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Abstract—With the advent of the Internet of Things (IoT) era
and 5G, ubiquitous sensing devices (e.g., smartphones, surveil-
lance sites, and security cameras) have been widely used in var-
ious fields, resulting in the generation of a huge amount of mon-
itoring data. The rise of federated learning makes it possible to
leverage monitoring data to train deep neural networks through
cloud-edge collaboration without compromising privacy. How-
ever, the non identically and independently distributed (called
Non-IID) data collected by IoT devieces creates a client drift
phenomenon, resulting in a slow convergence of the global model.
To this end, we propose a new Federated learning framework
based on Gradient Variance Reduction with a correction weight
control mechanism and Global gradient descent with Momentum,
named FedGVRGM to conduct gradient correction and reduce
the negative impacts of prediction parameters. Specifically, in the
local training phase, FedGVRGM combines gradient variance
reduction with a correction weight control mechanism to further
correct the local model parameters, thus reducing the dispersion
of model parameters among clients. In the global aggregation
phase, FedGVRGM integrates the historical change states of the
global model through the gradient descent with momentum to
reduce the oscillations and improve the convergence speed of
the global model. We refer to the above methods of gradient
adjustment in the local and global training phases as FedGVR
and FedGM, respectively. Numerous evaluations are conducted
on CIFAR-100, CIFAR-10, and MNIST datasets to prove that
FedGVRGM has a faster convergence rate than other state-
of-the-art approaches such as Federated Averaging (FedAvg),
FedProx, FedReg, FedGVR, and FedGM.

Index Terms—Federated Learning, Client Drift, Cloud-Edge,
Distributed Optimization, Fast Convergence Rate.

I. INTRODUCTION

With the popularity of IoT devices and the advent of

5G era, data privacy has gradually become a key area of

public concern. As a revolutionary distributed machine learn-

ing framework, federated learning [1] can train deep neural

networks through cloud-edge collaboration without compro-

mising privacy [2]–[4].

However, in federated learning, the data among clients are

typically heterogeneous and fail to adhere to the assumption of

independent identical distribution. The above data are called

not identically and independently distribution (Non-IID) data.

The Non-IID data causes local models to gradually converge to

be local optimum and produce a client drift phenomenon [5].

This leads to a high variance in the global aggregation phase,

and the global model has difficulty in converging to the best

average loss for all clients [6]–[10]. In addition, the client drift

phenomenon hurts the convergence speed, so it is critical to

mitigate the client drift phenomenon during federated training.

In the local training phase, the client drift phenomenon

can be considerably mitigated by reducing the dispersion of

model parameters among clients. Liang et al. [11] proposed a

Variance Reduced Local Stochastic Gradient Descent method

called VRL-SGD that incorporated variance reduction into the

local SGD to eliminate the assumption of bounded gradient

variance. However, VRL-SGD can’t support client sampling

and has a slow convergence rate. Li et al. [7] added a

correction term to the local loss function to suppress the

degree of parameter dispersion among clients. Although it can

achieve a high accuracy on Non-IID data, the global model

has a lower convergence rate and requires a higher number of

iteration rounds. Karimireddy et al. [5] presented a Stochastic

Controlled Averaging for Federated Learning approach named

SCAFFOLD to model the degree of client drift and corrected

local parameter updates based on control variates. However,

SCAFFOLD has errors in calculating the degree of client drift,

which can negatively affect the model parameters close to

the optimal value in the post-training phase. Xu et al. [12]

proposed a novel algorithm called FedReg that alleviated

the catastrophic forgetting issue by regularizing local training

parameters with the generated pseudo data, thereby reducing

the degree of client drift.

In addition, some methods are proposed to accelerate the

convergence of federated learning in the global aggregation

phase. Reddi et al. [13] introduced adaptive schemes such

as ADAM, YOGI, and ADAGRAD on the parameter server

to accelerate model convergence. This adaptive optimization

makes federated aggregation smoother, thus providing an

efficient way to avoid client drift. Wang et al. [14] gave

a Slow Momentum Framework called Slowmo, built on the

top of SGD, and decentralized methods to utilise the slow

momentum in the global phase.

