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Abstract—The Internet of Things (IoT) has rapidly grown
in the past decade as an emerging technology. Due to the
heterogeneity and energy limitations of IoT devices, adopting
efficient management practices for developing IoT applications
and managing IoT networks is a challenging task. One of the most
critical IoT challenges that needs to be considered is routing due
to its significant impact on energy consumption. Software Defined
Networking (SDN) is a novel approach that decouples the control
plane from the data plane, enabling network administrators to
program and manage their networks more efficiently. This paper
proposes an energy-aware routing mechanism for IoT networks
by leveraging the capabilities of SDN. In the proposed method,
the SDN controller has a global view of the network devices
and establishes several optimal clusters in the IoT environment
using Fuzzy logic. Then, the controller computes optimal routes
by combining the Fuzzy logic system and the Improved African
Vulture Optimization Algorithm (IAVOA). Applying this mech-
anism enables data packets to be routed through IoT devices
with sufficient energy, leading to prolonged network lifetime and
improved Quality of Service (QoS). Simulation results confirm
that the proposed solution significantly improves energy efficiency
and QoS in terms of packet delivery ratio.

Index Terms—AVOA, Energy-aware routing, IoT, Qos, Rout-
ing, Software-defined networks.

I. INTRODUCTION

With the rise of electronic circuits and the Internet, the
Internet of Things (IoT) has become an integral component
of modern society. IoT applications are widespread, spanning
areas such as healthcare [1], security [2], smart home [3],
exploration of unknown underwater areas [4], transportation,
and industrial systems [5]. In IoT networks, overcoming the
heterogeneity of devices and enabling gadget cooperation
using Software Defined Networking (SDN) is feasible. This
technology enables simultaneous communication between var-
ious communication technologies, as the entire network is
managed and monitored by an SDN controller [6]. Thus, using
an SDN controller, it is possible to manage the system uni-
formly and plan for the network (e.g., routing). The centralized
position of the SDN controller provides a global view of the
topology and network conditions, enabling adequate control
of the system, such as guiding and controlling Quality of
Service (QoS). In fact, the main role of the network layer
is to realize communication among IoT devices, efficient data
routing, and collaborative measurement. IoT routing protocols
must meet network performance parameters, including energy
efficiency, heterogeneity, mobility, scalability, reliability, and
convergence. Their main function is to establish an efficient,

Fig. 1: Energy-aware layered architecture for SDN-IoT.

reliable, and energy-aware path to provide the longest lifetime
for the entire IoT network [7].

According to Cisco’s projections, the number of internet-
connected devices is expected to reach 41 billion by 2025 [8].
Such devices generate massive amounts of data that require
real-time processing. The International Data Corporation fore-
casts that the volume of data produced by IoT devices will
reach 73 zettabytes by 2025 [9]. Despite their numerous
advantages, IoT devices, such as sensors, have limitations
in terms of computing power, storage capacity, and energy
sources, thereby posing significant challenges to their de-
velopment [10], [11]. To overcome these challenges, many
studies have proposed the use of cloud computing and edge
computing to process the data generated by IoT devices [12],
[13]. However, it is crucial to develop specialized protocols
to reduce energy consumption in these networks. Clustering
is a widely used and effective method for reducing energy
consumption by aggregating data and preventing the transmis-
sion of duplicate information [14]. To handle heterogeneous
nodes, a flexible layered architecture is necessary. In addition,
SDN is a modern approach that can increase network flex-
ibility [15]. SDN separates the control plane from the data
plane, allowing for dynamic network control, better QoS, and
network management simplicity [16]. SDN is a promising
approach in IoT that enables controllers to detach from sensor



nodes. The SDN controller determines the various parts of the
network and applies current input rules based on information
received from the network. As such, SDN has the potential
to optimize resource usage and enhance network performance
in IoT environments. SDN enables network administrators to
manage network services without evaluating low-level details.

