to identify the regions containing objects. However, we
propose that our method is orthogonal with theirs, since
their methods can be applied to our marked regions for
overhead reduction, instead of operating on the whole
frame. Therefore, the performance gain can be combined.

5 EVALUATION

In this section, we evaluate the performance of AdaPyramid
under different real scenes. We first compare the achieved
latency of AdaPyramid with various baselines under differ-
ent accuracy. We then conduct ablation studies to evaluate
the performance gain from individual components.

5.1 Experiment Setup

5.1.1 Implementation

We implement AdaPyramid on a Jetson AGX Xavier with
an 8-core Nvidia Carmel CPU and a 512-core Nvidia Volta
GPU. The power mode is set to MAXN. We use Python for
easy integration of deep learning applications. PyTorch is
used as the inference engine on this mobile GPU for object
detection. Additionally, we use the widely-used F1 score as
the accuracy metric.

When constructing the configuration pool, we use
{YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l} as the NN
set. Before running our system, we load all the models
into GPU memory. Therefore, there is no model switching
overhead when performing inference with different models.
Our candidate NNs consume around 2GB of GPU memory
in total which is acceptable for Jetson AGX Xavier. For those
edge devices with less GPU memory, we can customize the
NN set for practical use. We then use YOLOv5x as the oracle
model to do the labeling work, since its performance is
nearly SOTA among all the known YOLO implementations.

To build our feature predictor, we use SORT [20] as
the existing multi-object tracking algorithm with the typical
detection-based tracking structure. This is chosen for its

high tracking efficiency which consumes several millisec-
onds for one frame on CPU. We integrate it into AdaPyra-
mid following §4.2.2 with some modifications in its source
code. Although SORT is used in our system, we also allow
users to apply other efficient MOT algorithms, whose inte-
gration method is similar.

5.1.2 Dataset

We evaluate AdaPyramid on the videos from PANDA 4K
dataset for person and vehicle detection. PANDA is a public
video dataset for large-scale, long-term, and multi-object vi-
sual analysis, captured by a gigapixel camera. It is composed
by diverse real-world scenes (totaling 21 currently), includ-
ing street, crossroad, basketball court, etc., captured from
various camera angles and locations. Besides, it contains
75,600 frames with more than 200 objects in each frame on
average. In this dataset, frame rate of videos are different.
We thus perform downsampling on them and convert them
to 12 fps videos universally.

5.1.3 Baselines

Our baselines include the following object detection solu-
tions:

• SimpleNN. This is a widely adopted method,
which performs NN-based inference straightfor-
wardly on whole frames of videos. We respectively
test YOLOv5n, YOLOv5s, YOLOv5m and YOLOv5l.

• Remix [13]. This is a state-of-the-art solution to im-
proving inference accuracy with a latency budget. It
assumes each NN has a fixed input frame size, while
heavy models often have larger sizes than the light
ones. However, YOLOv5 only has one training frame
size, i.e., 640×640. Following the setting of Remix
paper, we adjust the input size to 768×768, 896×896,
1, 024 × 1, 024 and 1, 024 × 1, 024 for YOLOv5n,
YOLOv5s, YOLOv5m and YOLOv5l respectively. We
then tune the latency budget and obtain different
latency-accuracy tuples.

5.2 Overall Performance

We present the overall performance of AdaPyramid and
baselines in Fig. 11. For AdaPyramid, we tune α as 0.85, 0.87,
0.90, 0.92 and 0.95 respectively to achieve different latency-
accuracy tradeoffs. Then, each point on the curves denotes
achieved average accuracy and latency for frames from all
scenes with one of the α settings above.

In Fig. 11a, AdaPyramid achieves the best perfor-
mance compared to the baselines. Under similar accuracy,
AdaPyramid can decrease latency by 40% on average with
up to 2.5× speed-up. The performance gain is very promi-
nent, particularly when we demand high accuracy. In this
case, since more expensive configurations are used, there
also exists more potential for reducing inference overhead.
Compared to SimpleNN without the configuration adapta-
tion and the background elimination, AdaPyramid reduces
as much inference latency as possible by optimizing both
aspects. Compared to Remix, the performance gain mainly
comes from three aspects.