Although many studies are attempted to mitigate client

drift by correcting local or global model parameters, these

approaches only tune the federated training from a single

perspective. Because client drift has an impact on the entire

process of federated learning, so adjusting the federated learn-

ing algorithm only from a single phase may be one-sided.
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Firstly, the algorithm is still affected by client drift when

the model parameters are not corrected in the local training

phase but only in the global aggregation phase. Secondly, when

the model parameters are only corrected in the local training

phase, the simple weighted average in the global aggregation

phase amplifies the client drift phenomenon caused by Non-

IID data.

Based on the above observations, we propose a new

algorithm named FedGVRGM to mitigate the client drift

phenomenon and speed up federated learning convergence.

Specifically, to reduce the degree of client drift, FedGVRGM

first corrects the local model parameters by the variance

of the model prediction parameters between the clients and

the parameter server. Secondly, FedGVRGM accelerates the

convergence of the global model using the gradient descent

with momentum in the global aggregation phase. By intro-

ducing gradient variance reduction with a correction weight

control mechanism and gradient descent with momentum in

the local training phase and global aggregation phase, respec-

tively, FedGVRGM alleviates the client drift phenomenon and

achieves fast convergence.

The main contributions of this paper are as follows,

• We propose a new method, i.e., FedGVRGM to mit-

igate the client drift phenomenon and accelerate the

convergence speed in federated learning. Specifically,

FedGVRGM corrects model parameters in both the local

training phase and the global aggregation phase during

the federated training, ensuring a high convergence rate

even when the data is seriously heterogeneous.

• Gradient variance reduction with correction weight con-

trol is used to reduce the dispersion of model parameters

among clients. And the correction weight control mech-

anism dynamically adjusts the degree of the adjustment

of the local gradient to reduce the impact of errors of

prediction parameters according to the change rate of

global model historical accuracy.

• Experiments on real datasets demonstrate that the

FedGVRGM algorithm can mitigate the client drift phe-

nomenon and improve the convergence speed. Espe-

cially, on the more complex datasets of CIFAR-100,

FedGVRGM achieves speedup ratios of 1.55×, 1.12×,

1.63×, 1.30×, and 1.22×, respectively, compared to

FedAvg, FedProx, FedReg, FedGM and FedGVR, when

the data is highly heterogeneous (α = 0.5).

The remainder of this paper is organized as follows. Section

II introduces the related work. Section III covers the basics

of federated learning. FedGVRGM is described in detail in

Section IV. The experimental evaluations are presented in

Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

In this section, we discuss the related works, focusing

on three topics, i.e., (1) the similarity improvement of the

data distribution among clients, (2) gradient adjustment in the

local training phase and (3) gradient adjustment in the global

aggregation phase.

A. Similarity Improvement of the Data Distribution among
Clients

To alleviate the client drift phenomenon, an effective scheme

is proposed to improve the similarity of data distribution and

avoid the client drift phenomenon fundamentally by changing

heterogeneous data into homogeneous data. Specially, data

sharing strategies improve the training effectiveness of fed-

erated learning based on a public dataset. Wang et al. [15]

shared local output logits on the training dataset while Zhu

et al. [16] shared local label information. However, these ap-

proaches that convert heterogeneous datasets to homogeneous

datasets are costly to produce for public datasets, lack the uni-

versality of application contexts, and increase communication

overhead.

