
Accelerating Deep Learning Inference via Model
Parallelism and Partial Computation Offloading

Huan Zhou ,Member, IEEE, Mingze Li , Ning Wang ,Member, IEEE,

Geyong Min ,Member, IEEE, and Jie Wu , Fellow, IEEE

Abstract—With the rapid development of Internet-of-Things (IoT) and the explosive advance of deep learning, there is an urgent need

to enable deep learning inference on IoT devices in Mobile Edge Computing (MEC). To address the computation limitation of IoT

devices in processing complex Deep Neural Networks (DNNs), computation offloading is proposed as a promising approach. Recently,

partial computation offloading is developed to dynamically adjust task assignment strategy in different channel conditions for better

performance. In this paper, we take advantage of intrinsic DNN computation characteristics and propose a novel Fused-Layer-based

(FL-based) DNN model parallelism method to accelerate inference. The key idea is that a DNN layer can be converted to several

smaller layers in order to increase partial computation offloading flexibility, and thus further create the better computation offloading

solution. However, there is a trade-off between computation offloading flexibility as well as model parallelism overhead. Then, we

investigate the optimal DNN model parallelism and the corresponding scheduling and offloading strategies in partial computation

offloading. In particular, we propose a Particle Swarm Optimization with Minimizing Waiting (PSOMW) method, which explores and

updates the FL strategy, path scheduling strategy, and path offloading strategy to reduce time complexity and avoid invalid solutions.

Finally, we validate the effectiveness of the proposed method in commonly used DNNs. The results show that the proposed method can

reduce the DNN inference time by an average of 12.75 times compared to the legacy No FL (NFL) algorithm, and is very close to the

optimal solution achieved by the Brute Force (BF) algorithm with the difference of less than 0.04%.

Index Terms—Mobile edge computing, fused-layer, DNN inference, partial offloading, model parallelism

Ç

1 INTRODUCTION

WITH the popularity of mobile devices and the advance
of wireless access technique, the booming mobile

applications have led to the explosive growth of data traffic
[1]. According to the International Data Corporation’s
report [2], the global data center traffic will reach 163 zetta-
bytes by 2025, and more than 75% of the data will be proc-
essed at the edge of the network. Deep learning has shown
success in addressing complex tasks [3], [4], including com-
puter vision [5], natural language processing [6], [7],
machine translation [8] and many other tasks. One of the
obstacles in using deep learning in the Internet-of-Things

(IoT) systems is that IoT devices cannot provide real-time
and high-precision results simultaneously due to their com-
putation resource limitation [9], [10]. However, many IoT
systems, such as traffic monitoring, need not only high proc-
essing speed, but also high precision.

To address the aforementioned challenges, Mobile Edge
Computing (MEC) has been proposed recently[11], [12], [13].
MEC pushes computation [14], [15], caching [16], [17], [18],
[19], and networking functions towards the network edges
to perform task processing and provide services, avoiding
unnecessary transmission delay [20]. However, MEC intro-
duces additional transmission overhead and delay caused
by the communication between the Edge Server (ES) and
end devices, which may not be ignored due to large amount
of data (e.g., video) and slow transmission speed [21]. For
example, when the WiFi transmission rate is 10 MB/s, it
takes about 0.6 seconds to transmit a 6MB picture.

To reduce the inference time of Deep Neural Networks
(DNNs) , recent studies have explored partial computation
offloading, in which part of the task is computed on IoT end
device, and the rest is offloaded to the ES [22]. In partial
computation offloading, a DNN model is decomposed into
layer-level subtasks and is simultaneously processed in the
IoT end device and the ES based on the corresponding proc-
essing dependencies. There are three stages in the DNN
partial computation offloading. In the first stage, the end
device partially processes a DNN model into an intermedi-
ate feature layer. In the second stage, the intermediate result
obtained from the computation of the end device is trans-
ferred to the ES. In the third stage, the ES continues to pro-
cess the DNN model and obtains the final inference results.

� Huan Zhou and Mingze Li are with the Hubei Key Laboratory of Intelligent
Vision BasedMonitoring for Hydroelectric Engineering, the College of Com-
puter and Information Technology, China Three Gorges University, Yichang,
Hubei 443002, China. E-mail: zhouhuan117@gmail.com, limingze927@163.
com.

� Ning Wang is with the Department of Computer Science, Rowan Univer-
sity, Glassboro, NJ 08028 USA. E-mail: wangn@rowan.edu.

� Geyong Min is with the Department of Computer Science, University of
Exeter, EX4 4PY Exeter, U.K. E-mail: G.Min@exeter.ac.uk.

� Jie Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122 USA. E-mail: jiewu@temple.edu.

Manuscript received 3 January 2022; revised 20 September 2022; accepted 30
October 2022. Date of publication 16 November 2022; date of current version
19 December 2022.
This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grants 62172255 and 61872221, and in part by EU
Horizon 2020 Research and Innovation Programme under the Marie Sklodow-
ska-Curie under Grant 101008297.
(Corresponding authors: Huan Zhou and Ning Wang.)
Recommended for acceptance by S. Pallickara.
Digital Object Identifier no. 10.1109/TPDS.2022.3222509

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023 475

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4007-7224
https://orcid.org/0000-0003-4007-7224
https://orcid.org/0000-0003-4007-7224
https://orcid.org/0000-0003-4007-7224
https://orcid.org/0000-0003-4007-7224
https://orcid.org/0000-0001-7721-0768
https://orcid.org/0000-0001-7721-0768
https://orcid.org/0000-0001-7721-0768
https://orcid.org/0000-0001-7721-0768
https://orcid.org/0000-0001-7721-0768
https://orcid.org/0000-0002-9467-9215
https://orcid.org/0000-0002-9467-9215
https://orcid.org/0000-0002-9467-9215
https://orcid.org/0000-0002-9467-9215
https://orcid.org/0000-0002-9467-9215
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
mailto:zhouhuan117@gmail.com
mailto:limingze927@163.com
mailto:limingze927@163.com
mailto:wangn@rowan.edu
mailto:G.Min@exeter.ac.uk
mailto:jiewu@temple.edu

The rationale of offloading the intermediate feature layer’s
data instead of the raw data is that the intermediate DNN
layers have much smaller data sizes and thus lower trans-
mission time [23], [24]. Furthermore, it also enables DNN
parallel processing [22], [25]. Therefore, partial computation
offloading can significantly reduce the DNN inference time.

Some studies on partial computation offloading have been
proposed to offload the entire intermediate DNN layer to ES
[23], [24]. However, current DNNs are not optimized for par-
allel processing and do not support dividing the intermediate
DNN layer into multiple layers in the MEC environment.
Therefore, the advantage of partial computation offloading is
not maximized. In this paper, we first leverage the Fused-
Layer (FL) technique to convert a single sequence of DNN
layers into multiple sequences, called paths, where each FL
path consists of a sequence of small layers without modifying
the inference results [26]. As a consequence, we create more
flexibility in partial computation offloading by scheduling
small layers. However, the FL technique also brings grand
challenges including: (1) Determining the optimal FL strategy
is difficult due to the trade-off between parallelism computa-
tion offloading flexibility andmodel parallelism overhead; (2)
The FL technique leads to a more complicated DNN architec-
ture, which is abstracted as a Directed Acyclic Graph (DAG),
and thus it is non-trivial to determine the optimal path off-
loading strategy and path scheduling strategy.

To tackle the aforementioned challenges, we propose an
innovative Particle Swarm Optimization with Minimizing
Waiting (PSOMW) method, which jointly considers the
impact of FL strategy, path scheduling strategy and path
offloading strategy. Specifically, a new Minimizing Waiting
(MW) algorithm is developed to heuristically determine the
path scheduling order and the number of FL paths. Then,
PSOMW is designed by combining the Particle Swarm Opti-
mization (PSO) algorithm with MW algorithm to dynami-
cally update the FL path length, intercepted fused layer’s
size and path offloading strategy in order to explore the
optimal solution and avoid converging at a local minimum.

The major contributions of this paper are summarized as
follows:

� To the best of our knowledge, this work is the first of
its kind to accelerate partial DNN inference via
model parallelism. Parallel computation of DNN by
exploiting the FL technique can reduce DNN infer-
ence time without accuracy loss.

� We use the MW algorithm to obtain the path sched-
uling strategy and the number of FL paths. This heu-
ristic algorithm can obtain solutions with low time
complexity.

� We propose a novel heuristic method, namely
PSOMW, to obtain the approximate optimal FL path
length, intercepted fused layer’s size and path off-
loading strategy. PSOMW prevents solutions from
falling into local optimum.

� We conduct comprehensive simulation experiments
to validate the effectiveness of the proposed method
in commonly used DNNs. The results show that the
DNN inference time achieved by the proposed
method is 12.75 times lower than the existing algo-
rithms without model parallelism.

The rest of this paper is structured as follows. Section 2
describes the work related to computation offloading in
MEC. Section 3 introduces the system model, including the
problem formulation, and Section 4 presents the proposed
method. The simulation results are analysed in Section 5.
Finally, Section 6 summarizes this paper.