A. Motivation

IoT enables the connection of various devices to the internet.
IoT sensors can automatically track, process, and route data,
allowing for the execution of various applications in real-time.
The IoT enables the transfer of information over the internet
without human intervention. This dramatically changes peo-
ple’s lifestyles and allows for more proactive device behavior
in response to reactive triggers. Heterogeneous devices will
be deployed to locations that were previously inaccessible.
The IoT is composed of extensive heterogeneous networks
with varying capacities, processing power, and platforms.
Routing protocols are required to facilitate communication
between different devices to meet these requirements. Various
issues slow down the communication process in the IoT.
The heterogeneous network refers to devices with different
capacities, geographic locations, speeds, and energy consump-
tion. There is no unique identification for each device in the
environment. Most devices in the IoT are low-power and
have lower computational capabilities. Energy consumption
plays an important role in data transmission in the network.
Recently, SDN has emerged as an evolving technique in IoT
networks. SDN enables IoT networks to dynamically and
efficiently manage network functions through programmable
control. In IoT applications, intelligent sensors suffer from
low battery life, and they are usually deployed in network
environments where recharge is often not feasible. In addition,
SDN integration with an IoT-enabled sensor network presents
numerous challenges, such as selecting control nodes, load
balancing, and optimization.

As the majority of energy consumption in IoT networks
occurs during packet transmission and reception, multi-hop
routing has been introduced as an effective method for reduc-
ing energy consumption in these networks [16]. Therefore,
in this study, we aim to simultaneously consider clustering
and multi-hop routing to reduce energy consumption in IoT
networks. We have used various criteria for clustering and
selecting the appropriate cluster head. Since the IoT environ-
ment is dynamic and uncertain and the criteria for selecting
cluster heads are in conflict with each other, the use of a
fuzzy system can be promising for creating suitable clusters in
these environments. In addition, we have used another fuzzy
system to select the best intermediate node among the available
nodes, which considers both the energy of the nodes and their
distance. The main contributions of this study are listed below.

• We improved the AVOA algorithm for solving clustering
problems by applying an objective function based on the
fuzzy system.

• We considered different criteria such as distribution and
load balance of clusters and centrality and residual energy

of nodes in selecting the cluster head. We defined new
criteria to measure the degree of distribution for the
cluster heads in the environment and the load balance
of clusters.

• We increase the scalability by reducing control packets
using cluster structure and routes in SDN architecture.

This paper is organized as follows: Section II outlines
the related work and motivation for the research. Section III
discusses previous work and key concepts. The proposed
method is discussed in Section IV. Simulation results are
presented in Section V, and Section VI concludes with future
work and conclusions.

II. RELATED WORK

In this section, recent routing protocols and methods for IoT
networks have been reviewed. Nazari et al. in [3] introduce an
SDN-based clustering approach with an intelligent algorithm
for energy conservation in the IoT. Their method utilizes an
evolutionary algorithm based on virtual grids to ensure load
balancing and cluster distribution in the environment. SDWSN
is a software-defined sensor network that combines SDN and
WSN to create a more flexible system [17]. In SDWSN, the
next hop determination is carried out using a fuzzy system
that employs various criteria, such as remaining power (RP),
node cost (NP), nearest neighbor (NN), and queue length (QE).
Eghbali et al. propose a multilayer SDN-based system for
monitoring data and load balancing in IoT devices [18]. Their
proposed architecture prevents the controller from becoming a
bottleneck and facilitates the use of management mechanisms.
Experimental findings show that their technique improves
system performance by reducing costs and waiting times.
In [19], the authors introduce an SDN-based load balancing
service (SBLB) that minimizes response time and resource
usage for cloud service customers. SBLB components include
an application module, an SDN-based network controller, and
cloud servers. Other sub-modules are also used for active
load balancing, service monitoring, and categorization. In this
system, all incoming communications are processed immedi-
ately, and the controller monitors the available server set. The
algorithm also reduces response time.

In [20], a cluster-based traffic control strategy is proposed
to reduce the control message load in SDN networks. This
method combines the old decentralized routing and controlled
SDN routing and makes it a hybrid. The induced overhead
of the SDN controller communication is reduced by this
approach. An exploratory algorithm for optimizing routing in
SDN has been proposed in [21]. This algorithm is developed
based on maximizing the utilization of bandwidth in active
links. The authors aim to reduce energy consumption by
increasing the use of network links and reducing the use of
network equipment. In [22], a cluster-based routing method
is presented for efficient routing in IoT sensor networks. This
modeling uses energy-aware network management and energy
consumption to effectively route packets while minimizing
energy consumption. The network lifetime has increased due



to the use of convolutional neural networks and fuzzy rules
for load balancing.

