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Abstract—Cloud computing provides a feasible solution to
data outsourcing, and hence forming a cloud-based data market,
where data users buy data from owners through querying
cloud servers. However, it also incurs new privacy and security
problems, as data is under a centralized third-party instead of
the data owner’s direct control. Existing data markets are also
questioned on their inflexible and opaque pricing, where the value
of data ownership and the cost of query searches are mixed.
In this paper, we consider blockchain-based storage as a better
choice to ensure safe data outsourcing since data is spread out
across many data points. We propose an Ethereum-based data
market that provides distributed storage and correct remote data
search. We design a new pricing model, where each query will
be charged by two parties: owner (paid for providing his data)
and miner (rewarded by performing query searches). We study
a new cooperative search scheme through a proxy to reduce cost
on the user side. Given that each user query is charged based on
its number of keywords, then a cooperative search can reduce
user-side cost by combining multiple queries into a group so
that overlapped keywords will only be charged for one time. To
ensure user QoE, a combined query should not be significantly
larger than any of its original queries in terms of the number
of keywords. The total price is based on the total number of
keywords in all groups. Since it is a cooperative model with
shared resources, we also study various incentive properties on
the user side, yielding a cost sharing mechanism to split joint
cost in a truth-revealing and fair manner. We further extend our
market with a set of substitute data owners and propose a double
auction mechanism to match users and owners based on their
requirements. Experiments have been conducted on real query
trace to demonstrate the effectiveness of our proposed scheme.

Index Terms—Blockchain, cooperative search, cost model, cost
sharing, double auction, grouping strategy.

I. INTRODUCTION

Currently, data is considered as one of society’s most valu-
able resources, and the resulting market further monetizes data.
Without question, data has become a tradeable commodity in
our society. Most data markets, e.g. Amazon Athena and Xig-
nite, are online, making it convenient to publish and exchange
data. Currently, those online markets are tightly coupled with
Cloud Computing (CC) paradigm. CC offers a cost-efficient
solution for trading data and provides value-added services that
help derive data products. Data owners usually rent resources
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Fig. 1: Given a database with six keywords, five queries q1, q2, q3, q4, q5,
each being a six-bit binary string with 1 for search and 0 for not search, are
issued from users to retrieve information.

from a certain CC platform to store and manage their data
as well as answer data users’ queries. However, centralized
CC platforms also give rise to privacy and security issues in
data storage and search. Thus, decentralized storage services
have come into being to alleviate these concerns. Blockchain
techniques [2] are widely used to guarantee data integrity and
provide scalability for handling big data. Meanwhile, smart
contract [3] can be leveraged to perform remote searches
automatically, which ensures the correctness and immutability
of search results. Unfortunately, lots of existing works focus
on the single-user setting, where a database is queried only
through its owner. As in real data markets, a data owner
makes profit by sharing his data with legitimate users. A
more complex multi-user setting should be discussed in the
perspective of decentralized storage.

In this paper, we propose an Ethereum-based data market,
where many data-related services, e.g. storage, search and
trades, can be provided for both data owners and users.
Ethereum [4] is a decentralized computing platform that
combines blockchain technique and smart contract[3]. Thus, it
guarantees reliable data storage and correct remote search. The
proposed data market is shown in Fig. 1 and consists of three
basic roles. As a data provider, an owner profitably shares his
database by allowing a third-party called users to query his
database. Different from those CC-based data markets, private
data is no longer uploaded to a central provider. Instead, an
Ethereum-based data market provides a decentralized fashion
for data storage and management. An owner can either send his
small-size information to the Ethereum blockchain [3] for the
convenience of searching, or distribute his large data in an off-
blockchain storage [5], e.g. IPFS [6], with a pointer to the data
on the distributed ledger of blockchain. We assume all data
is encrypted under a searchable symmetric encryption (SSE)
scheme before being outsourced, so that its confidentiality can
be preserved while still allowing query-based searches. Users
are data consumers and are willing to retrieve information from
a designated database with some payment. We assume that
users send queries directly to a corresponding owner, then the
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owner issues search transactions as if he is querying. As data
searchers, Ethereum miners make money by executing search
functions according to smart contracts.

Thus, query pricing in such a decentralized data market
should be decided by owners and miners jointly. Each user
query is charged for two parts: one from the data owner
at a pre-set price based on data value, and the other from
miners based on their workload, which is a pay-as-you-go
mode. Miners’ workload, i.e., how much computation power
is consumed to perform a query, is traceable and transparent
in Ethereum, due to its gas system. Besides, a query’s com-
putation consumption and the corresponding search delay, as
well as its cost, tend to be proportional to its keyword number.

As a cheap query price is desirable by each user, cooperative
search can be a good approach to save total cost, hence
decreasing individual payments. To illustrate, let us consider
an example in Fig. 1. There are five users that want to search
over the same database which includes six keywords in total.
The owner will charge a cost of c′ per query, and miners
will charge a cost of c per keyword. Thus, each query will
be separately charged by the owner and miners. For example,
the cost of query q1 = 111000 (a six-bit binary string for six
keywords, where 1 represents that the corresponding keyword
is selected and 0 represents not being selected) is c′ for the
owner plus 3c due to 3-keyword search in Ethereum. Without
cooperation, the overall cost of these queries is 5c′ + 11c
(5 users and 11 accumulative keywords). To save cost, their
queries can be grouped. Among all the grouping strategies,
we briefly mention two here: (1) a cost-saving-based strategy
without considering delay constraints. Five users are grouped
together, and their combined query is 111111 at a total cost
of c′ + 6c. Search latency largely increases for each user.
(2) a delay-tolerant-oriented strategy (as is shown in Fig. 1)
that groups q1, q2, q4 in G1, and q3, q5 in G2. Thus, the total
cost for all users is 2c′ + 6c, and any user at most waits
an additional 1-keyword search time. This example reflects
a tradeoff between delay constraint and cost efficiency.

To ensure the quality of experience, users are considered to
be limited delay-tolerant. We design a user-biased cooperative
search scheme, that facilitates group formation among users
driven by cost savings, subject to a uniform delay constraint
all users agree upon. Users submit their individual queries and
delay constraints to a front proxy. The proxy gathers users with
similar delay constraints into a set, and matches users from
the same set as search groups in order to minimize the overall
cost subject to the delay constraint, i.e., the number of 1s in
each group query should not exceed a given number. After
grouping, the data owner receives combined queries from the
proxy and issues search requests to Ethereum. This cooperative
search scheme improves a data owner’s processing capacity by
reducing the query number.

In a cooperative model, cost sharing must be regulated
in a truth-revealing and fair manner. Truth-revealing helps
avoid free-riding users who want to get some information
without payment, and fairness promotes a stable and long-term
cooperation among users. For example, we consider a common
cost sharing mechanism, which equally distributes group cost
among its members. After applying it to the grouping result in

Fig. 1, q1, q2, and q4 will be equally charged with (c′+3c)/3.
It seems unfair because q1 has more keywords in its original
form compared with q2 and q4. In our paper, we design a
keyword-based cost sharing mechanism according to original
queries, which yields some desirable properties like group-
strategyproofness and sharing incentive. In Fig. 1, the cost
2c′ paid to the owner will be equally distributed among 5
users, each of whom is responsible for 2c′/5. The total cost
of searching for the first keyword is c, equally shared by q1
and q2. The last keyword also costs c, which is only borne by
q5, since there is no other user querying this keyword.