B. Gradient Adjustment in Local Training Phase

Obviously, many studies are willing to mitigate the client

drift phenomenon in federated learning. A well-established

approach is to correct the local model from drifting towards

the local optimum by adding a regular term to the local loss

function. Li et al. [7] added a correction term to the local loss

function to suppress the degree of dispersion of parameters

among clients. Although it can achieve a high accuracy on

Non-IID data, the global model has a lower convergence rate

and requires a higher number of training rounds. In terms

of activation regularization, contrastive learning [17], mixup

with global statistics [18], and generative models [19] are

used to ensure that client updates have similar activation to

the global model. Furthermore, correcting local updates using

global model parameters to reduce differences among local

model parameters is also a common approach. Karimireddy

et al. [5] proposed a VRL-SGD method to characterise the

differences between local and global model parameters based

on control variables, which achieved a variance reduction

and improved the speed of model convergence. Liang et
al. [11] incorporated variance reduction into the local SGD

to eliminate the assumption of bounded gradient variance.

However, the VRL-SGD was unable to support client sampling

and had a slow convergence rate.

Based on the above description, we find that the local

training process can be improved to reduce the dispersion

among client-side models, for example, by adding regular-

ization terms, thereby improving the convergence speed of

the global model. However, the simple weighted average in

the global aggregation phase may amplify the client drift

phenomenon caused by Non-IID data.

C. Gradient Adjustment in Global Aggregation Phase

In addition to gradient adjustments during the local training

phase, there are many methods in the global aggregation phase

to accelerate the convergence of federated learning. Reddi et
al. [13] introduced adaptive schemes such as ADAM, YOGI,

and ADAGRAD on the parameter server to accelerate model

convergence. This adaptive optimization makes federated ag-

gregation smoother, thus providing an efficient way aims to

avoid client drift in federated learning. Wang et al. [14] gave

811

Authorized licensed use limited to: Temple University. Downloaded on August 15,2023 at 17:38:40 UTC from IEEE Xplore.  Restrictions apply. 



a slow momentum framework, which is built on top of SGD,

and decentralized methods, such as SGP and OSGP to utilize

the slow momentum in the global phase, enabling accelerated

training without sacrificing accuracy.

In a brief, although adjusting the gradient in the global

aggregation phase can accelerate federated learning, the client

drift problem is not properly addressed.

D. Our Motivation

In summary, most studies only mitigate the client drift

phenomenon from the local training [20]–[23] or global ag-

gregation [13], [14], [24] phases. Because, the client drift

has an impact on the federated learning, so adjusting the

federated learning architecture only from a single-phase may

be one-sided. Therefore, we propose a new algorithm, named

FedGVRGM, to optimize federated learning architecture, i.e.,
dealing with the client drift phenomenon more comprehen-

sively and speeding up the convergence from two sides. Fur-

thermore, we combine the gradient variance reduction with a

correction weight control mechanism to dynamically adjust the

degree of adjustment of the local gradient so as to reduce the

negative impact of errors in prediction parameters according to

the change rate of the historical accuracy of the global model.

III. PRELIMINARIES

A. Federated learning

In a federated learning system, we consider a network Ne
consists of a cloud parameter server and N edge nodes (ENs).

Note that, ENs can be local computers or IoT devices that can

be used for data training. The goal of federated learning is

to train the global model wT on Net by minimizing the loss

function f(w) over the dataset D = ∪Dk to obtain the optimal

value. In this paper, we focus on exploring the effect of Non-

IID data on the convergence rate of the global model. We

set the computing power of ENs as homogeneous and assume

the same amount of data among ENs, so the loss function of

minimizing N ENs is expressed as,

min f (w) = min

{
1

N

N∑
k=1

Fk (w)

}
, (1)

where Fk is the local loss function for the edge node k. To

be consistent with the common terminology used in federated

learning, we uniformly refer to edge node as client later on.

All the basic notations in this paper are listed in Table 1.

B. Client drift

Client drift is the degree of parameter dissimilarity between

the local model and the global model in federated learning

where the update from one client overwrites the model weights

learned with data from other clients.

There exist constants G ≥ 0, B ≥ 1, for any vector w , if

1

K

K∑
k=1

‖∇Fk (w)‖2 ≤ G2 +B2‖∇f (w)‖2, (2)

TABLE I
MAIN NOTATIONS USED IN FEDGVRGM.