MHC-RPL is a multi-hop clustering-based routing protocol
for RPL, which has been proposed to reduce energy consump-
tion in the IoT networks [23]. At the first level, it reduces the
number of control messages sent in the RPL network. In the
next stage, network traffic is routed using SDN and Q-learning
algorithm. Performance results show that it outperforms ordi-
nary protocols in terms of global delays, packet transfer rate,
and energy consumption. In [24], a dynamic algorithm for
efficient energy-relay node selection in variable environments
over time has been proposed. The next relay node is selected
based on link cost and reward, using the nodes’ location
and transition probability (calculated by Markov chain). Sim-
ulation results show that DRA-EERS consumes less energy
compared to the existing Dijkstra algorithm. One limitation
of this algorithm is that its algorithm complexity increases
as the network size increases. In the future, the ability to
move to nodes can be added to the dynamic network. In [25],
more inactive links are created to improve routing in SDN.
Here, edge network devices are loaded with more traffic to
create more idle links. For this purpose, a link-based genetic
algorithm (LBGA) has been proposed. Although this strategy
may provide sufficient energy efficiency in some time periods,
overall energy consumption may increase. However, increasing
energy efficiency by creating less active links can be an
effective solution for managing delay and bandwidth, which
needs to be focused on. Additionally, the authors emphasize
reducing active links for packet exchange between switches
and controllers to satisfy controller load constraints.

In [26], an algorithm-based optimization method is proposed
to increase system lifetime. The method considers intra-cluster
energy consumption, inter-cluster energy consumption, and
energy consumption of non-clustered nodes. The article uses
a layered system for clustering, with nodes closer to the
base station assigned less radio range to reduce cluster size
and conserve energy. The goal is unequal clustering, where
cluster heads close to the base station have more energy for
relaying data. In [27], the objective is to minimize energy
consumption and maximize network lifetime in IoT. The
Butterfly Optimization Algorithm selects optimal cluster heads
based on several criteria, including remaining node energy,
distance, node degree, and centrality. After clustering, data is
sent to cluster heads for aggregation and routing towards the
base station, and Ant Colony Optimization is used to optimize
the path based on distance, remaining energy, and node degree
criteria. As explained above, SDN-based methods have been
used to reduce energy consumption in various applications and
to develop QoS-aware routing protocols for the Internet of
Things. The expansion of these methods can lead to more
energy-efficient and reliable IoT systems.

III. BACKGROUND

A. SDN and Routing Protocols for IoT Networks

In IoT networks, overcoming device heterogeneity and
enabling gadget collaboration using SDN is achievable. This

TABLE I: Main notations
Symbol Meaning

R The optimal position of the vulture
F The hunger level of the vultures
t/T The current/total iteration number
V (i) The position of the vulture
PSi The probability of selecting node i
d(t) Difference between current and optimal positions
pow The power of the Vultures-leader
nc The number of members in cluster

Ei/Eavg The current/average energy
Nalive The number of alive nodes
kopt The optimal number of clusters
LB Lack of load balancing
LD Lack of distribution

technology allows simultaneous communication among vari-
ous communication technologies. Since the entire network is
managed and monitored by an SDN controller, unified system
management and planning for the network (e.g., routing)
can be performed using the SDN controller. The centralized
position of the SDN controller provides a global view of
the network topology and conditions, allowing for appropriate
system control, such as traffic steering and QoS control. In
fact, the main role of the network layer is to achieve communi-
cation between things, efficient data routing, and collaborative
sensing. IoT routing protocols must meet network perfor-
mance parameters, including energy efficiency, heterogeneity,
mobility, scalability, robustness, and convergence. Their main
function is to create an efficient, reliable, and energy-aware
path to provide the longest lifetime of the entire IoT network.
In this section, recent protocols and methods for routing in IoT
networks have been reviewed. The energy-aware layered ar-
chitecture for SDN-IoT is divided into three layers, which are
shown in Fig. 1. Perception Layer collects data from various
sources such as smart devices, RFID, cameras, and sensors.
The Perception Layer is responsible for energy-saving data
collection, self-organization, load balancing, static control, and
more. Data is dynamically collected and effectively sent safely
to the Network Layer. Using Network Layer, data is directed
from the Perception Layer to the Application Layer. It is also
called the Transmission Layer. The Network Layer includes
routing, addressing, energy awareness, QoS, reliability, and
IoT gateway devices that transfer sensor data to the internet.
Cloud Computing and Storage Processing Layer is responsible
for monitoring the entire IoT system, including services and
applications. It can create business models, diagrams, and
reports based on information received from the lower layers.
Additionally, it makes precise decisions about the company’s
strategy and monitors the performance of the lower layers [28].