Firstly, AdaPyramid adapts the configuration based on
the latest video content, i.e., object features updated per



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 13

1 2 3 4 5 6 7 8
Window index

0.4

0.5

0.6

0.7

0.8
F1

 sc
or
e

p=0
p=1
p=6
p=12
p=24

(a)

0 1 6 12 24 36 72 144
The value of p

180

260

340

420

500

580

La
te
nc

y 
(m

s)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Latency
F1 score

(b)

Fig. 12: Evaluation of object feature predictor. Fig. 12a shows
the average F1 score on successive time windows under dif-
ferent p values. Each time window contains 100 frames. Fig.
12b illustrates the accuracy-latency tradeoff as p changes.

frame. By contrast, Remix selects plans based on the per-
formance estimation of them, which is calculated with the
analysis on historical frames and may be out-of-date for
high-quality plan selection.

Secondly, AdaPyramid eliminates the background with
no object more thoroughly than Remix. Although AIMD-
based selective execution is applied to skip the regions
unlikely to contain objects, this approximate method cannot
skip every background region and may wrongly skip the
regions containing objects actually. Besides, there still exists
much background in the regions containing objects, which
Remix fails to handle.

Thirdly, Remix suffers from the densely partitioned re-
gions, whose boundaries slice objects into pieces, hurting
the accuracy remarkably. By contrast, AdaPyramid restricts
very dense partition plans to alleviate the problem. Specifi-
cally, Remix sets the partitioned region sizes as the training
input sizes of NNs. However, most NNs for object detec-
tion possess relatively small input sizes (e.g., 800×800 for
RetinaNet, 1024×1024 for Faster R-CNN), leading to dense
partition plans. For instance, in our settings, the partition
granularity is more than 3×3 for 4K videos. Once the objects
distribute relatively densely on the frames, too many of
them will be sliced into pieces by the region boundaries.
Even though Remix attempts to alleviate this by adding
margins to the detection regions, the problem is not entirely
solved in practice. From Fig. 11, we can observe that Remix
fails to outperform SimpleNN when latency is either very
low or very high. In such cases, Remix and SimpleNN both
adopt very cheap or expensive configurations. However,
Remix suffers significant accuracy loss in addition.

In addition to the public PANDA 4K dataset, we further
evaluate the scalability of AdaPyramid on more videos
and devices. Specifically, we deploy AdaPyramid in real
world using Jetson AGX Xavier, and collect 4K videos for
evaluation from a university campus at different times.
They contain around 18,000 frames with about 15 objects
in each frame on average. Compared with PANDA, the
objects are thus relatively sparser in our collected videos.
We present the performance of AdaPyramid and baselines
in Fig. 11b. Due to the sparser distribution of objects in the
frames, Remix can always outperform SimpleNN since the
object slicing problem discussed above is greatly mitigated.
Meanwhile, AdaPyramid can decrease latency by 61% on
average with up to 3× speed-up, and still achieve the best
performance, presenting its extensibility in various scenar-
ios. We also evaluate AdaPyramid on a different Jetson TX2

TABLE 2: F1 score of the object feature predictor.
α 0.95 0.92 0.90 0.87 0.85

F1 score 0.85 0.85 0.86 0.85 0.85

TABLE 3: F1 score error of the approximate accuracy with
the result evaluator.

α 0.95 0.92 0.90 0.87 0.85
F1 score error 0.04 0.02 -0.01 -0.02 -0.02

device. The results are illustrated in Fig. 13, showing 54%
latency reduction on average with up to 3.1× speed-up on
the datasets we use. We also observe that the trends of F1
score-latency curves are similar across different devices.

Next, we break down AdaPyramid and evaluate each
key component, i.e., object feature predictor, configuration
adapter, pyramid-like partitioner and new-object detector.
Limited by space, we choose three typical scenarios when
the results must be presented based on specific scenes.

5.3 Evaluation of Object Feature Predictor
To show the effectiveness of feature predictor, we first
evaluate whether the object omission problem is solved.
Recall that we have proposed in §4.2.3 that omissions in
the current frame incur accumulated permanent omissions
in the following frames. We solve this problem by reserving
the trackers p times when they fail in the association on the
first time. Now, we set p to different values, and plot the
average F1 score on successive time windows in Fig. 12a.
Here, a time window contains 100 frames.