2 RELATED WORKS

In this section, we briefly summarize three DNN computa-
tion offloading strategies in IoTs, including (1) end device
only computation, (2) full computation offloading, and (3)
partial computation offloading.

End Device Only Computation: Kang et al. [27] proposed
an adaptive spatiotemporal workload reuse method to
maintain the high offloading rate of multiple DNNs in a sin-
gle adversarial network model. Putic et al. [28] proposed
DyHard-DNNs to significantly reduce energy consumption
and computation time, in which the accelerator microarchi-
tectural parameters are dynamically reconfigured during
the execution of DNN. Guo et al. [29] proposed a simulta-
neous multimodal architecture (SMA), which provides gen-
eral-purpose programmability on DNN accelerator to
accelerate end-to-end applications. Microsoft and Google
developed small-scale DNNs for speech recognition on
mobile platforms by sacrificing the high prediction [30].
However, with a reduced number of parameters, the infer-
ence accuracy decreases as well.

Full Computation Offloading:Rawdata is offloaded to the ES
directly in this category. Han et al. [31] proposed alternative
DNN models to balance the accuracy and performance/
energy. Filter pruning has been recognized as a useful tech-
nique to compress and accelerate the DNNs. Fang et al. [32]
introduced an alternating direction method of multipliers to
prune filters in a layerwise manner, and then accelerate the
DNNs on the ES. Ren et al. [33] proposed a federated learn-
ing-based method, which offloads training parameters of end
devices to the ES. In [34] and [35], the authors proposed adap-
tive methods which can adjust the accuracy requirement
based on the wireless link condition. However, they focused
on minimizing the traffic rather than the delay, and their
methods are very sensitive to the network environment [36].

Partial Computation Offloading: Kang et al. [37] first con-
sidered the large transmission delay during the offloading
and thus proposed to use end devices to conduct partial
computing. They designed the optimal line-structure DNN
partition strategy with the goal of minimizing the transmis-
sion delay. Li et al. [38] reduced computation delay via early
exiting inference at an appropriate intermediate DNN layer
on the basis of adaptive partitioning of DNN neural net-
works. Hu et al. [39] abstracted a DNN as a DAG, and trans-
formed the minimum delay problem into a min-cut
optimization problem. They then proposed a max-flow
approach. Although the DNN is divided and the middle
feature layer is selected to offloading to the ES, the transmis-
sion time of the middle feature layer is still large. To solve
the problem of feature compression transmission, various
BottleNeck structures have been introduced into DNN
models. BottleNet [40] uses the Encoder-Decoder structure
for feature coding and compression. It can solve the prob-
lem of low compression rate of DNN feature transmission

476 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

without bottleneck structure to a certain extent, but it will
make the offloading point relatively fixed. As a result, the off-
loading strategy hasweak adaptability to different deployment
platforms and dynamic network environment. Duan et al. [25],
[41] considered the impact of scheduling order on DNN infer-
ence time after DNN partitioning. Fu et al. [42] jointly consid-
ered network conditions and computation capabilities of the
end device and the ES to reduce the DNN inference time by
partitioning the DNN and computing it on the end device in
poor network conditions. Zeng et al. [43] proposed CoEdge,
which divides each neural network layer and assigns it to mul-
tiple ES for computation with intermediate results sharing.
Wang et al. [22] proposed a DNN layer-wise processing sched-
ule model to solve pipeline-based DAG schedule problem,
which offloads the entiremiddle feature layer to the ES.

Different from the existing work, we propose a partial
computation offloading model for accelerating DNN infer-
ence without accuracy loss, and we further consider model
parallelism with more fine-grained. Specifically, FL tech-
nique is used to implement multi-core GPU parallel com-
puting locally, and we use FL technique to achieve models
parallelism in MEC. In our model, DNN is divided into

independent sequence of layers for offloading, rather than
directly offloading an intermediate layer. Each independent
sequence of layers can be offloaded to the ES after partial
computing on the end device. The end device and ES can
make full use of their computing resources and reduce
DNN inference time by model parallelism, which is very
important for applications with low latency requirements.

3 SYSTEM MODEL

In this section, we first introduce the FL technique for DNN
processing, which can enable DNN parallel processing.
Then, we further discuss the partial computation offloading
model used in this paper, and present the problem formula-
tion. The symbols used in this paper are shown in Table 1.

3.1 Fused-Layer Technique

The FL technique has been originally proposed to accelerate
DNN inference locally without accuracy loss. Specifically,
FL technique divides DNN into separate sequence of layers,
and accelerates DNN inference locally by parallel comput-
ing with multi-core GPUs [26]. Its key idea is to take advan-
tage of processing locality for DNN operations such as
convolution and pooling. For these operations, each output
value only depends on the value in the corresponding area
of the previous layer. With this observation, the FL tech-
nique computes the output feature layer by splitting the
input feature layers into independent small layers and fur-
ther fuses their corresponding results back to get the origi-
nal output. Different from [24], this paper applies the FL
technique to the MEC environment, in which the end device
with limited computation resources offloads its computa-
tion layers to ES. It is worth noting that this paper mainly
focuses on convolutional neural networks in which we can
apply the FL technique.

We first show how a simple DNN is computed tradition-
ally in Fig. 1. Without loss of generality, we use a three-layer
DNN and the convolution kernel is shown in the lower-
right corner of the figure. We establish a 2D cartesian coor-
dinate system with the upper-left corner as the origin point.
The sizes of input feature layer, middle feature layer, and
output feature layer are 6� 6, 4� 4 and 2� 2, respectively,
by applying a 3� 3 convolution kernel with a step size of 1.

Fig. 1. A simple DNN computation without the FL technique.

TABLE 1
Symbol Table

Name Definition

r The kernel size.
g The step size.
P The set of FL paths in the DAG.
P The number of FL paths.
V The total number of computation layers.
cv The output data size of layer v.
dv The amount of computation for layer v.
ev0v The computation dependency from layer v0 to v.
hv The layer v is assigned to the end device or ES.
tendv The computation time of layer v on the end device.
ttrv The transmission time of layer v from the end device

to ES.
tesv The computation time of layer v on the ES.
S The path scheduling strategy.
O The path offloading strategy.
t The FL path length.
U The intercepted fused layer’s.
TpðvÞ The task completion time of layer v.
Q The path offloading strategy variation.
p The FL path length variation.
W The intercepted fused layer’s size vector variation.
Obest

k The best path offloading strategy of solution k.
tbestk The best FL path length of solution k.
Ubest

k The best intercepted fused layer’s size vector of
solution k.

Tbest
k The minimum DNN inference time of solution k.

Obest The best path offloading strategy.
tbest The best FL path length.
Ubest The best intercepted fused layer’s size vector.
Tbest The minimum DNN inference time.
Tbest

MW The minimum DNN inference time by MW algorithm.
l The number of neural layers without the FL

technique.
E The set of dependencies.
K The number of solutions.
I The iterations of PSOMW.
St The size of fused layer with FL path length t.

ZHOU ETAL.: ACCELERATING DEEP LEARNING INFERENCE VIA MODEL PARALLELISM AND PARTIAL COMPUTATION OFFLOADING 477

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

DNN is computed by multiplying and adding the character-
istic layer and the convolution kernel. For example, as
shown in Fig. 1, the value of the middle feature layer at
coordinate (1,1) is obtained by calculating the convolution
result of the rectangular area surrounded by vertex
fð1; 1Þ; ð1; 3Þ; ð3; 1Þ; ð3; 3Þg in the input feature layer and con-
volution kernel (i.e., 4 ¼ 2� 0þ 0� 0þ 1� 0þ 1� 1þ 2
�0þ 1� 1þ 2� 0þ 2� 1þ 1� 0).

Fig. 2 shows how the same DNN inference result is com-
puted by applying the FL technique. In Fig. 2a, we show the
processing dependency of four rectangular areas denoted by
four colors in three layers, respectively. These four areas can be
processed independently in the input and middle feature
layers, and then fused on the output feature layer, which is also
defined as the fused layer. In the input feature layer, the blue
rectangular area whose four vertices are the coordinates of
fð1; 1Þ; ð1; 5Þ; ð5; 1Þ; ð5; 5Þg is computed to get the correspond-
ing blue rectangular area in the middle feature layer with four
vertices having the coordinates of fð1; 1Þ; ð1; 3Þ; ð3; 1Þ; ð3; 3Þg
by using the convolution kernel. Similarly, the blue rectangular
area in themiddle feature layer is computed by using the same
kernel to get the blue rectangular area in the fused layer with
one vertex having coordinates of (1,1).

In general, for a value at the coordinate of ðx; yÞ in any
layer, the four vertex coordinates of the corresponding rect-
angular area in the previous layer are:

ððx� 1Þ � gþ 1; ðy� 1Þ � gþ 1Þ;
ðx� 1Þ � gþ 1; ðy� 1Þ � gþ rÞ;
ððx� 1Þ � gþ r; ðy� 1Þ � gþ 1Þ;
ðx� 1Þ � gþ r; ðy� 1Þ � gþ rÞ;

8>>><
>>>:

(1)

where r and g denote the kernel size and step size,
respectively.

Fig. 2b shows the DNN conversion result by using the FL
technique. It generates a sequence of small layers, which
can be processed independently. To clarify the description
in this paper, we further define the FL path as follows.