B. Fuzzy System

Computational intelligence techniques provide a promising
approach for routing algorithms in computer networks. One
of these techniques is fuzzy logic, which was first proposed
by Zadeh [29] for control systems. A fuzzy logic system uses
IF-THEN rules to describe the relationship between discrete
inputs and output variables, which consists of three parts:



fuzzification, inference engine, and defuzzification. Input vari-
ables are represented by fuzzy sets through the fuzzification
process. While the inference engine calculates fuzzy output
based on IF-THEN rules, defuzzification uses a mathematical
formula to convert fuzzy output into crisp values. Fuzzy
controller design imitates human reasoning. Fuzzy logic is
suitable for control problems that face difficulties in converting
them to mathematical models or complex environments with
uncertainty (such as IoT environments) [30].

A fuzzy system is a type of artificial intelligence that
uses fuzzy logic to approximate and reason about complex,
uncertain, and imprecise information. Fuzzy logic allows
for the representation of uncertain and vague concepts in a
more human-like way, by assigning degrees of membership
to various sets or categories. These degrees of membership
range from 0 (not a member) to 1 (fully a member), with
intermediate values representing degrees of partial member-
ship. Fuzzy systems can be used in a variety of applications,
including control systems, decision-making systems, pattern
recognition, and data analysis. In a control system, fuzzy
logic can be used to control a process based on imprecise
input data or uncertain environmental conditions. In decision-
making systems, fuzzy logic can be used to evaluate different
alternatives based on multiple conflicting criteria. In pattern
recognition and data analysis, fuzzy logic can be used to
extract meaningful information from complex and noisy data
sets. The key advantages of fuzzy systems are their ability to
handle uncertainty and complexity, their ease of implemen-
tation and interpretation, and their ability to mimic human
decision-making processes. Fuzzy systems can be designed
using various methodologies, including rule-based systems,
neural networks, genetic algorithms, and fuzzy clustering.

C. AVOA Algorithm

The AVOA algorithm, short for African Vultures Optimiza-
tion Algorithm. It simulates African vultures’ foraging and
navigation behaviors and is used for solving optimization
problems [31].The algorithm stages are as follows:

1) Initialization Stage: After forming the initial population,
the objective function is calculated for all individuals. Then,
the first and the second best solutions are selected as the best
Kruskal and suboptimal Kruskal. Eq. (1) is used to transfer all
other solutions in the population to the optimal and suboptimal
solutions.

R(i) =

{
BestV ulture1, if pi = α

BestV ulture2, if pi = β,
(1)

where R(i) indicates the optimal position of the vulture in the
current iteration. BestV ulture1 and BestV ulture2 represent
the optimal and suboptimal solutions, respectively. α and β lie
in the interval [0, 1]. The value of pi is obtained for choosing
the best solution using the roulette wheel and based on Eq. 2.

pi = Fiti/
∑n

i=1
Fiti. (2)

2) Vulture Hunger Calculation Stage: African vultures
have two feeding patterns. When their energy level is high,
they fly to more distant areas to find prey. But when they get
hungry, their energy drops, thus they hunt for prey alongside
stronger vultures. Eq. (3) shows the level of hunger of the
vulture. If the value of F is high, AVOA applies exploration,
or else it uses exploitation.

F = (2× rand1 + 1)× z × (1− (t/T )) + u. (3)

u = H × (sinw (π/2× t/T ) + cos (π/2× t/T )− 1). (4)

F represents the hunger level of the vultures, t denotes the
current iteration number, and T represents the total number
of iterations. rand1, z, and H are random values, which will
be different for each iteration. To avoid getting stuck in local
optima, u is used, thus increasing the exploration. As w in-
creases, the probability of optimization operations entering the
exploration phase increases. As w decreases, the probability
of optimization operations entering the development phase
increases. In fact, Eq. (4) simulates the rotational movement
of the vulture.

3) Exploration Stage: When |F | ≥ 1, AVOA enters the ex-
ploration phase. AVOA applies two strategies for exploration.
C1 and randC1

are used for selecting one of the strategy (C1

and randC1 are random values in the interval [0, 1]). When
C1 is greater than or equal to randC1 , the vulture updates its
position according to Eq. (6). When C1 is less than randC1

,
the vulture updates its position according to Eq. (7).