Fig. 12a shows that such a proposed reservation method
alleviates the problem. When our method is not applied,
which means p is zero, accuracy drops significantly as time
goes on. When p is set to 1, the catastrophic accuracy loss
is eliminated. As p increases, accuracy also improves, since
more omitted objects are well handled and are distinguished
from those leaving the view field permanently. They thus
incur no permanent omissions later.

However, higher p hurts the inference latency. Fig. 12b
presents the average accuracy and latency across different
values for p. As p increases from 0 to 12, the F1 score goes
up from 0.57 to 0.79. We notice that accuracy gain is limited
when p is larger. This is because most omitted objects can
be handled with a low value of p. Considering this tradeoff,
we set p to 24 as it can mitigate the problem considerably
but with a minor additional time overhead.

Next, we evaluate the prediction accuracy of feature pre-
dictor. Table 2 shows that with different accuracy demand α,
the predicted object features can always maintain accurate
enough to guide the configuration adapter and partitioner.

Furthermore, since the predicted object features are used
as the approximate ground truth to online evaluate the de-
tection results, we compare such approximate accuracy with
the actual accuracy obtained by using the actual ground
truth. Table 3 presents the F1 score error with different
accuracy demand α, which is computed by subtracting the
approximate accuracy from the actual accuracy. The results
show that our approximation can approach the optimum
and validate the effectiveness of the result evaluator.

5.4 Evaluation of Configuration Adapter
This module chooses the cheapest configurations with an
accuracy demand, when performing object detection on a



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 14

2 4 6 8 10 12 14 16
Latency (s)

0.75
0.80
0.85
0.90

F1
 sc

or
e

AdaPyramid SimpleNN Remix

(a)

2 4 6 8 10 12 14 16
Latency (s)

0.80
0.85
0.90

F1
 sc

or
e

AdaPyramid SimpleNN Remix

(b)
Fig. 13: Inference latency and F1 score on PANDA 4K dataset
(13a) and collected videos (13b) with Jetson TX2.

video. This is implemented by adapting the choice both in
a frame and across frames. Specifically, when adapting for a
region, it starts from a conservative configuration and then
searches for cheaper ones until the desired one is found.
Fig. 14 illustrates the converging process in three different
scenes (i.e., park, plaza and campus).

In Fig. 14, latency of the searched configuration reduces
significantly in the first 20 frames. Starting from the conser-
vative configuration decided initially, it achieves a 45-75%
latency reduction in the following adaptation process. We
can observe that convergence is achieved very fast, within
12 frames, i.e., less than 1 second for 12 fps videos, owing to
our binary search-based adaption algorithm.

In the configuration adapter, α reflects the desired ac-
curacy demand of the user. Fig. 15 shows latency-accuracy
tradeoff by tuning the user demand, which is approximately
guaranteed. As α increases, accuracy approaches the op-
timum achieved by the most expensive configuration, but
also with a significantly increasing latency. Since a low
α may introduce accumulated permanent object omissions
(see §4.3.4), α is greater than 0.75 in AdaPyramid.

5.5 Evaluation of Pyramid-like Partitioner

Our pyramid-like partition algorithm is designed following
the guideline that the top portion of frames should be par-
titioned into thinner regions than the bottom. We compare
this algorithm with the uniform method in Fig. 16. The result
shows that our design can achieve a 15% latency reduction
on average with no accuracy compromise.

Additionally, the partition granularity affects perfor-
mance significantly. Table 4 illustrates average latency with
different granularity choices under the scene of the campus,
where the lowest latency is achieved when granularity is (1,
1). In the scenes of the park and plaza, the lowest latency is
achieved when granularity is (0, 2) and (1, 1) respectively.
We observe that the best granularity for the park scene is
finer than the rest when partitioning horizontally. This is be-
cause the resolution of the park video is 3,840×2,880 while
the rest is 3,840×2,160. The hierarchical object distribution
is thus more prominent in the park video. Moreover, the
objects in it are relatively sparser than the rest with less
probability of being sliced by region boundaries. It can thus
tolerate denser partitions. From the experiments, we obtain
that the best granularity in most videos is coarser than (2, 2).
When granularity becomes finer, the object-slicing problem
is more notable, thus hurting accuracy significantly. This

0 2 4 6 8 10 12 14 16 18
Frame Index

500
1000
1500

La
te

nc
y

(m
s) Park Plaza Campus

Fig. 14: Latency of configuration in the first 20 frames on
three typical videos, i.e., park, plaza and campus, presenting
fast latency convergence.

explains why we search for the best configuration from (0,
0) to (2, 2).