Definition 1. The independent sequence of layers divided by the FL
technique are abstracted as the FL paths P ¼ f1; 2; :::; p; :::; Pg in
a DAG, whereP represents the number of paths.

We define the FL path length as t, and the size of the
fused layer with the FL path length t as St ¼ fSL

t ; S
W
t g, in

which SL
t is the length and SW

t is the width of the fused
layer. The total layers without applying the FL technique is
l, so the upper bound of the FL path length t cannot exceed
l, i.e.,

0 � t � l: (2)

The set of the intercepted fused layer’s size vector as U ¼
fu1; u2; :::; up; :::; uPg, where up ¼ fuL

p ; u
W
p g is the intercepted

fused layer’s size vector of FL path p, in which uL
p is the

length and uWp is the width of intercepted fused layer. The
intercepted fused layer’s size cannot exceed SL

t and SW
t , i.e.,

XP
p¼1

uL
p ¼ SL

t ;
XP
p¼1

uW
p ¼ SW

t : (3)

In Fig. 2b, after applying the FL technique, the DNN has
4 paths and the FL path length is 2, S2 ¼ f2; 2g, and the
homogeneously intercepted fused layer’s size vector u1 ¼
u2 ¼ u3 ¼ u4 ¼ f1; 1g. It is worth noticing that DNN can
also be divided into paths with heterogeneously intercepted
fused layer’s size. For example, if DNN is divided into 3 FL
paths with heterogeneously intercepted fused layer’s size,
the intercepted fused layer’s size vector can be u1 ¼
f1; 2g; u2 ¼ u3 ¼ f1; 1g. It is worth noting that the FL tech-
nique will lead to additional computation redundancy. For
example, in the input feature layer, the rectangular area
with vertices at the coordinates of fð2; 1Þ; ð2; 5Þ; ð5; 2Þ; ð5; 5Þg
is the area where the blue rectangular area and the green
rectangular area are computed repeatedly. Therefore, it is
non-trivial to find the optimal FL strategy, i.e., the FL path
length, the number of FL paths, and the size of intercepted
fused layers.

3.2 DNN Partial Computation Offloading Model

In this paper, we propose to apply partial computation off-
loading paradigm to accelerate DNN inference. An end
device and an ES will work collaboratively to finish DNN
inference task. The FL technique mentioned in Section 3.1 is
applied to create partial computation opportunities between
the end device and the ES, and converts a line-structure
DNN to a more complicated DAG DNN. In general, we
define the computation dependency relationship of layers

Fig. 2. A simple DNN computation with the FL technique and homogeneously intercepted fused layer’s size.

478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

in a DNN as a DAG, and use V ¼ f1; 2; :::; v; :::; V g to denote
the set of layers, where v represents a certain computation
layer, and V is the total number of computation layers. We
use cv and dv [floating point operations (FLOPs)] to denote
the transmission data size of layer v, and the amount
of computation of layer v, respectively. ev0v ¼ ðv0; vÞ 2 E
represents the computation dependency relationship from
v0 to v, which means that layer v can only be computed after
layer v0 is computed completely, where E is the set of
dependencies.

In the partial computation offloading paradigm, the end
device can offload computation layers to the ES. The ES can
process the current offloaded layer as long as its previous
layer has been processed. Computation offloading strategy
can be defined as H ¼ fh1; h2; :::; hV g, where hv ¼ 0 if layer
v is computed locally on the end device, and hv ¼ 1 if layer
v is offloaded to the ES.

In order to obtain the DNN inference time, we first need
to get the computation and transmission time of each com-
putation layer.

3.2.1 Computation Time of the End Device

We assume that only one computation layer can be com-
puted at the same time for the end device. If layer v is com-
puted locally on the end device, then the computation time
tendv of layer v on the end device is calculated as:

tendv ¼ dv
fend

; (4)

where fend [floating point operations per second (FLOPS)] is
the computation resource of the end device.

3.2.2 Transmission Time Between the End Device and

the ES

The computation layers are transmitted based on the first-
come-first-process order. If layer v is offloaded to the ES,
then the transmission time ttrv of layer v from the end device
to the ES is calculated as:

ttrv ¼
cv
R
; whereR ¼ Blog 2 1þQG

"2

� �
; (5)

R is the transmission rate between the end device and the
ES, which can be calculated by using the Shannon’s theo-
rem. B represents the bandwidth of the channel between
the end device and the ES, Q is the transmission power of
the end device, G is the channel gain between the end
device and the ES, and "2 represents the standard deviation
of Gaussian channel noise.

3.2.3 Computation Time of the ES

Similarly, if layer v is offloaded to the ES, then the computa-
tion time tesv of layer v on the ES is calculated as:

tesv ¼
dv
fes

; (6)

where fes [FLOPS] is the computation resource of the ES.
Then, we need to obtain the FL strategyF (e.g., the number

of FL paths P , the intercepted fused layer’s size, the FL path

length t), the path scheduling strategy, and the path offload-
ing strategy. Due to the observation that the computation
order of the FL paths on the end device is the same as the
transmission order and the computation order on the ES.
Hence, the path scheduling strategy S ¼ fs1; s2; :::; sp; :::; sPg
is defined as the computation order of the FL paths on the end
device, where sp is the p-th scheduling path. Moreover, we
define the path offloading strategy as O ¼ fo1; o2; :::;
op; :::; oPg, where op is the number of layers between the first
computation layer and the offloaded computation layer on
path p, which can be calculated based on the computation
layers’ offloading strategy as:

op ¼
XV
v¼1

1� hvð Þ þ 1; v 2 p; p 2 P: (7)

The upper bound of op cannot exceed t, i.e.,

0 � op � t: (8)

Specifically, TpðvÞ is the task completion time of layer v
on path p, which can be computed recursively and formally
as follows:

TpðvÞ ¼
maxTpðv0Þ þ tendv ; hv0 ; hvf g ¼ f0; 0g;
maxTpðv0Þ þ ttrv þ tesv ; hv0 ; hvf g ¼ f0; 1g;
maxTpðv0Þ þ tesv ; hv0 ; hvf g ¼ f1; 1g;

8<
:

(9)

where v0 represents the previous computation layer that has
the computation dependency on layer v, i.e., 9ev0v 2 E.

After all FL paths are computed on ES, the output of FL
paths will be fused as a fused layer with the same values as
the normal convolution to the fused layer. If the number of
FL paths and FL path length are obtained, the value of fused
layer can be calculated as tP þ 1.

Let us denote the task completion time of fused layer and
the layer after fused layer as TðvÞ. Then, the task completion
time of fused layer can be calculated as:

TðvÞ ¼ maxTpðv0Þ þ tesv ; v ¼ tP þ 1; (10)

The task completion time of the layer after fused layer can
be calculated as:

TðvÞ ¼ Tðv0Þ þ tesv ; v > tP þ 1: (11)

To illustrate how to obtain the path offloading strategy O
and task completion time, we use a five-layer DNN as an
example. As shown in Fig. 3, the FL path length is 3, and the
number of FL paths is 3 (i.e., t ¼ 3, P ¼ 3). The path schedul-
ing order is path 1, path 2, path 3. That is, S ¼ fs1; s2; s3g ¼
f1; 2; 3g. The three FL paths are offloaded to the ES at layer 3,
layer 5 and layer 8, respectively. Therefore, the computation
layers’ offloading strategyH ¼ f0; 0; 1; 0; 1; 1; 0; 1; 1; 1; 1g and
the path offloading strategyO ¼ f3; 2; 2g are shown by using
a red dotted line. The couple ð2; 2Þ near layer 1 means that the
amount of computation of layer 1 is 2 and the transmission
data size is 2. For explanation simplicity, we assume that the
CPU frequency of the end device, the transmission rate

ZHOU ETAL.: ACCELERATING DEEP LEARNING INFERENCE VIA MODEL PARALLELISM AND PARTIAL COMPUTATION OFFLOADING 479

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

between the end device and the ES are 1, and the CPU fre-
quency of the ES is 2. Then, the task completion time of layer 2
is T1ð2Þ ¼ T1ð1Þ þ tend2 ¼ 2þ 2 ¼ 4. Layer 3 is offloaded to
the ES, so the task completion time of layer 3 includes the
transmission time and the ES computation time, which can be
calculated as T1ð3Þ ¼ T1ð2Þ þ ttr3 þ tes3 ¼ 4þ 2þ 1 ¼ 7. Layer
10 (3� 3þ 1) is the fused layer, so the task completion time of
layer 10 isTð10Þ ¼ maxfT1ð3Þ;T2ð6Þ;T3ð9Þg þ tes10 ¼ 12þ 3 ¼
15. Layer 11 is the layer after fused layer, so the task comple-
tion time of layer 11 is Tð11Þ ¼ Tð10Þ þ tes11 ¼ 15þ 3 ¼ 18.
The right side shows the computation layer’s end computa-
tion time, transmission time between the end device and the
ES, and the ES computation time on the time axis. Each cell
represents a unit time and it can be seen that the DNN infer-
ence time is 18.