In fact, a data market may consist of many owners with
functionally-similar data so that users can choose any of them
based on owners’ prices and data quality. We further extend
our model to include such a multiple-substitute-data-owner
scenario. We provide a decentralized double auction method to
match users and owners by utilizing Ethereum smart contracts.
The contributions of this paper are summarized as follows:
• Extending from the single-user setting in decentralized stor-

age, we propose an Ethereum-based data market.
• A user-biased, limited-delay-tolerant cooperative search

scheme driven by cost savings is designed to maximize
social welfare on the user side.

• We formulate an n-query-grouping problem as a set partition
problem, prove it as NP-hard, and solve it through approx-
imation with guaranteed bounds, as well as an efficient
projected gradient descent method.

• A cost sharing mechanism is provided to fairly split the
total payment among all participating users. This mech-
anism guarantees several desirable properties, e.g. group-
strategyproofness and sharing incentive.

• We further extend our market with a set of substitute data
owners and propose a double auction mechanism to match
buyers and owners based on their requirements.

• Extensive evaluations on real query traces AOL demonstrate
the effectiveness of our cooperative scheme. A small testbed
of an Ethereum-based data market is also implemented to
show the relationship between the number of keywords and
the search delay by the miners.

II. RELATED WORK

A. Ethereum and Smart Contract

As a blockchain-based decentralized platform, Ethereum [4]
also supports smart contract. A smart contract can be viewed
as a self-enforced computer program. Its execution is auto-
matic when meeting the predefined conditions. The Ethereum
blockchain technique ensures that after being created and
deployed, each smart contract cannot be modified forever.
Each valid transaction will trigger parts of codes in some
smart contract(s) executed in each miner’s Ethereum Virtual
Machine (EVM) and will change states of corresponding smart
contract(s). Mining new blocks requires a miner to correctly
process transactions and successfully solve crypto puzzles.
Since an approved transaction should be validated by the
whole network, its corresponding execution results must reach
consensus among all miners and no one can modify it. This
guarantees correctness and immutability of execution results.
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B. Online Data Markets

Traditional online data markets allow data owners to pose
their data information on some digital platforms [7, 8] so that
buyers (users) can match them based on their requirements.
Usually, buyers have to buy the entire database from a seller,
then download and query it offline. This is an inefficient
solution for buyers. On cloud-based data markets [9, 10], data
owners upload their data to the cloud and make money by
sharing it with users. Users pay to obtain what they want
through a query interface instead of buying the entire database.
Cloud providers are rewarded by providing services, e.g.
storage and search. Our Ethereum-based data market is similar
to cloud-based data markets, where users pay for querying,
while owners and miners earn by providing data and services,
respectively. There exist some works designing data market
on top of Blockchain such as [11–14], since blockchain can
enable secure data trading and search [15–18].

C. Cost Models

Traditional online markets take a one-time payment set by
data owners. For data markets based on cloud computing,
either data owners [9] or cloud providers [10] can be sellers,
and they provide term-based offers such as monthly subscrip-
tions. Some cloud providers use a pay-as-you-go mode. Each
query is charged based on bytes of scanned data [19]. On
the Ethereum-based data market, owners and miners are all
sellers, jointly charging users. Most online data markets adopt
a unilateral cost model [20], while the cost model can also be
bilateral, such as auction, in a more complex situation.

D. Cooperative Search

The cooperative keyword-based search [21] scheme has
been proposed in [22] by grouping all received queries together
within a fixed timeout to achieve privacy. In [23], authors
equally divide queries into a fixed number of groups to achieve
k-anonymity and load balancing. Our work also deals with
query grouping problems, while focusing on user-side cost
saving and search delay guarantee.

E. Cost Sharing Schemes

A good cost sharing mechanism will distribute shared cost
among users in a truth-revealing and fair manner [24]. The
current cost sharing mechanism is group-based [23]. Our pro-
posed mechanism is keyword-based, which guarantees group-
strategyproofness and sharing incentive.

III. PRELIMINARIES

A. Scheme Overview

There are two stages in our proposed cooperative search
scheme, and four entities are involved. Fig. 1 shows the system
overview. The first stage includes three different entities: users,
a proxy, and a data owner. Although we assume a single
data owner and proxy, it can be easily extended to multiple
owners and proxies. All user queries and the corresponding
delay constraints are directly sent to the proxy. We assume

that users are exposed to the proxy by using credentials. Each
time a user submits a query, he is assigned to a temporary
credential that will be changed in the next submission. Thus,
users are unlinkable to their queries as the proxy only knows
their temporary credentials, i.e., no user privacy leaking to
the proxy. The proxy partitions users into different sets based
on the delay constraints. How to gather users so that queries
in the same set have similar delay constraints is out of the
scope of this paper. However, this topic is quite similar to
the task scheduling problems in the data center where many
papers can be referred to [25–27]. Each set is supposed to be
sufficiently large, and thus we treat them separately. In each
set, the minimal value of all users’ delay constraints is treated
as the set delay upper bound. Given an n-query set, the main
function of the proxy is to run our grouping strategies, which
classify n queries into k groups (k is a variable) and send
those combined queries to the data owner. In the second stage,
a data owner issues search transactions to Ethereum, based on
queries received from his proxy. Then miners execute related
search functions and obtain query results. We also provide a
cost sharing mechanism so that n users can share their total
costs in a fair way.

B. System Workflow and Data License

All interactions between the above entities can be con-
cluded as follows: (1) a user sends his individual query to
a designated proxy; (2) a proxy partitions all received queries
based on a uniform delay constraint and forwards them to
the corresponding data owner; (3) a data owner issues search
transactions for each combined query he receives as if he
himself is querying; (4) all miners compete for mining a new
block including executing corresponding search transactions.
The query result will directly return to the proxy. The proxy
will filter the combined results and then send them back based
on the users’ original queries. To ensure a legal right to access
those results, each user has to pay an extra money to get a
data license from the data owner. We assume the cost for an
extra data license is much cheaper compared with the original
access cost so that the group-buying is always cost-efficient.

C. Design Goals

We summarize our design goal into three parts. First,
we want to design effective grouping strategies in order to
achieve social optimum: minimizing the total cost among n
users, and latency limitation: each user can be guaranteed
to retrieve desired information within their uniformly-agreed
delay tolerance, simultaneously. Second, we want to design a
cost sharing mechanism among n users, which satisfy group-
strategyproofness: each user should reveal his individual query
request in a truthful way even on the condition where collusion
is permitted, since lying provides no benefit to his interest, and
sharing incentive: each user should achieve individual cost
reduction if their total cost gets reduced. Third, we would like
to implement an Ethereum testbed to verify the practicality of
our proposed search scheme, and the relationship between the
keyword number and the search delay.
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TABLE I: Summary of Notations.

Symbol Description
d number of keywords in the dictionary
wi the i-th keyword in the dictionary
n number of queries, where n ≥ 2
Q n-query set
Gi group i, which is a subset of Q
|Gi| number of queries in Gi

qi query from user i, in the form of a binary string
|qi| number of keywords in qi
q̂i combined query of Gi

|q̂i| number of keywords in q̂i
k number of groups
Pi a partition over Q with i non-overlapping groups
c cost of miner searching for a keyword
c′ cost of a data owner
γc′ cost of a license from the data owner, where 0 ≤ γ � 1

IV. GROUPING STRATEGY

A. Notation and Cost Model

Our grouping strategy will be executed on a set of n queries,
Q = {q1, q2, · · · , qn}, which are issued from different users
over the same database. Corresponding notations are listed in
Table I.

The cost C(q) of a query q consists of two parts: c′ is
charged by a corresponding owner due to his contribution on
data and c · |q| is paid to a miner in search of information. If
a query result will be shared with others, extra data licenses
are needed. Each result access requires a license at a cost of
γc′, where γ is much less than 1.