V (i+ 1) =

{
Eq.(6), if C1 ≥ randc1
Eq.(7), if C1 < randc1

(5)

V (i+ 1) = R(i)− |X ×R(i)− V (i)| × F, (6)

V (i+1) = R(i)−F+rand2×((Up−Low)×rand3+Low),
(7)

where V (i+1) represents the position of the vulture in the next
iteration. X is calculated by the formula X = 2×rand, which
represents the position vector where vultures move randomly
to protect their prey from other vultures. V (i) is the position
of the vulture in the current iteration. In Eq. (7), rand2 and
rand3 are random values, and Up and Low are the upper and
lower bounds of the vulture’s search domain, respectively.

4) Development Phase 1: When 0.5 < |F | < 1, AVOA
enters the first stage of development. The parameter C2 is
randomly determined for strategy selection. According to the
result of comparing C2 and randC2 , the Vulture updates its
position according to Eq. (9) or Eq. (12).

V (i+ 1) =

{
Eq.(9), if C2 ≥ randc2
Eq.(12), if C2 < randc2

(8)

V (i+ 1) = |X ×R(i)− V (i)| × (F + rand4)− d(t), (9)

d(t) = R(i)− V (i). (10)

d(t) represents the difference between the current position
of the Vulture and the optimal position. Eqs. (11) and (12)
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Fig. 2: Fuzzy ranking.

create a spiral equation between all current Vulture and one
of the best Vulture for modeling the Vulture’s spiral flight.

S1 =R(i)×
(
(rand5 × V (i))/2π

)
× cos (V (i)),

S2 =R(i)×
(
(rand6 × V (i))/2π

)
× sin (V (i)),

(11)

V (i+ 1) = R(i)− (S1 + S2). (12)

5) Development Phase 2: When |F | < 0.5, AVOA enters
the second phase of development. It means that the dominant
vultures are weak and hungry. Therefore, the other vultures
will surround them and engage in quarrels and fighting
amongst themselves. The parameter C3 is randomly selected
for strategy selection. According to the result of comparing
C3 and randC3

, the Vulture updates its position according to
Eq. (15) or Eq. (16).

V (i+ 1) =

{
Eq.(15), if C3 ≥ randc3
Eq.(16), if C3 < randc3

(13)

When the energy of a Vulture is insufficient, its hunger
increases, and it competes for the same prey. Eqs. (14) and (15)
model this behavior.

A1 =BestV ulture1(i)− |X ×R(i)− V (i)| × F,

A2 =BestV ulture2(i)− |X ×R(i)− V (i)| × F,
(14)

V (i+ 1) = (A1 +A2)/2. (15)

At this time, other Vultures compete with it and move in
different directions for hunting. This behavior is modeled as
in Eqs. (16) and (17).

V (i+ 1) = R(i)− |d(t)| × F × Levy(d), (16)

Levy(d) = 0.01× (u× σ)/(|v|
1
β ). (17)

Levy is a probability distribution function used to generate
random values that can further explore the search space.
Levy(d) is used to enhance the efficiency of AVOA. In
Eq. (17), d represents the problem dimension, u and v are
random values in the range [0, 1], and β is a fixed default
value of 1.5.

IV. PROPOSED APPROACH

In this section, a proposed protocol is presented that in-
cludes two main phases of clustering and routing. The clus-
tering phase includes sub-sections of ranking, configuration,
and stability. Initially, node information is collected at the
base station, and the controller ranks them based on their
remaining energy and the number of neighbors using a fuzzy
system. Then, using the AVOA algorithm and a fuzzy objective
function, the final clusters are selected based on the distribu-
tion criteria and cluster balance. Subsequently, the base station
broadcasts a message to all nodes. After receiving information
about the clusters, nodes connect to their nearest cluster in
the stability phase to deliver information to their respective
clusters. In the stability phase, sensor data is collected and
sent to the clusters, and after accumulating the information,
clusters prepare them for transmission to the base station.
The transmission of information from the clusters to the base
station is done through intermediate nodes and in a multi-hops
manner using a routing algorithm.

It is assumed that nodes are randomly scattered in the
environment, and after the nodes are deployed, a message
is sent from the base station to all nodes in the form of a
broadcast, informing them of the position of the base station.
It is also assumed that nodes are aware of their own location.
The nodes are considered stationary during the simulation and
all have the same initial energy.