Notation Meaning
N The number of clients
E Local epoch
K The number of client samples per round
T Communication rounds
Dk Data stored by client k
St Sampled devices in round t
w0 Initial value of the global model
c Global model prediction parameters
ck Local model prediction parameters for client k
ηg Global learning rate
ηl Local learning rate

then the loss function Fk (w) of k is to satisfy the bounded

gradient dissimilarity condition. Equation 2 describes the

mathematical form of the concept of client drift, and further

derivation of the inequality yields,√√√√ 1

K

∑K
k=1 ‖∇Fk (w)‖2
‖∇f (w)‖2 ≤ B, (3)

and so that,

Γ =

√√√√ 1

K

∑K
k=1 ‖∇Fk (w)‖2
‖∇f (w)‖2 , (4)

where Γ indicates the degree of client drift among K clients,

the larger the Γ , the greater the client drift degree, and vice

versa, the smaller the client drift degree. B indicates the upper

bound of the degree of client drift, when all the clients have

the same loss function, we can get Γ = B = 1, and there

is no client drift at this time. Even if the data stored by the

clients are independently and homogeneously distributed, the

heterogeneous data may be generated due to data sampling

and other reasons, so B is greater than 1, thus the client drift

phenomenon is inevitable in federated learning.

IV. FEDGVRGM

In this paper, we discuss the problem of slow convergence

due to the client drift phenomenon on Non-IID data and pro-

pose the FedGVRGM framework. Specifically, FedGVRGM

conducts gradient correction for both the local training and

global aggregation phases in federated learning. In the local

training phase, FedGVRGM corrects the local gradient based

on the variance of the local and global model prediction

parameters to improve the similarity of local models. In the

global aggregation phase, FedGVRGM updates global model

parameters using gradient descent with momentum to reduce

the oscillation of the global model and achieve rapid con-

vergence. In addition, in the local training phase, each client

receives the global model wt, the global model prediction

parameter ct and the weight control term ε from the server.

The correction term (c− ck) measured the degree of client

drift, is then calculated, and the local gradient is updated

using ε (c− ck). Finally, local model prediction parameters
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Algorithm 1 Federated Learning via Gradient Variance Re-

duction and Global Mountain
Input: w0, c, ηg , ηl, T , E, test accuracy upper bound array

sub, constant h, momentum decay parameters β, momentum

parameters mc, momentum parameters mw
Output: global model: wT

1: Initialize w0, c, ck
2: for t = 0, ..., T − 1 do
3: Server select a subset St of K divices at random

4: ε = CWC (t, h, sub)
5: sent (w, c, ε) to all chosen clients k ∈ St

6: for k ∈ St do
7: initialize local model wk = wt

8: for e = 0, ..., E − 1 do
9: gk(wk) = ∇hk(wk, w

t) = ∇Fk(wk)+μ(wk−wt)
10: wk = wt − ηl (gk (wk) + ε (c− ck))
11: end for
12: ccurk = ck − c+ ηl

E

(
wt − wk

)
13: communicate(Δwk,Δck)← (wk − wt, ccurk − ck)
14: ck = ccurk

15: end for
16: wt+1 = GM (wt, β,	w,mw, |St| )
17: ct+1 = GM (ct, β,	c,mc, |St| )
18: acc(t) add to sub
19: end for
20: return wT

are updated. In the global aggregation phase, the parameter

server first calculates the correction term weight ε according to

the correction weight control algorithm , and then updates the

global model parameters wt+1 and global prediction parame-

ters ct+1 by the gradient descent with momentum algorithm.

The detailed steps can be found in Algorithm 1.

A. Local training phase

In t-th round of communication, the parameter server stores

the global model prediction parameter c, and the client stores

the local model prediction parameter ck. Note that, c and ck
are initialized to 0.