1) Cost without Grouping: The n queries in the set Q are
individually executed and their total cost is the accumulation
of their individual costs.∑n

i=1
C(qi) = c′ · n+ c ·

∑n

i=1
|qi| (1)

2) Cost with Grouping: Another way to execute Q is to
create a single group G that contains all n queries and execute
it as a single query q̂ = |q1 ∨ · · · ∨ qn|. Note that, each user
needs to buy a data license in this case.

C(q̂) = c′ · (1 + nγ) + c · |q̂| (2)
We can determine if grouping is beneficial by comparing Eq.

(1) with Eq. (2).∑n

i=1
C(qi)−C(q̂) = c′(n−1−nγ)+c(

∑n

i=1
|qi|−|q̂|) (3)

Even in the worst case, where there are no overlapping
keywords among n queries, i.e.,

∑n
i=1 |qi| = |q̂|, Eq. (3) ≥ 0

still holds. It is obvious that grouping is always beneficial.
Thus, greedily grouping all queries into a combined query is
always a socially optimal choice, if no user has a constraint
on search delay.

B. Problem Formulation

Given Q = {q1, q2, ..., qn}, let α be the pre-agreed maximal
search delay, measured in the numbers of keywords among
n users. That is, each user is willing to wait for at most α-
keyword search time, whatever their original keyword numbers
before grouping. An optimal grouping problem is defined as:

Problem 1 (OPTIMAL QUERY GROUPING, OQG). Given a
set of queries Q = {q1, q2, ..., qn}, group the n queries into k
non-overlapping groups G1, G2, ..., Gk (k is a variable), such

that the number of keywords in each combined query is no
more than α and the overall cost of all groups is minimized.

C. Problem Hardness

Theorem 1. The OQG problem is NP-hard.

Proof. The Set Partitioning (SP) problem, known to be NP-
hard, can be reduced to the OQG problem. The SP prob-
lem is expressed as: given a set of n positive integers
{a1, a2, · · · , an} and an integer A, where ∀i ∈ [1, n], ai ≤ A,
such that

∑n
i=1 ai = 2A, decide if this set can be partitioned

into two subsets with the same sum A. We can construct every
instance of the SP problem as a valid instance of the OQG
problem as follows. Let α, the upper limit of the keyword
number in each combined query, be equal to A, and d, the
number of keywords in the dictionary, be 2A. Each ai is
mapped to a query qi. We define the number of keywords
for each query |qi| as ai. We also assume that there is no
overlapping among all queries. This is a valid instance of the
OQG problem.

An optimal solution to the OQG problem with two groups
exists, if and only if there exists a partition in the original
SP problem. Obviously, merging n queries into a single group
G is infeasible because the combined query q̂ contains 2A
keywords, exceeding the upper limit. Hence, at least one
query should be removed from G. According to our previous
analysis, for any group Gi in the optimal solution, its cost
is C(q̂i) = c′ · (1 + nγ) + c · |q̂i|. We minimize C(q̂i) over
all k groups, but c

∑k
i=1 |q̂i| is constant among all grouping

strategies, hence our problem is equivalent to minimizing the
number of groups. If the OQG problem has an optimal solution
with two groups G1 and G2, then there exists a partition of n
queries into two sets, such that

∑
qi∈G1

|qi| =
∑
qj∈G2

|qj | =
α. This partition is definitely an optimal solution to the SP
problem. On the other hand, if the original SP problem has
an equal-sum partition, the OQG problem also has an optimal
strategy with two groups, since three groups would yield more
cost. We can conclude that the OQG problem is NP-hard.

D. Grouping Strategy

Since the OQG problem is NP-hard, we solve it using linear
programming relaxation and greedy algorithms. No matter
what the grouping result is, the cost of the data license is
fixed as nγc′; we will ignore this part in the rest of the paper.

1) Mathematic Relaxation: First, we give the matrix rep-
resentation of the above problem. Since each user has a
query string with length d, we define an n × d matrix Q
as representing all queries from n users. Let Y∈{0, 1}n×n
denote the grouping result, then each (i, j)-th element of Y
takes either 0 or 1. Yij = 1 means query qi is classified into
group Gj . The matrix representation is shown below.

argmin
Y

c′ · tr(δ(YTE))+c · tr(ET δ(YTQ)) (4a)

Y∈{0, 1}n×n , δ(YTQ)e≤αe, Ye=e (4b)

where tr is the trace operator which sums up diagonal ele-
ments of a given matrix. E and e denote an all-1’s matrix and
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Q5×6=


1 1 1 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 0 1


(a)

Y5×5=


1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0


(b)

δ(YTE)=δ

 1 1 0 1 0
0 0 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

×
 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

=

 1
1

0
0

0


(c)

ETδ(YTQ)=


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

×
 1 1 1 0 0 0

0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

=


1
1

1
1

1
1


(d)

Fig. 2: Matrix representation of queries and grouping result (We don’t fill all
elements in some matrices for saving space).

an all-1’s vector, respectively, and both of their sizes can be
adjusted to fit the context. And δ(·) is an indicator function
such that δ(c) = 1 if c is non-zero and δ(c) = 0, otherwise.
The value of (i, j)-th element in matrix YTQ represents how
many times the keyword wj is queried among all members in
the group Gi. Since each overlapping keyword in a group only
needs querying once, δ(YTQ) indicates combined queries for
all groups. Thus, tr(ET δ(YTQ)) calculates the total keyword
number of all combined queries. Similarly, tr(δ(YTE)) indi-
cates the true group number.

We use an example with five queries to better explain
each term in Eq. (4a). Those five queries q1, q2, q3, q4, q5
are represented as a matrix Q in Fig. 2(a), where the i-
th row represents qi. The grouping result Y is provided in
Fig. 2(b), indicating that there are two groups, q1, q2, and q4
in G1, and q3, q5 in G2. Thus, the number of groups can
be calculated using the expression tr(δ(YTE)) = 2 based
on Fig. 2(c). Besides, the combined queries of G1 and G2

are q̂1 = 111000 and q̂2 = 000111, which are consistent
with its matrix representation δ(YTQ) shown in Fig. 2(d).
Hence, the total keyword number over all combined queries
tr(ETδ(YTQ)) = 6 is equal to |q̂1|+ |q̂2|.

Our objective is to find a grouping strategy Y, which will
result in a minimal overall cost for n queries, as Eq. (2) shows,
while each combined query has no more than α keywords
(δ(YTQ)e ≤ αe) and any original query only belongs to
a group (Ye = e). Since it is an NP-hard problem, we
consider a relaxation. According to [22], given a large constant
number β, e.g. β = 10, 20, 30, the indicator function over
the matrix YTQ, i.e., δ(YTQ), can be approximated with
a smooth function, E− e(−βYTQ), and the indicator function
over the matrix YTE, i.e., δ(YTE), can be approximated with
a smooth function, E−e(−βYTE). With the above relaxations,
we transfer the integer matrix Y into the continuous domain.
Then, we get a relaxed version of the OQG problem below:

argmin
Y

c′ · tr(E− e−βY
TE)+c · tr(ET [E− e−βY

TQ])

TABLE II: Examples of 7 User Queries.

Queries Content
q1 11010000
q2 00001101
q3 11000000
q4 00000111
q5 00001100
q6 00000011
q7 10000000

(a) Example One.

Queries Content
q1 11010000
q2 00001101
q3 11000000
q4 00000111
q5 00001100
q6 10000001
q7 00110000

(b) Example Two.