A. Fuzzy Ranking

Initially, the nodes are ranked using a fuzzy system with
two inputs: the number of neighbors and the energy of the
node. Fig. 2 (a) shows the membership functions for the
number of neighbors, and Fig. 2 (b) shows the membership
function for the energy. The higher the energy and the number
of neighbors, the more deserving a node is to become a
cluster head. The node characteristics are given as inputs to
the fuzzy system, and the degree of membership for each of
the fuzzy variables is calculated. Then, using the total set
of rules specified in Table II, fuzzy inference is performed
and the output of the system is determined in the form of
fuzzy variables with different degrees of membership. The
output membership function, which models the output fuzzy
variables, is shown in Fig. 2 (c). These variables indicate the
level of eligibility of a node to become a cluster head. The
fuzzy variables are mapped to a numeric value between zero



TABLE II: The set of Ranking Inference Rules

Neighbors
Energy V L L M H VH

V L V V L V V L V L V L L
L V V L V L V L L L
M V L V L M H H
H L L H VH VH
VH L M H VH V V H

and one for better use. The closer the obtained value is to one,
the more deserving the node is to become a cluster head.

Z = (Xi −Xmin)/(Xmax −Xmin). (18)

It should be noted that all numerical inputs are mapped to
the range of zero to one using Eq. (18) and then given to the
fuzzy system.

B. Improved AVOA Algorithm

We have developed the AVOA algorithm for the custom
clustering problem. For this purpose, we introduce two new
operators to improve the accuracy of clustering and create
optimal clusters. By optimal clusters, we mean balanced
clusters. The operators used to improve AVOA are based on
the social life of animals and competition among them in
mating and survival. To do this, we consider each cluster as a
Vultures-leader that leads other Vultures (IoT devices) in the
cluster. The leader receives power from its group members
and competes with neighboring leader Vultures to find better
positions. If a Vultures-leader’s power is less than a threshold,
it is dethroned, and its members connect to neighboring
leaders. The power of the Vultures-leader is calculated as:

Powi = nci × (Ei/Eavg), (19)

where nci represents the number of members in cluster i.
Ei is the current energy of the Vulture-Leader node i. Eavg

represents the average energy of Vulture-Leader nodes. If
the power of a Vulture is less than the normal power, it
loses its legitimacy. Therefore, the threshold for removing the
leadership of a Vulture is calculated by Eq. (20).

Th1 = Powinit/α, (20)

Powinit = (Nalive/K)× (Ei/Eavg), (21)

where Powinit represents the initial and essential power for
leadership. Nalive indicates the number of alive nodes, and k
represents the total number of leader Vultures. The value of k
can be obtained based on the formula in Eq. (22).

kopt = (
√
N/2π)× (

√
ϵfs/ϵmp)× (M/d2toBS). (22)

The next operator is performed based on the clustering of
Vulture groups. When the number of cluster members exceeds
the threshold, the cluster is divided into two separate clusters,
and the Vultures will compete with each other for leadership.
The threshold for dividing a group is calculated based on:

TH2 = β ×X. (23)

Algorithm 1 IAVOA-Fuzzy

Input: Whole network information, kopt, IAVOA parameters.
Output: Clusters Heads and Routes.

1: Calculate kopt by Eq.(23).
2: Rate all IoT devices by Fuzzy-Ranking.
3: Set a probability for each IoT device based on the rate.
4: Cluster-Heads = IAVOA(Input)
5: Routes = FuzzyRouting(Input, Cluster-Heads)
6: return Clusters Heads and Routes =0

Algorithm 2 IAVOA

Input: Whole network information, kopt, IAVOA parameters
Output: Clusters Heads

1: Generation initial population.
2: while (stop condition not reached) do
3: Calculate LB and LD for individuals.
4: Evaluation vultures by Fuzzy-Clustering.
5: Set VFirstBest and VSecondBest by Eq.(1).
6: for (each vulture(Vi)) do
7: Calculate pi and F
8: if (|F | ≥ 1) then
9: Update Vi by Eq.(6) or Eq.(8).

10: end if
11: if (|F | ≥ 0.5) then
12: Update Vi by Eq.(10) and Eq.(13).
13: else
14: Update Vi by Eq.(16).
15: end if
16: Extract leaders from Vi.
17: for (each leaders(Lj)) do
18: Calculate Powj .
19: if (Powj < Th1) then
20: Remove Lj .
21: end if
22: if (Powj > Th2) then
23: Generation Lj .
24: end if
25: end for
26: end for
27: end while=0

Algorithm 3 Fuzzy-Routing

Input: Whole network information, kopt, Cluster-Heads.
Output: Routes.