The parameter server sends wt, ct, ε to all clients in St,

each participating client initializes the local model wk ← wt.

The local loss function can be expressed as,

hk
(
w,wt

)
= Fk (w) +

μ

2
‖w − wt‖2, (5)

where μ
2 ‖w − wt‖2 is the proximal term.

However, the local model parameters of FedGVRGM are

no longer updated directly based on the model gradient, while

a further correction to the model gradient is as follows,

wt
k = wt − ηl

(
gk

(
wt

k

)
+ ε

(
ct − ctk

))
, (6)

where gk (·) denotes the local model gradient, and ε is used

to control the degree of (c− ck) to the local gradient.

Fig. 1. Local gradient correction.

After the client has executed E iterations, FedGVRGM

updates the local model prediction parameters ctk according

to,

ccurk = ctk − ct +
1

E
ηl

(
wt

k − wt
)
. (7)

To visualize the principle of local gradient correction, Fig. 1

shows the gradient correction process of two devices for three

rounds (T = 3) of communication and one epoch (E = 1) of

local training. The black arrow shows the local gradient before

correction, and the light green arrow indicates the correction of

the local gradient. The corrected client model parameters (blue

and orange circles) are more concentrated compared with the

uncorrected parameters, and the variance of the client model

parameters is reduced. The updated route is adjusted from the

original update route (green dashed arrow) to the correction

route (red arrow), and the global model is updated in the

direction of the optimal solution.

B. Global Aggregation Phase

1) Correction Weight Control: The training process of

federated learning can be divided into pre-training and post-

training. In the pre-training phase, the model parameters are

able to be optimized, and seeking the stable point of parame-

ters quickly is a challenge. However, in the post-training phase,

the model parameters have been stabilized, and the model

obtained by retraining has a stable point or close to the stable

point.

Since c and ck are predicted parameters, there may be errors

in the degree of client drift calculated by (c − ck). In the

pre-training period, the model is pending convergence and the

errors in (c − ck) have a small effect on the local gradient.

However, in the post-training phase, when the models have

converged or are close to convergence, the errors in (c − ck)
have a large impact on the local gradient and may negatively

affect the local models. Even if μ
2 ‖w − wt‖ is utilized in the

FedGVR loss function to reduce the effect caused by the errors

of (c− ck), the model may fall into a suboptimal state due to

inaccurate correction updates for the model parameters. In this

section, we design a Correction Weight Control scheme named

CWC that dynamically calculates the correction weights based

on the historical accuracy, which gradually attenuates the effect
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Fig. 2. Comparison of the global model’s momentum update route with the
original update route.

of (c − ck) on the local gradient as the model test accuracy

increases.

CWC calculates the weighting factor ε ∈ [0.0, 1.0], which

indicates the change rate of the recent historical accuracy.

Specifically, in the t-th round of communication, ε is deter-

mined by the change rate in model test accuracy from the

(t− h)-th to the t-th round, and ε is calculated as,

ε =

{
(sub (t)− sub (t− h)) /h, if t ≥ h

1.0, other,
(8)

where sub(t) represents the maximum value of historical

accuracy in the first t communication rounds.

sub (t) =

{
acc (t) , if acc (t) > sub (t− 1)
sub (t− 1) , other.

(9)

From Equation (9), when t ≥ t
′

, sub(t) ≥ sub(t
′
). There-

fore, sub is a non-decreasing array. The reason for this sub
array’s design is that the test accuracy fluctuates in federated

training, and if we use the test accuracy acc (·) directly to

calculate ε, we get ε < 0 when acc(t) < acc(t − h) , which

aggravates the degree of client drift. At the pre-training phase,

the larger change rate of model accuracy brings a larger ε.
Thus the correction term ε (c− ck) has a greater influence on

the gradient update, emphasizing the advantage of ε (c− ck)
in eliminating client drift and improving the convergence rate.

As the global model converges and the change rate in test

accuracy decreases, the value of ε gradually becomes smaller.