3.3 Problem Formulation

The objective of this paper is to minimize the DNN infer-
ence time in partial computation offloading while consider-
ing DNN model parallelism optimization. The DNN
inference time can be interpreted as the task completion
time of the last computation layer. Then, we use T to indi-
cate the DNN inference time (i.e., the task completion time
of the last layer) with computation dependency, which can
be formulated as follows:

minF;S;O T ¼ max TðvÞ
s:t: C1 : Eq: ð9Þ � Eq: ð11Þ;

C2 : Tpðv0Þ � TpðvÞ; 8ev0v 2 E;

C3 : Tpðv0Þ � TðvÞ; 8ev0v 2 E;

C4 : Tðv0Þ � TðvÞ; 8ev0v 2 E:

(12)

Among them, constraint C1 formulates the task completion
time of each layer, constraints C2, C3, and C4 are the com-
putation dependency. The computation layer can only be
computed if all of its predecessors have been computed. To
sum up, the DNN inference time can be obtained in relation
to the FL strategy, the path scheduling strategy and the path
offloading strategy.

3.4 Problem Hardness

Theorem 1. The proposed minimizing DNN inference time
problem is NP-hard.

Proof: Since the 3-machine flow-shop problem is a well-
known NP hard problem [22], this paper transforms the
optimization problem into the 3-machine flow-shop prob-
lem, thus proving that the complexity of this problem is

NP-Hard. For any instance of the 3-machine flow-shop
problem with p jobs, we can reduce it to a special case of
this problem by building a special DAG which has p sepa-
rate paths as shown in Fig. 4. Any path will have three
stages in such a special DNN. It is worth noting that we con-
sider the network partition in multi-path, and use T1, T2,
and T3 to denote the corresponding end device computing
time, the transmission time between end device and ES, and
the ES computing time for that path in three stages, respec-
tively. Particularly, (1) T1 ¼

Pc�1
v¼b t

end
v , (2) T2 ¼ ttrc , and (3)

T3 ¼
Pe

v¼c t
es
v , where b, c, and e are the beginning layer, the

offloading layer, and the last layer of this path, respectively.
We can build layers so that T1, T2, and T3 are equal to the
processing times of job i in three machines in polynomial
time.

3-machine flow-shop) our problem: Suppose that there is
an optimal dispatch in a 3-machine flow-shop. Then, the
optimal solution of the 3-machine flow-shop is applied to
this problem to obtain the minimum computation time for
the above special cases.

Our problem) 3-machine flow-shop: Similarly, suppose
that we find the optimal solution for this particular case of
the problem. Then, based on the above reduction, we can
derive the optimal solution of the corresponding 3-machine
flow-shop problem.

Therefore, we prove that our problem is as hard as 3-
machine flow-shop.

4 PARTICLE SWARM OPTIMIZATION WITH

MINIMIZING WAITING

In this section, we will propose a heuristic method, Particle
Swarm Optimization with Minimizing Waiting (PSOMW)
to solve the above optimization problem, and obtain the
near-optimal solution including: (1) the path scheduling
strategy; (2) the FL strategy; (3) the path offloading strategy.
The motivation is that the above optimization problem can
be proved to be NP-Hard. When a DNN has few layers, the
optimal solution can be obtained by using the Brute Force
(BF) algorithm. However, the complexity of finding the opti-
mal solution increases exponentially with the increase of the
total number of layers and the FL paths. Therefore, an effi-
cient heuristic method is necessary to satisfy the real-time
requirement of practical application.

4.1 Minimizing Waiting Algorithm

This part proposes the Minimizing Waiting (MW) algorithm
to determine the path scheduling strategy and the number
of FL paths. In MW algorithm, the FL strategy can be

Fig. 3. Illustrating DNN inference with the FL technique in a five-layer
DNN.

Fig. 4. An example of NP-hard reduction.

480 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

obtained by enumerating all possible numbers of FL paths
and FL path length. Then, the intercepted fused layer’s size
is obtained by dividing St into P layers with the same size,
so the intercepted fused layer’s size vector U is obtained.
Once the FL strategy is obtained, DNN inference time can
be obtained by determining the path scheduling strategy
and path offloading strategy. Therefore, by updating the FL
strategy, we can obtain the minimum DNN inference time.

Algorithm 1.Minimizing Waiting Algorithm

Input:Neural network layers l and their parameters.
Output: The number of FL paths P and the path scheduling

strategy Sbest
MW .

1: Initialize Tbest
MW ¼NULL

2: for FL path length t ¼ 1 : l do
3: for The number of FL paths P ¼ 1 : SL

t � SW
t do

4: The intercepted fused layer’s size is obtained as St

divided into P layers of the same size.
5: for each FL path do
6: The first scheduling path and the offloaded layer are

determined as:
7: p; op minðTpðv� 1Þ þ ttrv Þ
8: The scheduling path is recorded as s1 and the

offloaded layer op is recorded inO.
9: end for
10: for The p-th scheduling path p ¼ 2 : P do
11: The p-th scheduling path and the offloaded layer are

determined as:
12: p; op minðjTp�1ðvÞ � tesv � Tpðv0ÞjÞ
13: The scheduling path is recorded as sp and the

offloaded layer op is recorded inO.
14: end for
15: According to the S,O,U, the DNN inference time TMW

is obtained.
16: If Tbest

MW ¼NULL
17: Update Tbest

MW TMW , tbestMW t,
18: Sbest

MW S,Ubest
MW U.

19: End If
20: If TMW � Tbest

MW

21: Update Tbest
MW TMW , tbestMW t,

22: Sbest
MW S,Ubest

MW U.
23: End If
24: end for
25: end for

For the path scheduling strategy and path offloading
strategy, the main idea is that once the current path has
completed its transmission, the next path should finish its
computation and start to transmit without waiting. The first
path can be determined by using the following criterion.
The fewer layers on the path computed on the end device,

the faster the transmission to the ES, and the shorter the
time for parallel computing of the next path on the end
device. However, too few layers computed on the end
device will lead to too much transmission data, thus
increasing the transmission time between the end device
and the ES. Therefore, we need to find an appropriate num-
ber of offloaded layers of each path. The offloaded layer v
on path p should satisfy the minimal transmission comple-
tion time, which can be formulated as:

min Tpðv� 1Þ þ ttrv
� �

; hv�1 ¼ 0; hv ¼ 1ð Þ: (13)

Then, the first scheduling path is recorded as s1. If multiple
offloading solutions result in the same transmission comple-
tion time, we will choose the offloading strategy which has
the minimum local computation time. This is because in
this case, the ES can start processing as soon as possible and
at the same time, the next path can compute on the end
device as soon as possible.

The offloading strategy of the p-th; ðp 2 f2; 3; :::; PgÞ
scheduling path is determined by the transmission comple-
tion time of the ðp� 1Þ-th scheduling path so that the wait-
ing time between two paths is minimized. In particular, the
task completion time on the end device of the p-th schedul-
ing path should be as close as possible to the transmission
completion time of the ðp� 1Þ-th scheduling path. Then, the
p-th scheduling path can start transmission as soon as possi-
ble after the ðp� 1Þ-th scheduling path is completed. The
offloaded layer v of the p-th scheduling path denoted as sp
can be determined by the following formula:

min Tp�1ðvÞ � tesv � Tpðv0 � 1Þ�� ��� �
; p 2 f2; 3; :::; Pg; (14)

where v is the offloaded layer of the ðp� 1Þ-th scheduling
path and v0 is the offloaded layer of the p-th scheduling
path. If multiple layers have the same task completion time
on the end device, we will choose the path which has the
maximum number of previous layers on the path. Then,
the p-th scheduling path can compute more on the end
device and reduce the computing time of ES.

To illustrate the proposed MW algorithm, we use a five-
layer DNN as an example. As shown in Fig. 5, the FL path
length, the number of FL paths, the CPU frequency of the
end device, the transmission rate and the the CPU fre-
quency of the ES are the same in Fig. 3. The minimal trans-
mission completion time of the three FL paths are 2, 4, and
4, respectively. By using the MW algorithm, path 1 is the
first scheduling path. If we choose to offload layer 1, the
transmission completion time of path 1 is 0þ 2 ¼ 2 since
the task completion time of layer 1 on the end device is 0,
and the transmission time of layer 1 is 2. By following the
same logic, if we choose to offload layer 2 or layer 3, the
transmission completion time is 2þ 2 ¼ 4 or 2þ 2þ 2 ¼ 6,
respectively.

Therefore, o1 ¼ 1. For the second scheduling path, the
task completion time of layers on the end device should be
as close to 2 as possible. The task completion time of layer 5
and layer 7 on the end device are 1þ 1 ¼ 2 and 2. Therefore,
we determine path 2 as the second scheduling path, and
layer 6 is offloaded to the ES. That is, o2 ¼ 3 and the trans-
mission completion time of layer 6 is 2þ 2 ¼ 4. Path 3 is the

Fig. 5. Illustrating MW in a five-layer DNN.