Cluster Heads=VFirstBest.
for (each Cluster-Heads(CHi)) do

3: for (each CHj ∈ Neighbours CHi) do
Calculate fitnessj by Fuzzy-Routing (Sec.4-5).

end for
6: CHNext−Hop

i =max(fitness)
end for=0

In the case of removing the leadership of a Vulture and
dividing the cluster, a leader is assigned to each new cluster.
The criterion for competition to gain leadership among cluster
members is based on the remaining energy of the node.



TABLE III: The set of clustering rules

LD
LB V L L M H VH

V L V V H V H H M L
L V H VH H H L
M H H M L V L
H M M L V L V V L
V H L L V L V V L V V L

C. Fuzzy Clustering - IAVOA

The final clustering is performed using the improved binary
AVOA algorithm and a fuzzy objective function. For this
purpose, the initial population is created based on the ranking
performed in the previous step. In other words, the higher
the node’s fitness, the higher its chance of being selected.
Eq. (24) shows the probability function. The initial population
is formed based on the probability function and using the
roulette wheel selection according to Eq. (2).

PSi =

{
FS(Energy,NoNeighbours) if Ei > 0

0 else,
(24)

where PSi represents the probability of selecting node i. FS
is the output of the fuzzy system that determines the degree of
fitness of node i. In the objective function, clusters are formed
based on the centroids selected by the population. Then, two
criteria for cluster distribution and balance are calculated based
on Eqs. (25) and (26).

LD =
∑

Nuncovered/Nalive. (25)

LD represents the number of nodes without a cluster. Nalive

represents the number of alive nodes. The smaller the value
of LD, the better the distribution has been done. LD always
has a value between zero and one.

LB =
∑

|Xj −X|/(α×Nalive), (26)

where X = Nalive/k represents the number of members in
cluster j, and k indicates the number of clusters. The smaller
the value of LB, the better the balance between clusters will
be. To ensure that LB always has a value between zero
and one, we have used the coefficient α. The fuzzy system
used in the objective function has two inputs that receive
the distribution and balance values of clusters and determine
the fitness of a chromosome. The membership functions of
these criteria are similar to Fig. 2 (a), and the rules used are
also considered in Table III. Each cell in the table indicates a
rule. For example, the second row and the second column of
Table III shows that if the value of LB is equal to L and the
value of LD is equal to L, the fitness will be equal to V H .

The goal of the proposed method is to reduce the number
of nodes that are left without a cluster. However, there may
be a very small number of nodes without a cluster in each
round. To manage these nodes, three different approaches are
available. The first approach is to turn off the node during the
rounds in which it is left without a cluster. This method will

TABLE IV: The set of inference rules

Dist2BS
Energy V L L M H VH

V L L L V L V L V V L
L M L L V L V L
M H M M M L
H VH H H M M
VH V V H V H H H M

result in losing information. The second approach is multi-
hop routing within the cluster, in which the data node sends
its data to the nearest node connected to the cluster. The third
approach is to use the transmission to the base station directly,
which increases energy consumption. This method pays more
attention to energy and also prevents packet loss. Therefore,
the intra-cluster routing method is also used here.

D. Routing Phase

Since energy consumption is directly proportional to the
square of the distance, sending data through intermediate
nodes significantly reduces energy consumption and increases
the network lifetime. Therefore, in addition to determining the
clusters, the controller is responsible for determining the path
for each cluster. To do this, the next step for each cluster needs
to be identified. The next step should be one of the selected
clusters in the previous phase. To prevent loops in routing, the
intermediate node should always be closer to the source node
than the base station. Among the candidate nodes, the node
with more energy and a closer distance to the source node
has a higher suitability for selection as the intermediate node.
Therefore, the fuzzy system used in the routing section has
two inputs: distance and node energy. By receiving these two
inputs, the fuzzy system produces an output that represents
the suitability of the node for selection as the next step.

The membership functions for distance are similar to the
shape in Fig. 2 (a) and the membership functions for energy
are similar to the shape in Fig. 2 (b). The total rules used in
Table IV are provided. The output membership function that
models the fuzzy output variables is similar to the shape in
Fig. 2 (c). It is worth mentioning that we use the center of
gravity method to convert fuzzy output to numerical output.