5.6 Evaluation of Fast New-object Detector
When handling new objects which first appear in a frame,
new-object detector only performs inference on offline-
marked specific regions in which new objects can occur.
Compared to existing solutions that handle the total frame,
this greatly reduces the time overhead since marked re-
gions are limited in most cases. Fig. 17 shows the latency
comparison between these two methods in three scenes.
We use the same configuration choice method for both
of them. Specifically, we choose the cheapest ones whose
offline estimated Recall is higher than 0.9.

Results show that latency of the whole-frame method is
too much for practical use unless accuracy is compromised.
This is because the golden configuration has to be used
on all three scenes to achieve the high accuracy demand.
Our new-object detector is 10× faster since we only have2to
handle marked regions whose sizes are much smaller. More-
over, configurations can be chosen based on the features of
each region.

5.7 System Overhead
System overhead is minor in AdaPyramid, which mainly
comes from three components: object feature predictor (with
tracker update), configuration adapter, and result merging.
Since our pyramid-like partition is a fixed strategy only
requiring one-time effort, it is not covered in the analysis.
Table 5 shows the average latency of these components as
well as which compute unit they are running on (only the
NN inference is performed on GPU). Since in most cases
the total end-to-end latency is larger than 160ms, the system
overhead is often less than 10% of it. It is sufficiently low to
deliver main functions such as pyramid-like partition and
configuration adapter for the significant latency reduction.

We observe that the object feature predictor and result
merging consume more than 90% of the total system over-
head. This is because videos in the PANDA 4K dataset often
contain 100+ objects in each frame, while the overhead
of both the motion prediction algorithm in the feature
predictor and the NMS operation in the result merging is
highly related with the number of objects. Therefore, when
working on videos with fewer objects, the system overhead
of AdaPyramid can be reduced accordingly.

5.8 Memory Footprint
We measure the memory footprint of AdaPyramid, which
consumes at most 7.8 GB in the running process. We observe
that the weights and immediate tensors occupy the majority
portion (around 5 GB), since AdaPyramid loads all the NN
models into GPU memory before running the system, which



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 15

0.75 0.8 0.85 0.9 0.95
The value of α

0.80

0.83

0.86

0.89

F1
 sc

or
e

100

400

700

1000

La
te
nc

y 
(m

s)

F1 score
Latency

Fig. 15: Accuracy-latency trade-
off as α value changes.

Pyra
mid-li

ke P
ar.

Unif
orm

 Par
.0.5

0.6
0.7
0.8
0.9
1.0

F1
 sc

or
e

Pyra
mid-li

ke P
ar.

Unif
orm

 Par
.0

50
100
150
200
250
300

La
te
nc

y

Fig. 16: F1 score and latency with uniform
partition method and our pyramid-like par-
tition method.

Park Plaza Campus0
500

1000
1500
2000
2500
3000
3500

La
te
nc

y 
(m

s)

Specific-region
Whole-frame

Fig. 17: Latency with the com-
mon whole-frame method and
our specific-region method.

tv

th 0 1 2 3

0 798 792 1291 1054
1 1085 636 960 948
2 1110 823 935 992
3 1310 879 1029 1179

TABLE 4: Latency with different partition granularity
choices on campus video.

Components Latency (ms) Compute Unit
Config. adapter 1.29 CPU

Predictor 11.13 CPU
Result merging 3.49 CPU

Total 15.91 CPU

TABLE 5: Average latency of the system components and
the compute units that they are running on.

will be utilized to perform object detection mixedly on the
video frames. We adopt this straightforward method so far
to get rid of the model switching overhead. However, a more
sophisticated loading and unloading strategy for the NN
models can be potentially more memory-efficient. We leave
this study as future work for a lower memory footprint.