ZHOU ETAL.: ACCELERATING DEEP LEARNING INFERENCE VIA MODEL PARALLELISM AND PARTIAL COMPUTATION OFFLOADING 481

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

third scheduling path, and the task completion time of layer
7, layer 8 and layer 9 on the end device are 2þ 2 ¼ 4, 2þ 2þ
2 ¼ 6 and 2þ 2þ 2þ 2 ¼ 8, respectively. The task comple-
tion time of layer 8 on the end device is closest to 4, so the
offloaded layer on path 3 is layer 8. That is, o3 ¼ 2. When
the previous layers of layer 10 are done, the outputs of layer
3, layer 6 and layer 9 are fused as layer 10, then the fused
layer 10 can start the computing, and the task completion
time of layer 10 is 8þ 3 ¼ 11.

Algorithm 2. Particle Swarm Optimization With Mini-
mizing Waiting

Input: Neural network layers l and their parameters; Iterations
I; Number of solutionsK; Number of FL paths P

Output: The minimum completion time Tbest; The best solution
Ubest, tbest,Obest, Sbest

1: for solution k ¼ 1 : 1 : K do
2: Ok,Uk, tk is randomly generated
3: end for
4: for solution k ¼ 1 : 1 : K do
5: The path scheduling strategy Sk is obtained by using the

MW algorithm.
6: According to Ok;Uk; tk;Sk, the DNN inference time Tk is

obtained.
7: UpdateObest

k Ok;U
best
k Uk;

8: tbestk tk;S
best
k Sk and Tbest

k Tk.
9: If k ¼ 1
10: UpdateObest Ok;U

best Uk;
11: tbest tk;S

best Sk and Tbest Tk.
12: ElseIf Tk � Tbest

13: UpdateObest Ok;U
best Uk;

14: tbest tk;S
best Sk and Tbest Tk.

15: End If
16: end for
17: for Iteration i from 2, 3, to I do
18: for solution k ¼ 1 : 1 : K do
19: The path scheduling strategy Sk is determined by MW

algorithm.
20: According to Ok;Uk; tk;Sk, the DNN inference time Tk

is obtained.
21: If Tk � Tbest

k

22: UpdateObest
k Ok;U

best
k Uk;

23: tbestk tk;S
best
k Sk and Tbest

k Tk.
24: End If
25: If Tk � Tbest

26: UpdateObest Ok;U
best Uk;

27: tbest tk;S
best Sk and Tbest Tk.

28: End If
29: end for
30: Each solution does UpdateO, t andU.
31: O�0k g1O

�
k þ g2ðObest

k �OkÞ þ g3ðObest �OkÞ
32: t�0k g1t

�
k þ g2ðtbestk � tkÞ þ g3ðtbest � tkÞ

33: U�0k g1U
�
k þ g2ðUbest �UkÞ þ g3ðUbest �UkÞ

34: O0k Ok þO�0k
� �

35: t0k tk þ t�0k
� �

36: U0k Uk þU�0k
� �

37: end for

The pseudocode of the MW algorithm is shown in Algo-
rithm 1. Line 1 is to initialize Tbest

MW , where Tbest
MW is the mini-

mum DNN inference time obtained by the MW algorithm.
Line 4 is to obtain the FL path length UMW . Lines 5 to 9 are

to determine the first scheduling path, the offloaded layer
and record them in S, O, respectively. Lines 10 to 14 are to
determine the path scheduling order from the second path
to the last path and record the corresponding values in S,O,
respectively. Line 15 is to obtain the DNN inference time by
Eq. (12). Lines 16 to 23 are to update the DNN inference
time Tbest

MW , the best solution by using the MW algorithm.
It is worth noting that although the MW algorithm can

get the path scheduling strategy and the path offloading
strategy, the path offloading strategy obtained by MW is
not always the optimal solution, so the MW algorithm is
only used to determine the path scheduling strategy S and
the number of FL paths P .

4.2 Particle Swarm Optimization With Minimizing
Waiting

The FL path length, the intercepted fused layer’s size and
the path offloading strategy are further optimized by the
PSOMW algorithm. The basic idea of the Particle Swarm
Optimization (PSO) algorithm is to simulate the predatory
behavior of birds. Birds adjust their search path through
their own experience and communication among popula-
tions, so as to find the place with the most food. The PSO
algorithm is a probability-based global optimization algo-
rithm. It has a strong global search ability for nonlinear and
multimodal problems, and has a high probability of obtain-
ing the global optimal solution [44].

In this part, we combine the PSO algorithm with MW
algorithm, and propose the PSOMW algorithm. In PSOMW,
we first initialize the solution space by using the MW algo-
rithm. The number of FL paths is obtained by using the MW
algorithm with the minimum DNN inference time, which
traverses all FL paths and the FL path length. Then, the ini-
tial solution randomly generates the path offloading strat-
egy O for each solution, and the path scheduling strategy is
determined by using the MW algorithm. Moreover, the
DNN inference time can be obtained, which is the evalua-
tion index in PSOMW. Solution k will record its minimum
DNN inference time in history Tbest

k and the solution
includes Ubest

k ; tbestk ;Sbest
k ;Obest

k . In addition, the minimum
DNN inference time for all solutions’ history Tbest and the
corresponding solution Ubest; tbest;Sbest;Obest will also be
recorded.

Next, for each solution, we will update the FL path
length, the intercepted fused layers’ size and the path off-
loading strategy to find the optimal solution. The following
variables are defined to show how solutions are updated.
The path offloading strategy variation is defined as O� ¼
fo�1; o�2; . . . ; o�p; . . . ; o�Pg, o�p represents the variation of op. The
intercepted fused layers’ size variation is defined as U� ¼
fu�1; u�2; . . . ; u�p; . . . ; u�Pg, u�p ¼ fuL�

p ; uW�
p g, where uL�

p is the
length vector variation and uW�p is the width vector variation
of up. The FL path length variation t� is defined as the varia-
tion of the FL path length t. The FL path length, the inter-
cepted fused layer’s and the path offloading strategy
variations are determined by the inertia of themselves, the
best in their solution history Obest

k ;Ubest
k ; tbestk , and the best in

all solution history Obest;Ubest; tbest. The FL path length, the
intercepted fused layers’ size and the path offloading strat-
egy are updated as follows:

482 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

O�0k g1O
�
k þ g2 Obest

k �Ok

� �þ g3 Obest �Ok

� �
; (15)

t�0k g1t
�
k þ g2 tbestk � tk

� �þ g3 tbest � tk
� �

; (16)

U�0k g1U
�
k þ g2 Ubest

k �Uk

� �þ g3 Ubest �Uk

� �
; (17)

O0k Ok þO�0k
� �

; (18)

t0k tk þ t�0k
� �

; (19)

U0k Uk þU�0k
� �

; (20)

where g1 is the inertia factor of solution, g2 is the influence
factor of the best solution in its history, and g3 is the influ-
ence factor of the best solution in all solution’s history.

It is worth noting that the inference solution boundary of
t, op and up prevents the generation of invalid solutions.
Our algorithm uses the aforementioned constraints to
ensure that the generated result is valid. For example, it is
meaningless to have the negative FL path length or to
exceed the neural layers of the DNN. If op exceeds the FL
path length, all FL paths are offloaded to the ES after the
task is completed on the end device without parallelization.
The largest path size is reduced until the boundary con-
straint is satisfied.

Fig. 6 illustrates an example about the path offloading
strategy O. The CPU frequency of the end device, the trans-
mission rate, and the CPU frequency of the ES in the exam-
ple are the same as in Fig. 5. Before updating, the current
path offloading strategy Ok, the best strategy in its history
Obest

k and the best solution in all solution’s history Obest are
shown in Fig. 6. For convenience, g1, g2, g3 and t� is set to
be 0, 1, 1, 0, and each FL path has the same intercepted fused
layer’s size, respectively. Then, O� ¼ f�1; 1;�1g (i.e.,
o�1 ¼ 1� ð1� 2Þ þ 1� ð2� 2Þ ¼ �1). Therefore, the path off-
loading strategy is changed from O ¼ f3; 2; 3g to O0 ¼
f2; 3; 2g. The DNN inference time before updating is 18, and
the DNN inference time after updating is 16.

The pseudocode of the proposed method is shown in
Algorithm 2. Lines 1 to 3 are to randomly generate Ok, Uk,
tk. Lines 4 to 16 are the first iteration, and record Tbest

k , Tbest,
Ubest

k , Ubest, tbestk , tbest, Obest
k , Obest, Sbest

k , Sbest. Line 17 starts
the iteration. Lines 18 to 29 are to compute the DNN infer-
ence time of each solution and update the corresponding

results. Lines 30 to 36 are to update the FL path length, the
intercepted fused layer’s and the path offloading strategy of
each solution.

Although PSO is used in many existing studies, there are
significant differences between PSOMW and traditional
PSO. In traditional PSO, the initial space of the solution is
randomly generated, whereas in PSOMW, the scheduling
strategy S and the number of FL paths P are determined by
the MW algorithm. In the iteration, the traditional PSO has
no limit on the change of solution. In PSOMW, the sum of
uLp and uW

p of all paths cannot exceed SL
t and SW

t . As a result,
PSOMW is more suitable for our model.