So the correction term ε (c− ck) has a smaller influence on

the local gradient update, ensuring the stability of the local

parameter update in the post-training phase.

2) Global Gradient Descent with Momentum: The pa-

rameter server receives the local model parameters from the

clients and employs the local model parameters to update the

global model parameters using the Global Gradient Descent

with Momentum method named GM as follows,

	w =
1

|St|
∑
k∈St

(
wt

k − wt
)
,

wt = wt +
|St|
N

	 w , (10)

mw = mw + wt,

wt+1 = wt − βmw,

TABLE II
SERVER CONFIGURATION

Configuration Name Configuration parameters
RAM 256G

CPU
64 cores Intel(R) Xeon(R)

Gold 6326 CPU @ 2.90GHz

GPU NVIDIA A100 GPU *2

GPU graphics memory 80G

where mw is the momentum parameter and the momentum

decay factor β controls the influence degree of mw on the

global model parameters w.

Fig. 2 represents the original update route (red path) for

w compared to the GM update route (green path). The GM

update route demonstrates the use of gradient descent with

momentum brings the parameters update down in a direction

that deviates slightly from the optimum to mitigate the pa-

rameters oscillations caused by the original update route. The

figure shows that the original update route takes 8 iterations

to reach the optimum, while the GM update route only takes

5 iterations to reach the optimum. This indicates that slowing

down the gradient oscillations can accelerate the convergence

rate.

In addition, GM takes into account the influence of historical

w. The magnitude of the movement of w in each direction

depends not only on the current parameters , but also the

historical parameters. As shown in Fig. 2, if the historical

parameters are always updated in the horizontal direction, then

the magnitude of future horizontal updates can be greater.

However, if the historical parameters are constantly changing

in the vertical direction, the magnitude of vertical updates can

be decreasing.

The accuracy of c and ck determines the accuracy of the

correction term (c− ck) in predicting the degree of client

drift. To prevent the inaccuracy of the predicted degree of

client drift due to the presence of c, the global gradient descent

with momentum method is also used for the update of c. The

specific update formula is similar to w, so we don’t repeat it

here.

In summary, the advantages of updating c and w based on

the GM algorithm are as follows,

• GM reduces the oscillations of c and w to ensure the sta-

bility of local gradient correction and global aggregation.

• GM integrates the historical update status of c and w
and accelerates the update rate in the dominant direction.

This not only allows the local gradient correction to be

constructed on a more accurate correction term (c− ck),
but also speeds up the convergence of the global model

in federated learning.

V. PERFORMANCE EVALUATION

A. Experimental setup

1) Datasets and Baselines: The purpose of our experi-

ments is to evaluate the convergence rate of FedGVRGM on

Non-IID datasets. To simulate the Non-IID datasets in real
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TABLE III
COMPARISON OF FEDGVRGM ON CIFAR-100 , CIFAR-10 AND MNIST WITH α = 0.5.

CIFAR-100 CIFAR-10 MNIST
Round Loss Round Loss Round LossMethod

ls=0.8 ls=0.45 r=500 r=1000 ls=0.8 ls=0.45 r=500 r=1000 ls=0.35 ls=0.2 r=500 r=1000
FedAvg 597 964 1.124 0.438 228 441 0.391 0.234 45 128 0.133 0.100

FedProx 597 964 1.32 0.436 208 441 0.381 0.23 35 117 0.113 0.084

FedReg 429 716 0.823 0.347 129 378 0.344 0.217 34 102 0.110 0.083

FedGM 498 819 0.939 0.356 208 424 0.376 0.216 35 104 0.108 0.083

FedGVR 470 754 0.847 0.34 129 270 0.225 0.16 34 101 0.113 0.086

FedGVRGM 384 631 0.701 0.281 129 228 0.215 0.155 33 83 0.105 0.081

Fig. 3. Training loss plots for FedGVRGM and all baselines on CIRFA-100, CIFAR-10, and MNIST datasets with α = {0.5, 10, 100}.

environment, the Dirichlet distribution is used to generate

datasets with different degrees of heterogeneity. Specifically,

to artificially synthesize the heterogeneous data in the training

devices, the experiment sets the Dirichlet distribution as q ∼
Dir(αp), where α > 0 controls the degree of heterogeneity

among clients data distributions, and a smaller value of α
indicates stronger data heterogeneity.