Y∈ [0, 1]n×n, Ye=e, e−βY
TQe≥(d− α)e

which equals to its dual problem as below:

argmax
Y

c′ · tr(e−βY
TE)+c · tr(ET e−βY

TQ) (5)

Y∈ [0, 1]n×n, Ye=e, e−βY
TQe≥(d− α)e

The objective of Eq. (5) is to maximize a convex function over
multiple variables with nonlinear constraints. We apply the
interior-point approach, transforming the original inequality-
constrained problem into a sequence of equality constrained
problems. A logarithmic barrier function with a dynamic
coefficient µ is constructed and added to the original objective
function to remove all inequality constraints. This algorithm
has a two-level iteration. The outer level iterates over the
coefficient µ, while the inner level optimizes the augmented
objective function using the Newton method under a fixed µ.
Since the Newton method may lead to a local optima, we can
run the algorithm with different initial values and select the
best one.

In addition, we also design a rounding algorithm to obtain a
feasible 0−1 solution based on the continuous optima achieved
above. In each iteration, the rounding algorithm greedily sets
Yij as 1 to maximize the objective function in Eq. (5) while
still satisfying all constraints. To make our integer solution
closer to the optimum one, the rounding order of queries
matters. We always start with queries with the most keywords
first, because chances that they overlap with other queries are
higher. Once their grouping result is determined, other queries
can be assigned to the corresponding groups.

We consider a dictionary that consists of (w1, w2, w3, w4,
w5, w6, w7, w8) and two sample queries are as shown in
Table II(a) and II(b). We also assume c = c′. To show how it
affects grouping results, the constraint of search delay will be
set differently. Table III shows grouping results under different
delay constraints using our Mathematic Relaxation.

2) Projected Gradient Descent Method: The Newton
method is quite simple and gives a relatively fast rate of
convergence. However, this method is very expensive in each
iteration - it needs the function evaluation and then the deriva-
tive evaluation. If the volume of queries is large, then this
might not be a good choice. Thus, to improve the efficiency
when faced with large amounts of queries, we consider a
simple modification of gradient descent for constrained op-
timization: a projected gradient descent method. In general,
projected gradient algorithms minimize an objective f(x)
subject to the constraint that x ∈ χ for some convex set χ.
They do this by iteratively updating x :=

∏
χ(x + ηOf(x)),

where η represents a step length of learning rate, and
∏
χ =

argmaxx {‖z − x‖ |x ∈ χ} is the Euclidean projection onto
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TABLE III: Grouping Results using Mathematic Relaxation.

Constraint Group Combined Query
4 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5, q6} q̂2 = 00001111
3 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q5} q̂2 = 00001101
G3 = {q4, q6} q̂3 = 00000111

(a) Example One.

Constraint Group Combined Query
5 G1 = {q1, q3, q6, q7} q̂1 = 11010001

G2 = {q2, q4, q5} q̂2 = 00001111

4 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5} q̂2 = 00001111

G3 = {q6} q̂3 = 10000001

(b) Example Two.

set χ. First order projected gradient algorithms are effective
when second order methods are infeasible because of the
dimension of the problem.

3) Greedy Algorithm: Since Mathematic Relaxation uses a
first order local optimization method to solve a non-convex
optimization problem, of which computational complexity
isn’t proven, this strategy has no guarantee on time. Thus,
we consider a greedy algorithm with a guaranteed bound.

According to section IV-A, combination always brings about
cost saving. Here, we reconsider the OQG problem in terms of
cost saving. Given a set of queries Q = {q1, q2, ..., qn} from
n different users over the same database, we group these n
queries into k non-overlapping groups G1, G2, ..., Gk where
the number of keywords in each group is no more than α such
that the overall sum of savings

∑k
i=1 S(Gi), is maximized.

Considering two queries, q and q′, we define the saving
from merging q with q′ as c′+ c(|q|+ |q′|− |q ∨ q′|). In other
words, combining two queries, q and q′, will save one charge
from the owner and overlapping-keyword search cost. Since
one token generation cost can be saved by combining any two
queries q and q′, the more overlapping keywords q and q′ have,
the more search cost it will save through their combination.
If q and q′ have a containment relationship, we can prove
there always exists some optimal grouping result that contains
a group with both q and q′, as is shown in Theorem 2.

Theorem 2. Given a set of queries Q = {q1, q2, ..., qn}, for
any two queries q and q′, if the keywords of q are entirely
contained in the keywords of q′, then there is some optimal
grouping strategy that contains a group with both q and q′.

Proof. Assume the optimal partition P over Q has two groups
G1 and G2, such that q ∈ G1 and q′ ∈ G2. Thus, individual
group saving of G1 is S(G1) = c′(|G1|− 1)+ c(

∑|G1|
i=1 |qk|−

|q̂1|), and the same for G2. We can obtain the overall savings
of G1 and G2 :

S(G1) + S(G2) = (6)

c′(|G1|+ |G2| − 2) + c(
∑|G1|+|G2|

i=1
|qk| − |q̂1| − |q̂2|)

Moving q to G2 leads to new groups G1′ = G1 \ {q} and
G2′ = G2∪{q}, with |G1′ | = |G1|−1 and |G2′ | = |G2|+1. q
is entirely contained by q′, hence |q̂2′ | = |q̂2|. Thus, S(G2′) =

c′(|G2|)+ c(
∑|G2|
i=1 |qi|+ |q| − |q̂2|). Although it is difficult to

directly know the exact value of |q̂1′ |, we can bound it as

|q̂1| − |q| ≤ |q̂1′ | ≤ |q̂1|, such that S(G1′) ≥ c′(|G1| − 2) +

c(
∑|G1|
i=1 |qi| − |q| − |q̂1|). Listed below is a lower bound of

the overall group savings for new groups G1′ and G2′ :

S(G1′) + S(G2′) ≥ (7)

c′(|G1|+ |G2| − 2) + c(
∑|G1|+|G2|

i=1
|qi| − |q̂1| − |q̂2|)

Comparing Eq. (6) and Eq. (7), we conclude that, moving q
to G2 yields a new partition, which is at least as good as P
and thus still optimal.

Hence, we can greedily group queries q and q′, and treat
them cost-wise as a single query q′, which can be further
merged with other queries. The containment can be easily
determined by the OR operation. This is a Naive Greedy
solution, of which the time complexity is O(n2). For the
rest of the paper, we assume all such containments have been
identified.

It is obvious that, without any constraints on the search
delay, the optimal solution is to combine n users as a group
and issue a single combined query. However, when constraints
are added, it becomes an NP-hard problem, thereby we con-
sider a Greedy Partition solution to efficiently approximate its
optimal result with an upper bound. Greedy Partition starts
with a single group, iterating to split a group of which the
splitting cost is minimal among all existing groups, until all
query groups are subject to the search delay constraints. As it
is a typical set partition problem, we will consider Problem 1
in terms of set theory as follows.

First, given a query set Q, we define a set function C :
2Q → R where

∀ G ⊆ Q, C(G) =

{
0 G = ∅
c′ + c · |q̂| otherwise

(8)

Then, we can reformulate the OQG problem as below. Given
a system (Q,C, k), where Q is a set of queries, C : 2Q → R
is a set function, and k is a variable with 1 ≤ k ≤ n.

minimize C(G1) + C(G2) + · · ·+ C(Gk) (9a)
subject to G1 ∪G2 ∪ · · · ∪Gk = Q (9b)

Gi ∩Gj = ∅ 1 ≤ i < j ≤ k (9c)
|q̂i| ≤ α 1 ≤ i ≤ k (9d)

As is proven in the paper [28], given a nondecreasing
submodular system (V, f, k), where f(V )+f(∅) ≥ f(S) holds
for any nonempty subset S of V , the set partition problem can
be approximated within a factor of (2 − 2/k) in polynomial
time. This paper provides a greedy algorithm to guard this
result. Since our system is also submodular (proven below),
we present a Greedy Partition that satisfies delay constraints.