6 CONCLUSION AND FUTURE WORK

We design and implement AdaPyramid, a framework to
reduce as much on-device inference latency as possible,
especially for high-resolution videos, while still achieving
the accuracy demand approximately. The design is based on
the observations of high-resolution video features. We then
make extensive explorations to utilize the observations in
order to optimize our system. We also discuss the rationality
of every design sufficiently in this paper.

Moving forward, we will improve AdaPyramid regard-
ing three aspects. First, the construction of the configuration
pool requires further investigation. A good pool should
cover a wide range of detection capabilities in a fine-grained
way. To realize this goal, besides considering each existing
knob (i.e., the NN’s type and frame scaling ratio) more
carefully, we can also add more knobs. Second, we will try to
extend AdaPyramid from the current fixed camera scenarios
to moving camera scenarios by adaptively updating the
pyramid-like partition scheme. Lastly, we will study how to
extend AdaPyramid for parallel inference on heterogeneous
edge devices, considering each frame has been partitioned
into different regions which have no dependency in infer-
ence amongst each other.

ACKNOWLEDGMENTS

We thank the editor and anonymous reviewers. This work
was supported in part by NSFC (62202233, 61832008), Dou-
ble Innovation Plan of Jiangsu Province (JSSCBS20220409),
and Collaborative Innovation Center of Novel Software
Technology and Industrialization.

REFERENCES

[1] G. Ananthanarayanan and et al., “Video analytics - killer app for
edge computing,” in Proc. of MOBISYS 2019, p. 695–696.

[2] R. Bhardwaj and et al., “Ekya: Continuous learning of video
analytics models on edge compute servers,” in Proc. of USENIX
NSDI 2022.

[3] L. N. Huynh and et al., “Deepmon: Mobile gpu-based deep
learning framework for continuous vision applications,” in Proc.
of ACM MOBISYS 2017, p. 82–95.

[4] M. Xu and et al., “Video analytics with zero-streaming cameras,”
in Proc. of USENIX ATC 2021.

[5] M. Xu, M. Zhu, and et al., “Deepcache: Principled cache for mobile
deep vision,” in Proc. of ACM MOBICOM 2018, p. 129–144.

[6] N. Chen and et al., “Resmap: Exploiting sparse residual feature
map for accelerating cross-edge video analytics,” in Proc. of IEEE
INFOCOM 2023.

[7] “Qualcomm vision ai devkit,” https://bit.ly/328LjBF.
[8] “Hikvision 4k camera,” https://bit.ly/2NViRiT.
[9] L. Liu and et al., “Edge assisted real-time object detection for

mobile augmented reality,” in Proc. of ACM MOBICOM 2019.
[10] X. Wang and et al., “Edgeduet: Tiling small object detection

for edge assisted autonomous mobile vision,” in Proc. of IEEE
INFOCOM 2022, pp. 1–10.

[11] K. Yang and et al., “Flexpatch: Fast and accurate object detection
for on-device high-resolution live video analytics,” in Proc. of IEEE
INFOCOM 2022, pp. 1898–1907.

[12] W. Zhang and et al., “Elf: accelerate high-resolution mobile deep
vision with content-aware parallel offloading,” in Proc. of ACM
MOBICOM 2021, p. 201–214.

[13] S. Jiang and et al., “Flexible high-resolution object detection on
edge devices with tunable latency,” in Proc. of ACM MOBICOM
2021, p. 559–572.

[14] G. Zhao and et al., “Collaborative training between region pro-
posal localization and classification for domain adaptive object
detection,” in Proc. of ECCV 2020, p. 86–102.

[15] Y. Zheng and et al., “Cross-domain object detection through
coarse-to-fine feature adaptation,” in Proc. of IEEE/CVF CVPR
2020, pp. 13 766–13 775.

[16] “Common objects in context,” https://cocodataset.org.
[17] M. Najibi and et al., “Autofocus: Efficient multi-scale inference,”

in Proc. of IEEE ICCV 2019, pp. 9745–9755.
[18] J. F. Henriques and et al., “High-speed tracking with kernelized

correlation filters,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 37, no. 3, pp. 583–596, 2015.

[19] B. D. Lucas and et al., “An iterative image registration technique
with an application to stereo vision,” in Proc. of IJCAI 1981.