The datasets include MNIST [27], CIFAR-10 and CIFAR-

100 [25], [26]. Three dataset scenarios with different degrees

i.e., α ∈ {0.5, 10, 100} are set for 100 clients and the

convergence speed of FedGVRGM is verified on the generated

heterogeneous datasets.

Experiments are conducted to compare FedGVRGM with

state-of-the-art algorithms, such as FedAvg, FedProx, FedReg,

FedGVR and FedGM.

2) Hyperparameter settings: The experiments are set up

with 100 clients. The u is set as 0.1 in FedProx. The FedGVR,

FedGM and FedGVRGM methods have the same settings as

FedProx regarding the u. The ηg is initialized to 1, and ηl is

initialized to 0.001. Besides, the constant h is set as 5, and β
is set as 0.9.

3) Models: On the CIFAR-100 and CIFAR-10 datasets, we

use two convolutional layers and three fully connected layers,

while on the MNIST dataset, we use two convolutional layers

and two fully connected layers.
4) Validation metrics: We measure the performance of

FedGVRGM mainly in terms of convergence speed, specif-

ically we measure the loss obtained at a specified number of

rounds, and the number of training rounds required to reach

the specified value of the loss.
5) Simulation environment: All experiments in this section

are conducted on an Ubuntu 20.04 server with 256G of RAM,

which is configured with the parameters in Table 2.

B. Analysis of convergence speed on strongly heterogeneous
data

The convergence of FedGVRGM on CIFAR-100, CIFAR-

10, and MNIST datasets is first presented and compared with

other baselines when the data heterogeneity is high (α = 0.5).

In this experiment, there are 100 clients, with 10 clients

participating in local training in each round of communication

and the local epoch is 10.

Table 3 provides a detailed comparison of the convergence

speed of FedGVRGM with baselines on three datasets with
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Fig. 4. Comparison of the convergence speed of FedGVRGM on CIRFA-100, CIFAR-10, and MNIST datasets with α = {0.5, 10, 100}.

α = 0.5. The smaller the data, the faster the convergence

of the corresponding algorithm, and the best performance in

each column is denoted in bold. ls indicates the training loss

and r represents training rounds. FedGVRGM converges faster

on the strongly heterogeneous dataset. On the more complex

datasets of CIFAR-100, FedGVRGM achieves speedup ratios

of 1.55×, 1.12×, 1.63×, 1.30×, and 1.22×, respectively, com-

pared to FedAvg, FedProx, FedReg, FedGM, and FedGVR.

FedGVRGM outperforms baselines, mainly because it adjusts

the gradient in both training phases of federal learning, thus

being able to mitigate client drift more comprehensively.

C. Analysis of convergence speed on data with various de-
grees of heterogeneity

To further examine the convergence speed of FedGVRGM,

more experiments are conducted on CIRFA-100, CIFAR-10,

and MNIST datasets with α ∈ {0.5, 10, 100}.
Fig. 3 shows the training loss folds of FedAvg, FedProx,

FedGM, FedGVR, and FedGVRGM on datasets CIFAR-100,

CIFAR-10, and MNIST. The vertical side of the figure repre-

sents the loss folds of the algorithms on datasets with different

degrees of heterogeneity and the horizontal side represents

the training loss folds of the algorithms on different datasets.