As is shown in Algorithm 1, the Greedy-Partition has two
functions. The main function GREEDY-PARTITION returns the
final partition P over a given set Q. Starting with the 1-
partition P1 = Q, in its ith iteration, we obtain an i + 1-
partition Pi+1 by partitioning some members of the previous
i-partition Pi. We halt when a partition P satisfies the delay
constraints. For any member W in i-partition Pi, we call func-
tion OPTIMAL-SUBSET [28] to find its minimal-partitioning-
cost subset. Since a minimal-cost solution is desired, we
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Algorithm 1 Greedy Partition

Input: a system, (Q,C)
Output: a partition over Q, P

1: function GREEDY-PARTITION(Q,C)
2: P1 ← {Q}
3: for each i ∈ [1, n] do
4: for all W ∈ Pi do
5: (S,W )←OPTIMAL-SUBSET(W )
6: (Si,Wi)← argmin (C(S) + C(W/S)− C(W ))
7: Pi+1 ← (Pi − {Wi}) ∪ {Si,Wi/Si}
8: if each W ∈ Pi satisfies search delay then
9: return Pi

TABLE IV: Grouping Results using Greedy Partition.

Constraint Group Combined Query
4 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5, q6} q̂2 = 00001111

3 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q5} q̂2 = 00001101

G3 = {q4, q6} q̂3 = 00001111

(a) Example One.

Constraint Group Combined Query
5 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5, q6} q̂2 = 10001111

4 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5} q̂2 = 00001111

G3 = {q6} q̂3 = 10000001

(b) Example Two.

choose the least-cost partition among all members. The time
complexity of this algorithm is O(kn3), where k is the number
of groups, and n is the query number. The grouping results of
the previous examples are listed in Table IV.

In the rest of this section, we will demonstrate that the
Greedy Partition can solve the OQG problem within a factor
of (2 − 2/k) in polynomial time. According to [28], our
proposed algorithm on a given system (Q,C) can achieve the
above properties if the following two conditions hold: (1) C
is submodular, and (2) C is non-decreasing.

Before showing that Greedy Partition satisfies the above
two conditions, we introduce their definitions. Given a
finite set V and a set function f : 2V → R, f
is (1) submodular if ∀S ⊆ V and s1, s2 ∈ V \
S, f(S ∪ {s1}) + f(S ∪ {s2}) ≥ f(S ∪ {s1, s2}) + f(S) al-
ways holds; (2) non-decreasing if f(V ) + f(∅) ≥ f(S) holds
for any nonempty subset S of V .
Lemma 1. The set function C : 2Q → R is submodular.

Proof. Now, we will show for every G ⊆ Q and q1, q2 ∈
Q \ G, Eq. (10) always holds. Without loss of generality we
can assume that G 6= ∅, otherwise the answer is immediate.

C(G∪{q1})+C(G∪{q2}) ≥ C(G∪{q1, q2})+C(G) (10)

Since C(G∪{q1})+C(G∪{q2}) = 2c′+c(|q̂ ∨ q1|+|q̂ ∨ q2|)
and C(G ∪ {q1, q2}) + C(G) = 2c′ + c(|q̂ ∨ q1 ∨ q2| + |q̂|),
we need to prove Eq. (11) ≥ 0 always holds.

C(G ∪ {q1}) + C(G ∪ {q2})− C(G ∪ {q1, q2})− C(G)
= c(|q̂ ∨ q1|+ |q̂ ∨ q2|)− c(|q̂ ∨ q1 ∨ q2|+ |q̂|)

= c(|q̂ ∨ q1|+ |q̂ ∨ q2| − |q̂ ∨ q1 ∨ q2| − |q̂|) (11)

Assume that, nonnegative integers x, y, z represent the num-
ber of overlapping keywords between q̂ and q1, q̂ and q2,
q1 and q2, respectively. Let m be the overlapping keyword
number among q̂, q1, and q2. It is obvious that z ≥ m ≥ 0.

|q̂ ∨ q1|+ |q̂ ∨ q2| = 2 |q̂|+ |q1|+ |q2| − x− y
|q̂ ∨ q1 ∨ q2|+ |q̂| = 2 |q̂|+ |q1|+ |q2| − x− y − z +m

|q̂ ∨ q1|+ |q̂ ∨ q2| − |q̂ ∨ q1 ∨ q2| − |q̂| = z −m ≥ 0 (12)

Based on Eq. (12), we conclude, for every G ⊆ Q and
q1, q2 ∈ Q\G, Eq. (10) always holds. Thus, C : 2Q → R
is a submodular set function.

Lemma 2. The set function C : 2Q → R is non-decreasing.

Proof. Based on Definition 2, we should prove C : 2Q → R,
C(Q)+C(∅) ≥ C(G) holds for any nonempty subset G of Q.
According to Eq. (8), C(∅) = 0. Since ∀G ⊆ Q, it is obvious
that set Q’s combined query contains more keywords than
its subset G’s combined query. Thus, we can obtain C(Q)−
C(G) ≥ 0, hence, C(Q) + C(∅) ≥ C(G).

Theorem 3. The QOG problem can be approximated within
a factor of (2− 2/k) by Greedy Partition.

This theorem easily follows from Lemmas 1 and 2. This
grouping strategy is suitable for those users who have require-
ments on cost reductions.

V. FAIR COST SHARING

Our grouping strategies will yield a total cost for n users.
Thus, one must find a way to distribute the cost among all
users. A major purpose of our proposed grouping strategies
is to seek high efficiency of the whole network, in the
fields of both finance and computation. As self-interested
and autonomous entities, users may behave strategically by
misreporting their willingness to query to maximize their
profit, thereby harming the efficiency. Thus, we want our cost
sharing mechanism to be incentive compatible, i.e., it is in
users’ best interests to be truth telling [19]. Also, it should
provide an incentive for users in their assigned groups to
participate in the coalition without coercion, i.e., it is fair and
maintains the stability of a given grouping result.

A. Cost Sharing Mechanism

To address this challenge, we design a cost shar-
ing mechanism with two desirable properties: (1) group-
strategyproofness and (2) sharing incentive. In the following,
we first present our mechanism, then prove it can satisfy the
above two properties. In our cost sharing mechanism, the total
cost of n users is composed of two parts: one part goes to the
data owner’s account, and the other is for Ethereum miners;
the same applies for individual cost. Each user is equally
responsible for the total payment to the data owner. Given
a grouping result of k combined queries, the data owner will
make a revenue of kc′, each user paying kc′/n to him.

Any keyword in a combined query may be redundant for
some of its group members, and it is unfair for a user to pay for
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TABLE V: An Example of User Cost Sharing.

Keyword Cost Shared by
w1 1 · c q1, q3, q7
w2 1 · c q1, q3
w3 0 · c
w4 1 · c q1
w5 2 · c q2, q5
w6 2 · c q2, q4, q5
w7 1 · c q4, q6
w8 2 · c q2, q4, q6

(a) Cost of each keyword

users Cost
q1

3
7
c′ + ( 1

3
+ 1

2
+ 1) · c

q2
3
7
c′ + ( 2

2
+ 2

3
+ 2

3
) · c

q3
3
7
c′ + ( 1

3
+ 1

2
) · c

q4
3
7
c′ + ( 2

3
+ 1

2
+ 2

3
) · c

q5
3
7
c′ + ( 2

2
+ 2

3
) · c

q6
3
7
c′ + ( 1

2
+ 2

3
) · c

q7
3
7
c′ + 1

3
· c

(b) User individual cost

a keyword he never requests. Thus, the total cost of searching
a certain keyword is only borne by those users who request it.
Thus, the cost sharing is at the granularity of n users instead
of each group. For each unique keyword, we calculate its total
cost in all combined queries, and then evenly distribute the cost
among all users querying this keyword. That is, if a keyword
is queried by m of n users and appears in t of k combined
queries, its total search cost is tc, and each one from m users
is equally responsible for a cost share of tc/m.