5 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to demon-
strate the effectiveness of the proposed method in five neu-
ral networks which are (1) AlexNet, (2) MobileNet, (3)
SqueezeNet, (4) VGG16, and (5) YOLOv2. The structure of
the neural network can be obtained from [45], [46], [47],
[48], [49] (i.e., the number of convolution layers, convolution
kernel size, convolution step, etc.). Following the existing
relevant studies [37] and [50], simulation parameters used
in our experiment are shown in Table 2.

5.1 Performance Comparison

We compare the performance of our proposed PSOMW
with the following benchmark algorithms:

1) No FL ðNFLÞ : Partial computation offloading with-
out the FL technique is used in this algorithm. After
the end device has computed to an intermediate
layers, the entire intermediate layer is offloaded to
the ES for the remaining computations. The mini-
mum DNN inference time is obtained by traversing
all feasible solutions.

2) Brute Force ðBF Þ : Partial computation offloading
with the FL technique is used in this algorithm,
DNN is divided into multiple paths, and the optimal
FL strategy, path scheduling strategy and offloading
strategy are obtained by traversing all feasible
solutions.

3) Minimizing Waiting ðMWÞ : Partial computation
offloading with the FL technique is used in this algo-
rithm. The MW algorithm is used to determine the
path offloading strategy and the path scheduling

Fig. 6. Illustrating path offloading strategy updating in a five-layer DNN.

TABLE 2
Simulation Parameters

Parameter Definition Value

fend computation resource of the end device 2:23� 108

fES computation resource of the ES 4:32� 109

B The bandwidth of wireless links 5MHz
Q The transmission power of the end device 0.1W
"2 The power of background noise 10�9
G The channel gain between end device

and ES
10�6

g1 The inertia of solution 0.5
g2 Influencing factors of itself 0.5
g3 Influencing factors of all solutions 0.5

ZHOU ETAL.: ACCELERATING DEEP LEARNING INFERENCE VIA MODEL PARALLELISM AND PARTIAL COMPUTATION OFFLOADING 483

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

strategy, and the FL strategy is determined by tra-
versing all DNN layers.

With the increase of the total number of layers and the FL
paths, the complexity of finding the optimal solution
increases exponentially. Therefore, we choose the case of
four FL paths with homogeneously intercepted fused
layer’s size to compare the performance of BF (2�2), MW
(2�2) and PSOMW (2�2). Furthermore, we use MW (k� k)
to represent MW with homogeneously intercepted fused
layer’s size, where the number of FL paths k� k is deter-
mined by MW algorithm. PSOMW (k2) represents PSOMW
with heterogeneously intercepted fused layer’s size, and the
number of FL paths k2 is determined by MW. Since the time
complexity of BF is too large, the result of BF with heteroge-
neously intercepted fused layer’s size cannot be obtained,
the superiority of PSOMW is verified by comparing the
results of BF (2�2) and PSOMW (2�2).

5.2 Simulation Results

5.2.1 Varying the Transmission Rate

The transmission rate is varied from 1.1 MB/s to 3 MB/s to
simulate a variety of scenarios, which covers common net-
work environments, such as 4G 1.3 MB/s and WiFi 1.8 MB/
s [37], etc. Fig. 7 shows the simulation results. Across five
different neural networks, when the transmission rate
increases from 1.1 MB/s to 3 Mb/s, PSOMW (k2) can reduce
the DNN inference time by an average of 12.75 times com-
pared with NFL, especially 55 times in AlexNet. However,
the improvement depends on the neural network architec-
ture. Fig. 7a shows the results in the AlexNet, the DNN
inference time of the NFL, BF (2�2), MW (2�2), MW
(k� k), and PSOMW (k2) are reduced from 1470 ms, 260 ms,
335 ms, 40 ms, and 32 ms to 1384 ms, 160 ms, 255 ms, 38 ms,
and 21 ms, respectively, when the transmission rate changes
from 1.1 MB/s to 3 MB/s. The VGG16 has 18 neural layers,

which is relatively larger than that of AlexNet, and the
increased number of neural layers will cause more compu-
tational workloads. It can be found that, the DNN inference
time of NFL, BF (2�2), MW (2�2), and PSOMW (2�2)
reduces from 1856 ms, 1300 ms, 1302 ms, and 1300 ms to
1207 ms, 752 ms, 940 ms and 752 ms in VGG16, respectively.
Therefore, the DNN inference time in AlexNet is shorter
than that in VGG16.

The number of FL paths is very important. From the
results shown in Fig. 7a, the following observation can be
obtained. When the number of FL paths is 4, the DNN infer-
ence time of BF (2�2) is 5 times less than that of NFL. When
the transmission rate changes from 1.1 MB/s to 3 MB/s at
the MobileNet, the DNN inference time of MW (k� k) and
PSOMW (k2) is reduced from 59 ms and 30 ms to 33 ms
and 17 ms, respectively. Compared with MW (2�2) and
PSOMW (2�2), MW (k� k) and PSOMW (k2) further
reduces average 171 ms and 165 ms DNN inference time.
The reason is that a lager number of FL paths leads to more
flexibility in the path scheduling, and thus causes better
results.

Furthermore, the simulation results shown in Fig. 7 illus-
trate that the DNN inference time of BF (2�2) and PSOMW
(2�2) are basically the same, and the average difference of
the DNN inference time are 0, 0.02%, 0, 0, 0.04% in the Alex-
Net, MobileNet, SqueezeNet, VGG16, YOLOv2, respec-
tively. Therefore, the superiority of the path scheduling
strategy and path offloading strategy that we obtained has
been demonstrated. The results of MW and PSOMW are
very different, and the difference between the results of
MW (k� k) and PSOMW (k2) is 51.3%, 90.1%, 4.7%, 12.2%
and 13.1% in the AlexNet, MobileNet, SqueezeNet, VGG16,
YOLOv2, respectively. Therefore, the path offloading strat-
egy obtained by MW is not always the optimal solution.

Overall, our approach reduces the DNN inference time
well, whether in a lightweight DNN such as the AlexNet,

Fig. 7. The DNN inference time with only changing transmission rate.

484 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

MobileNet and YOLOv2 or a heavyweight DNN such as the
VGG16 and SqueezeNet. Lightweight DNNs have a small
number of convolution steps with 1 or 2 in most neural
layers, using the FL technique can reduce more DNN infer-
ence time. In the AlexNet, MobileNet and YOLOv2, the
average DNN inference time obtained by PSOMW (k2) are
26 ms, 24 ms and 21 ms, respectively, which are reduced by
1388 ms, 180 ms and 222 ms compared with NFL, respec-
tively. Heavyweight DNNs have a large number of convolu-
tion steps or neural layers, e.g., 18 neural layers in the
VGG16, but the DNN inference time can still be reduced
greatly by parallel computing on the end device and the ES.
For example, the average DNN inference time of PSOMW
(k2) in the SqueezeNet and VGG16 are 42 ms and 270 ms,
which are reduced by 534 ms and 1251 ms compared with
NFL, respectively. Therefore, the effectiveness of PSOMW
has been demonstrated.

5.2.2 Impact of Redundancy

Fig. 8 reveals the redundant computation overhead intro-
duced by different FL strategies. As shown in the figure, the
network structure of DNNs, including the size of the neural
layer, size of the convolution kernel r and step size of the
convolution g has a significant impact on the amount of
redundant computation. The larger FL path length, kernel
size and step size of convolution, the greater the amount of
redundant computation.

In addition, the FL path length and the number of FL
paths also affect the amount of redundant computation. For
the FL path, a large number of FL paths (i.e., FL paths
(7�7)) leads to the increase of repeated area in the input
layer. However, a large number of FL paths can reduce the

DNN inference time through potential better path schedul-
ing and offloading. The FL path length also plays a vital
part in redundant computation. As shown in Fig. 8b, when
the FL path length is less than 9, the overhead introduced
by the FL technique is less than 35%, and the DNN inference
time is 215 ms less than NFL when the transmission rate is
1.1 MB/s. In summary, an increase in the number and
length of FL paths will result in an increase in the computa-
tion overhead, which increases both computation and trans-
mission costs. However, a small number of FL paths will
lead to less flexible model parallelism strategy, while a
shorter FL path will lead to a large amount of transmission
data. Therefore, it is necessary to balance the increased
DNN inference time of redundant computation and the
reduced DNN inference time of parallelization.

For the kernel size and step size of convolution, Eq. (1)
shows that a larger convolution kernel size and convolution
step size will lead to a larger corresponding area of the cur-
rent feature layer in the previous feature layer, which will
result in a larger amount of redundant computation. There-
fore, the structure of the neural network itself can affect the
amount of redundant computation caused by FL technique.
Considering that choosing to fuse several intermediate fea-
ture layers in a small convolution step instead of starting
from the input feature layer may reduce the impact, but it
can lead to more complex problems, which would be an
interesting direction for future work.

5.2.3 Varying the CPU Frequency of the End Device

To simulate different computing environments of end devi-
ces, the CPU frequency of end devices is set at 1.24�108 to
2.11�108. The DNN inference time is shown in Fig. 9 by

Fig. 8. The amount of computation with different FL path length and number of FL paths.