In all heterogeneous datasets, FedGVRGM has the fastest

rate of decline in the value of training loss and the smallest

loss. FedAvg and FedProx converge the slowest and their

convergence rates are similar. Although FedProx can explore

better model parameters, the back propagation of the gradient

shortens the length of the gradient vector, resulting in a

mediocre convergence. As for FedReg, although it can achieve

a faster convergence speed by preventing the local model from

drifting towards the local optimal solution through regularizing

the local training parameters with the generated pseudo data,

the simple averaging in the global training phase still amplifies

the client drift phenomenon.

FedGVR and FedGM are single-phase improvements to

FedProx and they converge quicker than FedAvg and FedProx

which also suggests that client drift is present throughout the

whole federated learning process.

For all datasets with varying degrees of data heterogeneity,

FedGVRGM has the fastest decline rate in loss and the

smallest loss , indicating that FedGVRGM performs consis-

tently. FedGVRGM can deal with the client drift phenomena

comprehensively since it optimizes the federated algorithm in

both the local training and global aggregation phases.

Longitudinal observation of the training loss line graph for

each dataset in Fig. 3 under different heterogeneity shows that

as the parameter α gradually becomes larger, the degree of

data heterogeneity gradually becomes weaker, the degree of

client drift gradually becomes weaker, and the FedGVRGM

still maintains a high convergence speed. When α = 100,

the distribution of each data is close to independent identical

distribution, and the convergence of FedGVRGM still has a

significant advantage over other methods. This indicates that

even if the data are independently identically distributed, the

client drift phenomenon can be caused by random sampling of

devices or random sampling of training samples. FedGVRGM

can not only detect and mitigate the client drift phenomenon

caused by strongly heterogeneous data (α = 0.5), but also

detect and mitigate the weak client drift phenomenon.

The line graph of the training loss of the FedGVRGM

algorithm on CIFAR-100, CIFAR-10, and MNIST when the

data heterogeneity degree is different is shown in Figure 4.

FedGVRGM converges quickly in the pre-training phase in

various heterogeneous datasets. In the strongly heterogeneous

dataset (α = 0.5), the FedGVRGM loss declines at the fastest

rate and obtains the minimum loss. When data heterogeneity

decreases, the client drift phenomenon is weaker, and the rate

of the traning loss decline of FedGVRGM is slower than

that of training loss decrease under a strongly heterogeneous

dataset. In summary, it can be concluded that FedGVRGM can

effectively detect the gradient drift phenomenon with a larger

degree and has the best loss value drop rate.

D. Client Participation

Figure 5 shows the number of iteration rounds required

to achieve a training loss of 0.45 on the CIFAR-10 dataset

with α = 0.5 when the client participation rate is 5%,

10%, and 20%, respectively. It can be seen that FedGVRGM

achieves a minimum acceleration ratio of 159.9% compared

to FedProx at different client participation rates, especially at

a client participation rate of 20%, and FedGVRGM achieves a

maximum acceleration ratio of 194.0 % compared to FedProx.

In addition, as the client participation rate increases and the

client drift increases, FedGVRGM can still maintain a high

convergence speed, which indicates that FedGVRGM has high

robustness and its ability to mitigate client drift does not fail

due to the increase of client drift.
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Fig. 5. The number of iteration rounds required to reach a training loss of
0.45 with different levels of client participation.

VI. CONCLUSION

In this paper, we propose a FedGVRGM algorithm to allevi-

ate the client drift phenomenon caused by data heterogeneity.

Unlike recent approaches, FedGVRGM adjusts the model

parameters for federated learning in both the local training

phase and the global aggregation phase. Firstly, without re-

ducing the length of the local gradient, FedGVRGM reduces

the degree of client drift by the gradient variance reduction

method. Secondly, FedGVRGM reduces the oscillation of the

global model parameters and speeds up the convergence of

the global model through the global gradient momentum de-

scent algorithm. We experimentally demonstrate the necessity

for two-phase tuning. By comparision with the baselines, it

is demonstrated that FedGVRGM is able to achieve faster

convergence consistently on various heterogeneity of data.
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