We show how to share the total cost using the grouping
result shown in Table IV(a) under the constraint of 3 keywords.
For the rest of this paragraph, each user i is identified by
his query qi. The grouping result is G1 = {q1, q3, q7},
G2 = {q2, q5}, and G3 = {q4, q6}. Thus, the cost paid to the
corresponding data owner is 3c

′
, equally distributed among

7 users. Table Va presents the total cost for each keyword
and who should be fairly responsible for the corresponding
cost. Table IV(b) gives the final split cost for each user. For
example, user 1’s total cost is 3c′/7+(1/3+1/2+1)c, where
(1) 3c′/7 is paid to the data owner, shared with all other 6
users; (2) c/3 comes from querying keyword w1, shared with
users q3 and q7; (3) c/2 comes from querying keyword w2,
shared with q3; (4) c comes from querying keyword w4 by
himself.

B. Theoretical Analysis

We present theoretical analysis to demonstrate that our cost
sharing mechanism achieves some desirable properties. For
group-strategyproofness, we should demonstrate that each user
will honestly disclose his real query request, even if they are
permitted to collude. For each keyword, if a user’s dominant
strategy is to truthfully tell whether he wants to query it or
not, then truth-revealing is his dominant strategy. Thus, we
can divide the whole proof into d steps, and the j-th step
shows that each user would prefer revealing his real request
on the keyword wj in our cost-sharing mechanism. Thereby,
we divide our cost sharing mechanism on keyword search part
into d cost sharing methods, one for each keyword, then we
prove each method satisfies group-strategyproofness.

The cost sharing method of keyword wj is a function,
ξj , which distributes the total cost of searching for the j-th
keyword, denoted as Cj , to its requesters. More formally, ξj
takes two arguments, a subset of users G and a user qi, and
returns a nonnegative real number satisfying the following: (1)
if qi 6∈ G then ξj(G, qi) = 0, and (2)

∑
qi∈G ξ(G, qi) = Cj .

As is proven in [29], if ξj is a cross-monotone, then the mech-
anism specified above is group-strategyproof- for keyword wj .

Thus, we need to prove ξj is cross-monotone. A cost sharing
method can be said to be cross-monotone if for G ⊆ R,
ξj(G, qi) ≥ ξj(R, qi) for every qi ∈ G.

Lemma 3. For every j ∈ [1, d] , ξj is cross-monotone.

Proof. Any qi ∈ R \ G refers to a user not requesting the
j-th keyword, thereby they are charged zero cost share. Thus,
G ⊆ R, ξj(G, qi) = ξj(R, qi) for every qi ∈ G. Thus, ξj is a
special cross-monotone cost sharing mechanism.

Theorem 4. Our cost sharing mechanism satisfies group-
strategyproofness and sharing incentive for all users.

Proof. The property of group-strategyproofness can be proven
using Lemma 3. To show sharing incentive, we should reveal
that for any user, leaving his current assigned group would
not bring him more benefits. Sending an individual query
definitely brings more cost paid to the data owner, which is
cost-inefficient. As is shown in Eq. (3), grouping is always
beneficial for each user to save cost paid to data owners. Thus,
no one has incentive to leave.

VI. MULTIPLE SUBSTITUTE DATA OWNERS

Previously, we focus on the query grouping problem under
the assumption that a specific data owner and the price of
his database, i.e., c′, are given. In reality, many owners of
substitute commodities coexist in a data market for a data
buyer to choose from. Given the existence of multiple owners,
we could foresee that the competition of low prices harms all
owners’ interests and makes the data market move towards
melting malignancy. Meanwhile, individual owners may have
different attitudes to privacy leakage when monetizing their
data. A technique called differential privacy allows a data
owner to guarantee his data privacy in a self-controllable
manner. By applying differential privacy, a noisy version of
data is provided. It is an aggregated query answer added with
some random noise. The magnitude of random noise directly
impacts data privacy loss and can be personalized by the owner
herself. Obviously, less privacy loss lowers the data utility
from a buyer’s perspective, and also, discounts the valuation
of the owner’s database. Definitely, a buyer should pay less if
he gets an inaccurate result. This indicates that data pricing
should be inversely proportional to the privacy protection level.
Given different privacy protection levels with different costs, a
buyer can pair with a suitable seller among alternative owners
under his budget constraint and inaccuracy tolerance. However,
a selfish owner may cheat for more benefits. Thus, we want
it so that all data owners can truthfully report their privacy
protection levels to data buyers.

In this section, we aim to design a data trading mechanism
to satisfy two objectives in the below: (1) a pricing policy
that enforces each data owner to report his privacy protection
level truthfully, and (2) a matching policy that pairs buyers
and sellers efficiently. To assist the matching and administer
the trading conduction between buyers and sellers, a trusted
third party is necessary. In particular, a double auction fits
well with the bilateral nature of this scenario. Fig. 3(a) shows
a traditional double auction model. The trusted third party in
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a double auction is the auctioneer between data users (buyers)
and data owners (sellers). Buyers and sellers submit bids and
asks to the auctioneer, and then he needs to determine (1) the
winners among all buyers and sellers, (2) the way of matching
the winning buyers and winning sellers, and (3) the price it
charges the buyers and the price it rewards the sellers. In the
traditional double auction model, the auctioneer gains from
price differences.

b1 s1

b2

bM sN

s2. . .

. . .

bid

bid

bid

ask

ask

ask

auctioneer

(a) Traditional double auction.

b1 s1

b2

bM sN

s2. . .

. . .

bid

bid

bid

ask

ask

ask
smart contract

Blockchain

(b) Decentralized double auction.

Fig. 3: Double auction between sellers and buyers.

A. A Decentralized Double Auction Model

Thanks to the application of Ethereum blockchain, we
propose a decentralized double auction model which gets rid
of third-party intervention and automatically auctions between
buyers and sellers. Next, we describe the double auction model
in a blockchain-based decentralized data market. Fig. 3(b)
displays three logical roles in the proposed auction model,
where the trusted auctioneer is replaced by a smart contract.
• Buyers: A set of N buyers aim to query an identical type

of database. Each buyer should submit a bid to indicate his
bidding price as well as his minimal requirement on the
result accuracy. Here, we identify the i-th buyer based on
his bidding vector bi = [bidi, ri], where bidi is his biding
price and ri is his accuracy requirement. The biding price
bidi should reveal the buyer’s valuation about the required
database. Note, a buyer here can be considered a represen-
tative or a proxy of those buyers from the same group. We
assume that all those grouped buyers reach agreements on
the bidding price as well as the result accuracy requirement,
and act as a single buyer in regards to the outside.

• Sellers: A set of M sellers are able to answer all buyers’
queries with substitute databases. Each seller also needs
to submit an ask to indicate his asking price as well as
his requirement on the privacy loss. Since the privacy loss
is inversely proportional to the query answer quality, we
use the answer quality a seller can provide to reflect his
privacy protection requirement. Here, we identify the j-th
seller based on his asking vector sj = [askj , aj ], where
aski is his asking price and aj is his accuracy quality. Each
seller should truthfully report the accuracy quality he can
provide.

• Smart Contract: Given B and S, the one-round execution
of this smart contract should give the results of the winning
buyer set Bw ∈ B, the winning seller set Sw ∈ S, the
matching between Bw and Sw, the price P bi that the winning
buyer bi is charged, and the payment P sj that the winning
seller sj is rewarded. In fact, P bi ≥ P sj always holds for
any matched buyer-seller pair (bi, sj). Since all miners will
execute this smart contract, decisions can be obtained in

a decentralized and trust-worthy manner. The difference
between the total charges and the total payments will be
regarded as transaction fees for the corresponding miner.