ZHOU ETAL.: ACCELERATING DEEP LEARNING INFERENCE VIA MODEL PARALLELISM AND PARTIAL COMPUTATION OFFLOADING 485

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

using AlexNet and MobileNet. The DNN inference time of
NFL, BF (2�2), MW (2�2), and PSOMW (2�2) reduces from
2220 ms, 349 ms, 568 ms, and 363 ms to 1150 ms, 230 ms,
348 ms, and 230ms in AlexNet, respectively. For the Mobile-
Net, the DNN inference time of NFL, BF (2�2), MW (2�2),
and PSOMW (2�2) reduces from 336 ms, 294 ms, 332 ms,
and 296 ms to 259 ms, 248 ms, 286 ms, and 248 ms, respec-
tively. The results show that the solution obtained by
PSOMW (2�2) remains stable and is almost the same as the
optimal solution obtained by BF (2�2). For MW (k� k) and
PSOMW (k2), the DNN inference time reduces from 84 ms,
54 ms to 44 ms, 37ms in AlexNet and 64 ms, 32 ms to 60 ms,
28 ms in MobileNet. Therefore, PSOMW (k2) performs best,
and MW (k� k) is close to PSOMW (k2).

5.2.4 Heterogeneous Case

To compare the impact of homogeneously and heteroge-
neously intercepted fused layer’s size on DNN inference
time, the transmission rate is varied from 1.1 MB/s to 3
MB/s in VGG16. PSOMW (22) and PSOMW (2�2) represent
PSOMW with four heterogeneously and homogeneously
intercepted fused layer’s size. In Fig. 10, the DNN inference
time of PSOMW (2�2) and PSOMW (22) reduces from 1300
ms and 1203 ms to 752 ms and 703 ms. The results shows
that PSOMW (22) can further reduce about 9.2% inference
time, compared with PSOMW (2�2). To further explain
why the DNN inference time of PSOMW (22) is less than
PSOMW (2�2), we use Fig. 11 to show the computation and
offloading process of the optimal solution of homo-
geneously and heterogeneously intercepted fused layer’s

size when the transmission rate is 1.3 MB/s. In PSOMW
(2�2), the transmission completion time of Path 1 is 444 ms,
and the end device task completion time of Path 2 is 524 ms.
This means that when the end device completes the compu-
tation of Path 2 and prepares for transmission, Path 1 has
completed transmission and waited for Path 2 for 80 milli-
seconds However, in PSOMW (22), Path 2 can offload to the
ES immediately when Path 1 completes the transmission.
Therefore, the transmission channel has no idle waiting
time. It can be seen that the transmission resources and the
computing resources of the ES are not fully utilized with
homogeneously intercepted fused layer’s size, and the
transmission channel needs to wait for the current FL path
to complete its computing. As a result, PSOMW with het-
erogeneously intercepted fused layer’s size can reduce
more DNN inference time than PSOMW with homo-
geneously intercepted fused layer’s size.

6 CONCLUSION

In this paper, we presented a new solution for DNN paral-
lelism and partial computation offloading in MEC. To this
end, we proposed a DNN neural network partitioning
model based on the FL technique and the corresponding
computation model when the DNN neural network is trans-
formed into a DAG. Subsequently, we proposed the
PSOMW method to solve the problem. Specifically, we
designed the MW algorithm to determine the path

Fig. 9. The DNN inference time with only varying the CPU frequency of
the end device.

Fig. 10. The DNN inference time of homogeneously and heteroge-
neously intercepted fused layer’s size.

Fig. 11. Comparison of homogeneously and heterogeneously inter-
cepted fused layer’s size.

486 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

scheduling strategy and the number of FL paths, and then
we combined PSO with MW to determine the FL path
length, the intercepted fused layer’s size and the path off-
loading strategy. Finally, we validated the effectiveness and
superiority of the method through extensive simulation
experiments. The performance results demonstrated that
our proposed method can reduce the DNN inference time
by an average of 12.75 times compared with NFL.

ACKNOWLEDGMENTS

This article reflects only the authors’ view. The European
Union Commission is not responsible for any use that may
be made of the information it contains.

REFERENCES

[1] Y. Zhang, X. Lan, J. Ren, and L. Cai, “Efficient computing resource
sharing for mobile edge-cloud computing networks,” IEEE/ACM
Trans. Netw., vol. 28, no. 3, pp. 1227–1240, Jun. 2020.

[2] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Mobile
edge computing and networking for green and low-latency Inter-
net of Things,” IEEE Commun. Mag., vol. 56, no. 5, pp. 39–45, May
2018.

[3] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep rein-
forcement learning for energy-efficient computation offloading in
mobile edge computing,” IEEE Internet Things J., vol. 9, no. 2,
pp. 1517–1530, Jan. 2022.

[4] L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin,
“Intelligent vnf orchestration and flow scheduling via model-
assisted deep reinforcement learning,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 2, pp. 279–291, Feb. 2020.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Int.
Conf. Neural Inf. Process., 2012, pp. 1097–1105.

[6] C. Ronan and W. Jason, “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask
learning,” in Proc. Int. Conf. Mach. Learn., 2008, pp. 160–167.

[7] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2013, pp. 6645–6649.

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” 2014, arXiv:1409.0473.

[9] H. Qiu, Q. Zheng, T. Zhang,M.Qiu, G.Memmi, and J. Lu, “Toward
secure and efficient deep learning inference in dependable IoT sys-
tems,” IEEE Internet Things J., vol. 8, no. 5, pp. 3180–3188, Mar.
2021.

[10] J. Yao and N. Ansari, “Caching in dynamic IoT networks by deep
reinforcement learning,” IEEE Internet Things J., vol. 8, no. 5,
pp. 3268–3275, Mar. 2021.

[11] H. Zhou, Z. Wang, N. Cheng, D. Zeng, and P. Fan, “Stackelberg
game-based computation offloading method in cloud-edge com-
puting networks,” IEEE Internet Things J., vol. 9, no. 17,
pp. 16 510–16 520, Sep. 2022.

[12] H. Zhou, Z. Zhang, D. Li, and Z. Su, “Joint optimization of com-
puting offloading and service caching in edge computing-based
smart grid,” IEEE Trans. Cloud Comput., to be published,
doi: 10.1109/TCC.2022.3163750.

[13] H. Zhou, T. Wu, X. Chen, S. He, D. Guo, and J. Wu, “Reverse auc-
tion-based computation offloading and resource allocation in
mobile cloud-edge computing,” IEEE Trans. Mobile Comput., to be
published, doi: 10.1109/TMC.2022.3189050.

[14] K. Jiang, C. Sun, H. Zhou, X. Li, M. Dong, and V. C. M. Leung,
“Intelligence-empowered mobile edge computing: Framework,
issues, implementation, and outlook,” IEEE Netw., vol. 35, no. 5,
pp. 74–82, Sep./Oct. 2021.

[15] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, “A novel
framework for mobile-edge computing by optimizing task off-
loading,” IEEE Internet Things J., vol. 8, no. 16, pp. 13 065–13 076,
Aug. 2021.

[16] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “A
novel mobile edge network architecture with joint caching-deliv-
ering and horizontal cooperation,” IEEE Trans. Mobile Comput.,
vol. 20, no. 1, pp. 19–31, Jan. 2021.

[17] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep
reinforcement learning for cooperative content caching in vehicu-
lar edge computing and networks,” IEEE Internet Things J., vol. 7,
no. 1, pp. 247–257, Jan. 2020.

[18] H. Zhou, T. Wu, H. Zhang, and J. Wu, “Incentive-driven deep rein-
forcement learning for content caching and D2D offloading,” IEEE
J. Sel. Areas Commun., vol. 39, no. 8, pp. 2445–2460, Aug. 2021.

[19] H. Zhou, Z. Wang, H. Zheng, S. He, and M. Dong, “Cost minimi-
zation-oriented computation offloading and service caching in
mobile cloud-edge computing: An A3C-based approach,” IEEE
Trans. Netw. Sci. Eng., 2022.

[20] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet Things J., vol. 5, no. 1,
pp. 450–465, Feb. 2018.

[21] F. Sun et al., “Cooperative task scheduling for computation off-
loading in vehicular cloud,” IEEE Trans. Veh. Technol, vol. 67,
no. 11, pp. 11 049–11 061, Nov. 2018.

[22] N. Wang, Y. Duan, and J. Wu, “Accelerate cooperative deep infer-
ence via layer-wise processing schedule optimization,” in Proc.
IEEE Int. Conf. Comput. Commun. Netw., 2021, pp. 1–9.

[23] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation par-
titioning for latency sensitive mobile cloud applications,” IEEE
Trans. Comput., vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

[24] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal compu-
tation task scheduling for mobile-edge computing systems,” in
Proc. IEEE Int. Symp. Inf. Theory, 2016, pp. 1451–1455.

[25] Y. Duan and J. Wu, “Joint optimization of DNN partition and
scheduling for mobile cloud computing,” in Proc. Int. Conf. Parallel
Process., 2021, pp. 1–10.

[26] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
CNN accelerators,” in Proc. IEEE/ACM Int. Symp. Microarchit.,
2016, pp. 1–12.

[27] S. Kang et al., “GANPU: An energy-efficient multi-dnn training
processor for GANs with speculative dual-sparsity exploitation,”
IEEE J. Solid-State Circuits, vol. 56, no. 9, pp. 2845–2857, Sep. 2021.