[20] A. Bewley and et al., “Simple online and realtime tracking,” in
Proc. of IEEE ICIP 2016, pp. 3464–3468.

[21] N. Wojke and et al., “Simple online and realtime tracking with a
deep association metric,” in Proc. of IEEE ICIP 2017, pp. 3645–3649.

[22] C. Zhang and et al., “Optimizing fpga-based accelerator design
for deep convolutional neural networks,” in Proc. of ACM/SIGDA
FPGA 2015, pp. 161–170.

[23] N. P. Jouppi and et al., “In-datacenter performance analysis of a
tensor processing unit,” in Proc. of ISCA 2017, pp. 1–12.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. -, NO. -, MONTH YEAR 16

[24] B. Fang and et al., “Nestdnn: Resource-aware multi-tenant on-
device deep learning for continuous mobile vision,” in Proc. of
ACM MOBICOM 2018, pp. 115–127.

[25] Y. He and et al., “Channel pruning for accelerating very deep
neural networks,” in Proc. of IEEE ICCV 2017, pp. 1398–1406.

[26] Z. He and et al., “Simultaneously optimizing weight and quantizer
of ternary neural network using truncated gaussian approxima-
tion,” in Proc. of IEEE CVPR 2019, pp. 11 430–11 438.

[27] J. Wu and et al., “Quantized convolutional neural networks for
mobile devices,” in Proc. of IEEE CVPR 2016, pp. 4820–4828.

[28] J. Yim and et al., “A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning,” in Proc. of
IEEE CVPR 2017, pp. 4133–4141.

[29] B. Zoph and et al., “Learning transferable architectures for scalable
image recognition,” in Proc. of IEEE CVPR 2018, pp. 8697–8710.

[30] J. Jiang and et al., “Chameleon: scalable adaptation of video
analytics,” in Proc. of ACM SIGCOMM 2018, p. 253–266.

[31] H. Zhang and et al., “Live video analytics at scale with approxi-
mation and delay-tolerance,” in Proc. of USENIX NSDI 2017.

[32] C. Wang and et al., “Joint configuration adaptation and bandwidth
allocation for edge-based real-time video analytics,” in Proc. of
IEEE INFOCOM 2020, p. 257–266.

[33] M. Zhang and et al., “Casva: Configuration-adaptive streaming for
live video analytics,” in Proc. of IEEE INFOCOM 2022.

[34] X. Shi and et al., “Osca: Online user-managed server selection
and configuration adaptation for interactive mar,” in Proc. of
IEEE/ACM IWQoS 2023, pp. 1–10.

[35] “Yolov5,” https://github.com/ultralytics/yolov5.
[36] S. Ren and et al., “Faster r-cnn: Towards real-time object detection

with region proposal networks,” in Proc. of NIPS 2015, pp. 91–99.
[37] T.-Y. Lin and et al., “Focal loss for dense object detection,” in Proc.

of IEEE ICCV 2017, pp. 2980–2988.
[38] J. Yi and et al., “Eagleeye: Wearable camera-based person iden-

tification in crowded urban spaces,” in Proc. of ACM MOBICOM
2020, pp. 9745–9755.

[39] M. Gao and et al., “Dynamic zoom-in network for fast object
detection in large images,” in Proc. of IEEE/CVF CVPR 2018.

[40] M. Yuan and et al., “Infi: end-to-end learnable input filter for
resource-efficient mobile-centric inference,” in Proc. of ACM MO-
BICOM 2022, pp. 228–241.

[41] Y. Chai, “Patchwork: A patch-wise attention network for efficient
object detection and segmentation in video streams,” in Proc. of
IEEE/CVF ICCV 2019, pp. 3415–3424.

[42] M. Gao and et al., “Towards high-resolution salient object detec-
tion,” in Proc. of IEEE/CVF ICCV 2019, pp. 7234–7243.

[43] T. Y.-H. Chen and et al., “Glimpse: Continuous, real-time object
recognition on mobile devices,” in Proc. of ACM SENSYS 2015.

[44] K. Apicharttrisorn and et al., “Frugal following: Power thrifty
object detection and tracking for mobile augmented reality,” in
Proc. of ACM SENSYS 2019, pp. 96–109.