B. Utility of Buyers and Sellers

Given a buyer-seller mapping, i = m(j), which ensures
that aj ≥ ri, the utility of buyer bi and that of seller sj are
respectively defined as follows:

U bi =

{
aj · bidi − P bi bi ∈ Bw,
0 otherwise.

(13)

Usi =

{
P sj − askj si ∈ Sw,
0 otherwise.

(14)

Accordingly, we can obtain the utility on the buyer side,
denoting UB =

∑
U bi , and the utility on the seller side,

denoting US =
∑
Usi , respectively.

Definition 1. (Social Welfare). The social welfare for all
buyers and sellers is defined as

Usw = UB + US =
∑

j∈Sw

aj · bidm(i) − askj . (15)

C. Objective and Desirable Properties

The objective of this work is to design strategy-proof
auction mechanisms for the data market that maximizes the
overall social welfare, while satisfying buyers’ result quality
requirement.

maximize Usw (16a)
subject to ri ≤ aj if i = m(j) (16b)

P bi = P sj if i = m(j) (16c)

To understand the meaning of strategy-proof in the setting
of auctions, we firstly introduce the concept of truthfulness
and individual rationality. Above these two, we also introduce
computational efficiency as another design target.
• Truthfulness: An auction mechanism is truthful if playing

(bidding or asking) truthfully is a weakly dominant strategy
for each player (buyer or seller) that only concerns about
his/her own utility. In other words, no buyer can improve his
utility by submitting a bid different from his true valuation,
and no seller can improve his utility by submitting an
ask different from his true cost. Specifically, it implies the
following for our auction model: each buyer should report
his true valuation on the query result, and each seller should
report the true answer quality he can provide.

• Individual rationality: No winning buyer is charged more
than his bid, and no winning seller is rewarded less than
his ask. With respect to our auction model, this means that
for every winning matching between bi ∈ Bw and sj ∈ Sw,
P bi ≤ bidi and P sj ≥ aski holds.

• Computational efficiency: The auction outcome, which in-
cludes the winning sets of buyers and sellers, their mapping,
and the clearing price and payment, is tractable with a
polynomial time complexity.
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Fig. 4: Pricing private data given V = 1.

D. Valuating Private Data

As we mentioned before, we want it so that each seller
truthfully reports his privacy protection level, i.e., his answer
quality. Thus, we build a weak binding between the asking
price and the answer quality when a seller submits his ask.
When reporting a certain value of his answer quality, the
seller’s asking price cannot exceed an upper bound, which
is predefined in the smart contract. Otherwise, his asking
will be discarded as invalid. In the following, we provide a
framework to figure out different upper bounds for different
answer qualities. Given the guidance on the upper bounds,
each seller valuates his database based on his privacy loss and
risk attitude. The risk attitude here describes how a seller could
lower his price in order to get more buyers.

For simplicity, we just assume that all substitute databases
have an equal value V . Then a seller discounts the value of his
database with the answer quality q to Vq . Thus, his asking price
should never exceed that value, i.e., asking ≤ Vq . Since dif-
ferent sellers have different risk attitudes, they can determine
their final asking prices based on their individual risk attitudes.
We divide sellers into two types: conservative and liberal. A
conservative seller will apply a logarithm function, shown in
Eq. (17a), to determine his final asking price, while a liberal
seller will choose a sublinear function, shown in Eq. (17b).
Fig. 4 gives an example under the condition of V = 1.

ask =
22V q√

500 + 250q2
(17a)

ask =
V log2(9000q

2 + 1)

112
(17b)

E. Truthful Auction Design

To maximize the social welfare as shown in Eq. (15), it is
natural to select sellers with high qualities and low costs to
match the buyer with higher bidding prices. Obviously, those
liberal high-quality sellers would be favored. In this section,
we present a design to get a unique solution for our proposed
auction model. It contains two sub-procedures specified in
Algorithm 2 and Algorithm 3, which correspond to two stages,
one is for winner determination and the other is for pricing,
respectively.

Firstly, we sort the sellers in non-decreasing order by the
ratio of asking prices and answer qualities, and sort the buyers
in non-increasing order by their bids. After sorting, the winner
determination process greedily matches the buyers and the
sellers. That is, a buyer always chooses a seller with the
highest cost efficiency while still satisfying his result accuracy

Algorithm 2 Winner Determination

Input: Set of buyers B, vector of query result quality require-
ment r and bidding price bid, set of sellers S, vector of
query result quality guarantee q and asking price ask.

Output: Set of winning buyers Bw and winning sellers Sw,
buyer-seller mapping matrix m.

1: function WINNER-DETERMINATION(B,S)
2: Bw ← ∅, Sw ← ∅, mN×2
3: Sort S by the ratio of asking prices

and answer qualities in non-decreasing order:
ask1
q1
≤ ask2

q2
≤ · · · ≤ askM

qM
4: Sort B by bids in non-increasing order:
bid1 ≥ bid2 ≥ · · · ≥ bidN

5: for all i ∈ [1, N ] do
6: for all j ∈ [1,M ] do
7: if bidi ≥ askj and ri ≤ qj then
8: Add [i, j] to m
9: Bw ← Bw ∪ i

10: Sw ← Sw ∪ j
11: break
12: Add [i,−1] to m
13: return Bw, Sw, m

Algorithm 3 VCG Pricing

Input: Set of winning buyers Bw, set of winning sellers Sw,
and buyer-seller mapping matrix m.

Output: Vector P b of charges for buyers Bw and payments
P s to sellers Sw.

1: function WINNER-DETERMINATION(B,S)
2: P b ← [0]N , P s ← [0]M
3: for all i ∈ [1, N ] do
4: if bi ∈ Bw then
5: P bi = bidmf

6: for all j ∈ [1,M ] do
7: if sj ∈ Sw then
8: P sj = askmf

9: return P b, P s

requirement. As a database is a digital good, a seller can
infinitely sell it. Thus, buyers can choose the same seller.
Algorithm 2 shows the pseudo-code of the winner selecting
algorithm. We can see that the running time of Algorithm 1
is O(NM), which is polynomial time.

In the pricing phase, we apply VCG mechanism to obtain
truthfulness, which is shown in Algorithm 3. Each winning
buyer pays the highest failure bidding price, and each winning
seller receives the highest failure asking price. It is obvious
that the time complexity of Algorithm 3 is O(N +M).

VII. PERFORMANCE EVALUATION

Our evaluation consists of two parts. In the first part, we
focus on evaluating our proposed cooperative search scheme
on real query traces AOL [30]. In the second part, we imple-
ment an Ethereum testbed to demonstrate the practicality of
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(c) X-axis : keyword density.
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(d) X-axis : delay constraint.
Fig. 5: Evaluations of grouping strategies on real query traces. MR: Mathematic Relaxation, GP: Greedy Partition, and NA: Naive Greedy.

our scheme, and also analyze the actual relationship between
the keyword number and the search delay.