[28] M. Putic, A. Buyuktosunoglu, S. Venkataramani, P. Bose, S.
Eldridge, and M. Stan, “Dyhard-DNN: Even more DNN accelera-
tion with dynamic hardware reconfiguration,” in Proc. IEEE/ACM
Annu. Des. Automat. Conf., 2018, pp. 1–6.

[29] C. Guo et al., “Balancing efficiency and flexibility for DNN accel-
eration via temporal GPU-systolic array integration,” in Proc.
IEEE/ACM Annu. Des. Automat. Conf., 2020, pp. 1–6.

[30] P. Aleksic et al., “Bringing contextual information to google
speech recognition,” in Proc. Int. Conf. Commun. Technol., 2015,
pp. 468–472.

[31] S. Han, H. Shen, M. Philipose, S. Agarwal, and A. Krishnamurthy,
“MCDNN: An approximation-based execution framework for
deep stream processing under resource constraints,” in Proc.
ACM Annu. Int. Conf. Mobile Syst. Appl. Service, 2016, pp. 123–136.

[32] F. Yu, L. Cui, P. Wang, C. Han, R. Huang, and X. Huang,
“EasiEdge: A novel global deep neural networks pruning method
for efficient edge computing,” IEEE Internet Things J., vol. 8, no. 3,
pp. 1259–1271, Feb. 2021.

[33] J. Ren, G. Yu, and G. Ding, “Accelerating DNN training in wire-
less federated edge learning systems,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 1, pp. 219–232, Jan. 2021.

[34] Y. Chen, H. Balakrishnan, L. Ravindranath, and P. Bahl,
“Glimpse: Continuous, real-time object recognition on mobile
devices,” in Proc. ACM Conf. Embedded Netw. Sensor Syst., 2015,
pp. 155–168.

[35] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-
based real-time video analytics,” in Proc. IEEE Conf. Comput. Com-
mun., 2020, pp. 257–266.

[36] K. Imagane, K. Kanai, J. Katto, and T. Tsuda, “Evaluation and anal-
ysis of system latency of edge computing for multimedia data proc-
essing,” in Proc. IEEE Glob. Conf. Consum. Electron., 2016, pp. 1–2.

[37] Y. Kang, J. Hauswald, J. Mars, C. Gao, and A. Rovinski,
“Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge,” in Proc. Int. Conf. Archit. Support Program. Lang.
Oper. Syst., 2017, pp. 615–629.

[38] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand accel-
erating deep neural network inference via edge computing,” IEEE
Trans. Wireless Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[39] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN
surgery for inference acceleration on the edge,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 1423–1431.

ZHOU ETAL.: ACCELERATING DEEP LEARNING INFERENCE VIA MODEL PARALLELISM AND PARTIAL COMPUTATION OFFLOADING 487

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2022.3163750
http://dx.doi.org/10.1109/TMC.2022.3189050

[40] A. E. Eshratifar, A. Esmaili, and M. Pedram, “BottleNet: A deep
learning architecture for intelligent mobile cloud computing serv-
ices,” in Proc. IEEE/ACM Int. Symp. Low Power Electron. Des., 2019,
pp. 1–6.

[41] Y. Duan and J. Wu, “Computation offloading scheduling for deep
neural network inference in mobile computing,” in Proc. IEEE/
ACM Int. Symp. Qual. Service, 2021, pp. 1–10.

[42] Z. Fu, Y. Zhou, C. Wu, and Y. Zhang, “Joint optimization of data
transfer and co-execution for DNN in edge computing,” in Proc.
IEEE Int. Conf. Commun., 2021, pp. 1–6.

[43] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Coop-
erative DNN inference with adaptive workload partitioning over
heterogeneous edge devices,” IEEE/ACM Trans. Netw., vol. 29,
no. 2, pp. 595–608, Apr. 2021.

[44] J. Liang, A. Qin, P. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of mul-
timodal functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3,
pp. 281–295, Jun. 2006.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[46] A. G. Howard, Z. Menglong, and C. Bo, “MobileNets: Efficient con-
volutional neural networks for mobile vision applications,” 2017,
arXiv:1704.04861.

[47] F. N. Iandola, S. Han,M.W.Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and < 0.5mbmodel size,” 2016, arXiv:1602.07360.

[48] H. Qassim, A. Verma, and D. Feinzimer, “Compressed residual-
VGG16 CNN model for big data places image recognition,” in
Proc. Annu. Comput. Commun. Workshop Conf., 2018, pp. 169–175.

[49] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A lightweight
YOLOv2: A binarized CNN with a parallel support vector regres-
sion for an FPGA,” in Proc. ACM Int. Symp. Field-Prog. Gate Arrays,
2018, pp. 31–40.

[50] M. Mehrabi, S. Shen, V. Latzko, Y. Wang, and F. H. P. Fitzek,
“Energy-aware cooperative offloading framework for inter-
dependent and delay-sensitive tasks,” in Proc. IEEE Glob. Com-
mun. Conf., 2020, pp. 1–6.

Huan Zhou (Member, IEEE) received the PhD
degree from the Department of Control Science
and Engineering, Zhejiang University. He was a vis-
iting scholar with the Temple University from 2012
to 2013, and a CSC supported postdoc fellow with
the University of British Columbia from 2016 to
2017. Currently, he is a full professor with the Col-
lege of Computer and Information Technology,
China Three Gorges University. He was a lead
guest editor of Pervasive and Mobile Computing,
TPC chair of EAI GameNets 2022, EAI BDTA

2020, local arrangement chair of I-SPAN 2018, and TPC member of IEEE
Globecom, ICC, ICCCN, etc. He has published more than 70 research
papers in some international journals and conferences, including IEEE
Journal on Selected Areas in Communications, IEEE Transactions on Par-
allel and Distributed Systems, IEEE Transactions on Mobile Computing,
IEEE Transactions on Wireless Communications and so on. His research
interests include mobile edge computing, opportunistic mobile networks,
mobile data offloading and VANETs. He receives the Best Paper Award of
I-SPAN2014 and I-SPAN2018, and is currently serving as associate editor
for IEEE Access and EURASIP Journal on Wireless Communications and
Networking.

Mingze Li received the BS Degree from Northeast
Electric Power University. Currently, he is working
toward the graduation degree with the College of
Computer and Information Technology, China
Three Gorges University. His main research inter-
ests are edge computing, computation offloading
and parallel computing.

Ning Wang (Member, IEEE) received the BE
degree from the University of Electronic Science
and Technology of China, Chengdu, China, in
2013 and the PhD degree from Temple University,
Philadelphia, PA, USA, in 2018. He is currently an
assistant professor with the Department of Com-
puter Science, Rowan University, Glassboro, NJ,
USA. He has authored or coauthored about 30
papers in high-impact conferences and journals,
such as, IEEE ICDCS, INFOCOM, IWQoS, IEEE
Transactions on Big Data, and Journal of Parallel

and Distributed Computing. His current research interests include opti-
mization problems in Internet-of-Things systems and smart cities appli-
cations. He was a program committee member for top international
conferences, such as, IEEE ICDCS, and WCNC and a reviewers of pre-
mier journals, such as, IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Wireless Communications, IEEE Trans-
actions on Mobile Computing, IEEE Transactions on Intelligent Trans-
portation Systems, ACM Transactions on Internet Technology, and
IEEE Transactions on Services Computing.

Geyong Min (Member, IEEE) received the BSc
degree in computer science from theHuazhongUni-
versity of Science and Technology, China, in 1995
and the PhD degree in computing science from the
University of Glasgow, U.K., in 2003. He is currently
a professor of high-performance computing and net-
working with the Department of Computer Science,
University of Exeter, U.K. His research interests
include computer networks, wireless communica-
tions, parallel and distributed computing, ubiquitous
computing, multimedia systems, modeling and per-
formance engineering.

Jie Wu (Fellow, IEEE) is currently the director of
Center for Networked Computing and a Laura H.
Carnell professor with the Temple University. He
also serves as the director of International Affairs
with the College of Science and Technology. He
served as the chair for the Department of Com-
puter and Information Sciences from the summer
of 2009 to the summer of 2016 and the associate
vice provost for International Affairs from the fall
of 2015 to the summer of 2017. Prior to joining
the Temple University, he was the program direc-

tor of the National Science Foundation. He was a distinguished profes-
sor with Florida Atlantic University. He regularly publishes in scholarly
journals, conference proceedings, and books. His current research inter-
ests include mobile computing and wireless networks, routing protocols,
cloud and green computing, network trust and security, and social net-
work applications. He serves on several editorial boards including IEEE
Transactions on Service Computing and Journal of Parallel and Distrib-
uted Computing. He was an IEEE Computer Society distinguished visi-
tor, ACM distinguished speaker, and the chair of the IEEE Technical
Committee on Distributed Processing (TCDP). He is a CCF distin-
guished speaker. He was the general co-chair of IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP 2016,
and IEEE CNS 2016, and the program co-chair of the IEEE INFOCOM
2011 and CCF CNCC 2013. He was a recipient of the 2011 China Com-
puter Federation (CCF) Overseas Outstanding Achievement Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

488 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:08:26 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