[45] M. Liu and et al., “Continuous, real-time object detection on
mobile devices without offloading,” in Proc. of IEEE ICDCS 2020.

[46] L. Xu and et al., “Scale invariant optical flow,” in Proc. of ECCV
2012, pp. 385–399.

[47] “Panda dataset,” http://www.panda-dataset.com.
[48] X. Wang and et al., “Panda: A gigapixel-level human-centric video

dataset,” in Proc. of IEEE/CVF CVPR 2020, pp. 3265–3275.
[49] “Nvidia jetson agx xavier,” http://bit.ly/3nVJBM7.
[50] A. Paszke and et al., “Pytorch: An imperative style, high-

performance deep learning library,” in Proc. of NIPS 2019.
[51] Z. Xiao and et al., “Towards performance clarity of edge video

analytics,” in Proc. of IEEE/ACM SEC 2021, p. 148–164.

Xiaohang Shi received his BS degree from the
Department of Computer Science and Technol-
ogy, Nanjing University, Nanjing, China, in 2020,
where he is currently working towards a PhD
degree under the supervision of associate pro-
fessor Sheng Zhang. He is a member of the
State Key Laboratory for Novel Software Tech-
nology. Currently, his research interests include
edge computing and video analytics.

Sheng Zhang is an associate professor in the
Department of Computer Science and Technol-
ogy, Nanjing University. His research interests
include cloud computing and edge computing.
To date, he has published more than 80 papers,
including those which appeared in JSAC, TMC,
TON, MobiHoc, ICDCS, and INFOCOM. He re-
ceived the Best Paper Award of IEEE ICCCN
2020 and the Best Paper Runner-Up Award of
IEEE MASS 2012.

Jie Wu (F’09) is the Director of the Center for
Networked Computing and Laura H. Carnell pro-
fessor at Temple University. He also serves as
the Director of International Affairs at College of
Science and Technology. His current research
interests include mobile computing and wireless
networks, routing protocols, cloud and green
computing, network trust and security, and so-
cial network applications. Dr. Wu regularly pub-
lishes in scholarly journals, conference proceed-
ings, and books. He serves on several editorial

boards, including IEEE Transactions on Mobile Computing, IEEE Trans-
actions on Service Computing, Journal of Parallel and Distributed Com-
puting, and Journal of Computer Science and Technology. Dr. Wu is a
CCF Distinguished Speaker and a Fellow of the IEEE. He is the recipient
of the 2011 China Computer Federation (CCF) Overseas Outstanding
Achievement Award.

Ning Chen is currently pursuing a PhD degree
in the Department of Computer Science and
Technology, Nanjing University, under the super-
vision of Prof. Sheng Zhang. His research in-
terests include edge computing, deep reinforce-
ment learning, and video streaming. To date, he
has published several papers, including those
which appeared in INFOCOM, TPDS, SECON,
Computer Networks, ICPADS, et al.

Ke Cheng received his bachelor’s degree in In-
formation Management and Information System
with a minor degree in Computer science and
Technology from Nanjing University, Nanjing,
China, in 2021. He is currently working toward
a PhD degree in the Department of Computer
Science and Technology, Nanjing University. He
is a member of the State Key Laboratory for
Novel Software Technology. His research inter-
ests include edge computing and blockchain.

Yu Liang is a lecturer at Nanjing Normal Univer-
sity. She received the MS and PhD degrees from
Nanjing University in 2011 and 2021, respec-
tively. She was a senior software engineer in
Trend Micro China Development Center between
2011 and 2017. Her research interests include
edge intelligence and edge computing. Her pub-
lications include those appeared in TMC, TPDS,
TON, Computer Networks, Computer Commu-
nications, IEEE ICDCS, IEEE MSN, and IEEE
Globecom.

Sanglu Lu received her BS, MS, and PhD de-
grees from Nanjing University in 1992, 1995,
and 1997, respectively, all in computer science.
She is currently a professor in the Department
of Computer Science and Technology and the
State Key Laboratory for Novel Software Tech-
nology. Her research interests include distributed
computing, wireless networks, and pervasive
computing. She has published over 80 papers in
refereed journals and conferences in the above
areas. She is a member of IEEE.