A. Cooperative Search Scheme

Our experiments evaluate two grouping strategies in terms
of total cost reductions and the cost sharing mechanism in
terms of individual cost saving. Mathematic relaxation was im-
plemented with MATLAB-R2017b and the greedy algorithms
were implemented with Eclipse 4.6 in Java. All experiments
are conducted on AOL. As AOL is a huge query collection,
we randomly choose 200 users with 31 804 queried keywords
in total, among which 17 786 are unique. Thus, a 400×17786
binary matrix is constructed to reveal each query’s request
on each keyword. Since it is still a large array, we semi-
randomly select part of the matrix in each experiment to
satisfy pre-set constraints on dictionary size, query number,
and keyword density. For simplicity, we define two parameters:
keyword density and charge ratio. Given a d-size dictionary
and an n-query set Q, keyword density ρ of Q is defined as
ρ =

∑n
i=1 |qi| /(n × d). Given c′ from a data owner and c

from miners, charge ratio r is defined as r = c′/c.
Grouping strategies: We analyze the percentage of reduced

total cost using our proposed grouping strategies: Mathematic
Relaxation (using PGD here since the query volume is large),
Naive Greedy and Greedy Partition. Fig. 5 shows, in all
parameter settings, all strategies achieve cost reduction by
at least 24.8%. Greedy Partition works slightly better than
Mathematic Relaxation, and Naive Greedy achieves the least
total cost reduction, which is around 50% of the other two
strategies. Since the complexity of Naive Greedy and Greedy
Partition is O(n2) and O(n3), respectively, we could see
an inevitable tradeoff between efficiency and performance.
Now, we analyze how each parameter influences the total
cost reduction. In Fig. 5(a), as n increases, the total cost
reduction also increases. Given a fixed ρ, changing d has little
effect on the cost reduction. Fig. 5(b) reflects, as ρ increases
from 0.1 to 0.25, the total cost is reduced by about 10% for
each unique n. In Fig. 5(c), we have two set comparable
parameters: (d = 200, n = 150) and (d = 300, n = 100).
Given a fixed ρ, each set has the same number of 1s. From this
experiment, we could see the first set has more cost savings,
since a smaller size of d yields higher chances of keyword
overlapping. Fig. 5(d) reflects that the effect of delay constraint
α on the total cost reduction decreases as its value increases.

Cost sharing mechanism: In the second part, we study
individual cost saving under our cost sharing mechanism by
picking up 10 users with d = 100. Each time, we change r and
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select a better one from grouping results from Mathematic Re-
laxation and Greedy Partition. We compare the cost reduction
between individuals and the average. As is shown in Fig. 6,
individuals can benefit from our grouping strategies. Besides,
no user largely deviates from the average level, which shows
our cost sharing mechanism can achieve fairness.

Summary: Both grouping strategies are local optimal.
Mathematic Relaxation uses random restarts to produce multi-
ple rounds to mitigate this problem. The larger the number of
random restarts, the better the performance, but the longer the
execution time. Therefore, Greedy Partition is more appropri-
ate for large scale query systems, and Mathematic Relaxation
can be used as the baseline to measure the grouping quality.
In terms of the cost sharing mechanism, each user can achieve
cost savings near around the average saving.

B. Double Auction

To show the efficiency of our proposed double auction
mechanism, we compare the social welfare yielded by the
double auction with that yielded by a single auction in the
buyer side. We consider two different settings. In the first
setting, we assume the seller set is fixed, and we increase
the number of buyers. As is shown in Fig. 9(a), the double
auction always brings a higher social welfare to the whole
data market. In the second setting, we fix the buyer set and
allow more and more sellers to join in the auction. The result
is given in Fig. 9(b), which is quite similar with what we have
in the first setting.

C. Ethereum Testbed

To demonstrate the practicality of our scheme, we imple-
mented a testbed in a simulated Ethereum network called
TestRPC [31]. TestRPC is a fast and customizable blockchain
emulator. It sets mining time as 0 while truly revealing exe-
cution time and gas consumption of a transaction. This design
allows us to focus on the search delay itself without being
affected by mining or waiting delays. Our Ethereum testbed
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Fig. 8: Decentralized double auction between buyers and sellers.

can be helpful in revealing the real relationship between the
number of keywords and search delay by the miners. This
provides a better estimate for search delay in the real system,
and thereby, a better estimation of the grouping constraint.

Keyword number and search delay: We conduct two
experiments to verify the actual relation between the keyword
number and search delay. We stored a 5KB database with
20 keywords and 30 files, each tagged with one or more
keywords. In the first experiment, we randomly select 5
keywords and incrementally add 20 more each time to see
how the execution time changes. The result shows that, as the
number of keywords increases, the delay time also increases,
though there exists a slowdown in its growth rate. In the second
experiment, we dedicatedly design 5 query sets, each including
4 queries. The total keyword number in each set is fixed at
10, while the unique keyword number changes. For each query
set, we execute them in two ways: (1) executing all queries
individually, and (2) executing a single query composed of
4 queries. We compare accumulative execution times and
combined execution times, and analyze how execution time
reduces as the number of overlapping keywords increases. The
result of this experiment shows that the relationship between
the number of overlapping keywords and execution time is
nearly proportional. Based on the above results, we conclude
that the search delay is at least sublinear to keyword numbers.

Charge ratio: In our real implementation, we store a 1.4MB
database with 300 unique keywords and 2000 files. Each file is
tagged with some different keywords. We issue 75 transactions
in order to store the entire database in blockchain. When
previously evaluating our cost sharing mechanism, we find that
charge ratio r can affect individual cost savings as well as the
total cost reductions. Thus, when performing experiments on
our testbed, we first analyze how charge ratio r can affect
grouping results, hence changing cost reductions. As is shown
in Fig. 7, there is a positive sublinear relationship between
the total cost reduction and charge ratio r. In our previous
sections, assuming r = 1 to yield a maximal reduction on
total cost is acceptable, since it can be adjusted by a factor.

Four-user cooperative search: We also envision a small
four-user setting with different queries, and conduct several
optimal cooperative searches and their individual searches.
Fig. 9 reflects the cost reduction in the form of the transaction
number and the gas consumption amount, both of which are
important cost measures in Ethereum. These two parameters
follow a very similar changing pattern if given the same
inputs. The reason for this is that each transaction invokes the
execution of the same search function. As we can see, the cost
reduction is positively related to the ratio of the overlapping
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Fig. 9: Cost reduction using testbed (X-axis : number of (overlapping files,
unique files) tuples in non-grouping search result).

matched file number and the unique matched file number,
which is a reflection of the overlapping keyword number in
original queries.

Summary: Using our testbed, we analyze the actual relation
between the keyword number and the search delay, which
is sublinear. Experiments are conducted to see how charge
ratio affects cost reduction. The pricing for the search part
has more effects on the total cost reduction compared with
the owner’s pricing. The last experiment on the four-user
cooperative search has demonstrated the practicality of our
proposed scheme.

Discussion: In terms of delay time, as we mentioned
in section VII-C, an Ethereum-based data market has extra
transaction-waiting time and mining delays compared with a
traditional centralized model. Currently, a transaction on the
Ethereum blockchain has a pending time between 30 seconds
and 16 minutes, which is acceptable. A longer delay is possible
due to the transaction volume of Ethereum platform. The
reason why we choose Ethereum is just because we do need
a platform that enables blockchain as well as smart contract.
We can either switch to other less popular platforms, such
as CITA, or we can implement our own platform, where a
permissioned blockchain is applied, to speed up the transaction
processing.

VIII. CONCLUSION

In this paper, we present a cooperative search scheme on
an Ethereum-based data market. We take advantage of smart
contract and gas system in Ethereum to separate a query cost
into two parts: one for data owners and the other for miners.
We also make use of grouping strategies to provide efficiency
and cost savings for the users. We provide three methods, suit-
able for different scenarios, to compute an efficient grouping
result. Additionally, we propose a fair cost sharing mechanism
to split the total cost among users given a grouping result.
This mechanism guarantees some desirable properties such as
group-strategyproofness and sharing incentive to avoid free-
riders. The experiment results show that our scheme is efficient
in terms of cost reduction for both the group as a whole and
the individuals.
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