V. PERFORMANCE RESULTS

In this section, we evaluate the performance of our proposed
method in two different scenarios. We also compare our
proposed method with several new methods. Since our pro-
posed method uses a metaheuristic algorithm for solving the
clustering problem, we have used related new algorithms for
comparison. For this purpose, we have used BFA-ACO [27],
IWO [26], ICA [32], and GA-SDN [3]. To evaluate a com-
prehensive simulation, it has been performed in MATLAB
software under identical hardware and software conditions and
was evaluated using the following performance metrics.

• Number of live nodes: indicates the number of IoT
devices whose energy has not run out at any given
moment in the simulation.

• Energy consumption: shows the average energy con-
sumed by IoT devices at each moment.



TABLE V: Simulation Parameters

Parameters Values
Data Pack size 4000 Bits
Hello Pack size 256 Bits

Efs 10pJ/bit/m2

Emp 0.0013pJ/bit/m4

EDA 5nJ/bit
ETx 50nJ/bit
ERx 50nJ/bit

Initial energy 0.5 J

TABLE VI: Simulation Scenarios

Scenario Network Area BS Location Number of Nodes
#1 200× 200 m2 (100, 210) 100
#2 300× 300 m2 (150, 310) 150

• Time of death of the first node: indicates the time when
the energy of the first node runs out.

• Network lifetime: various criteria have been proposed for
the lifetime of a network. Some consider the time of death
of the first node, some the time when the network loses
its connectivity, and some the time when the network
loses 20% of its nodes as the network lifetime. Here, we
use the third criterion, which is the death of 20% of the
nodes, as the network lifetime.

• Packet delivery ratio: indicates the ratio of sent packets
to received packets.

• Routing overhead energy: specifies the percentage of
energy consumed by control packets.

Table V shows the simulation parameters for IoT devices,
and Table VI presents the features of different scenarios and
the position of BS. Moreover, the simulation time for all
algorithms has been set equal to the time when 75% of the
total nodes die. To further evaluate the parameters of first node
death time, network lifetime, packet delivery ratio and energy
overhead, both scenarios were implemented and evaluated
with 100 and 150 nodes.

A. Results

1) Alive Nodes: The number of active nodes at any given
time is a measure of network reliability and stability. If the
nodes run out of energy, network cohesion and connectivity
are compromised. Disruptions in network connectivity lead
to loss of information as a section of the network becomes
disconnected from the base station, making it difficult for
some IoT devices to transfer their data. Fig. 3 illustrates this
measure in various scenarios. As evident, the proposed method
outperforms other methods as it takes into account the energy
criterion in both the clustering and routing phases.

Additionally, instead of broadcasting all control packets, the
proposed method sends them to the controller via the identified
routes in the routing phase. Avoiding the broadcast of control
packets saves energy and prolongs the lifetime of the nodes.
In contrast, the BFA-ACO and ICA methods use a centralized
approach for clustering and require the collection of network-
wide information at the base station. These methods do not
provide any mechanism for managing control packets. WOA
increases the stability phase to reduce the number of control

(a) Scenario 1 (b) Scenario 2

Fig. 3: Number of alive nodes.

(a) Scenario 1 (b) Scenario 2

Fig. 4: Average energy consumption.

packets, but it employs asymmetric clustering, which leads
to increased energy consumption in sub-clusters in large
clusters. However, control traffic management has been largely
addressed in GA-SDN. GA-SDN increases the stability phase
as much as possible and sends control packets only during
specific time periods.

2) Average Energy Consumption: One of the most sig-
nificant challenges and limitations of the Internet of Things
is the constrained energy resources of its devices. Therefore,
reducing energy consumption is the primary motivation in
designing routing protocols for these networks, as the majority
of energy consumption is associated with packet transmission
and reception. The average energy consumption for all IoT
devices is presented in Fig. 4. According to this figure, the
proposed method has better performance than the compared
methods. The fuzzy system used in the ranking phase gives
nodes with more energy and neighbors a better chance of
becoming cluster heads. In the routing phase, the fuzzy system
selects the best next hop based on distance and energy. Using a
fuzzy system on one hand, and preventing the dissemination of
control packets on the other hand, has led to a reduction in en-
ergy consumption in the proposed method. In the ICA, WoA,
and BFA-ACO methods, energy has also been considered in
selecting the appropriate cluster head. The main problem with
these methods is the lack of attention to control packets. WoA
attempts to reduce control packets by increasing the duration
of the stability phase. However, on the other hand, increasing
the radio range to reduce the number of uncovered nodes
leads to the creation of asymmetrical clusters. In contrast,
the proposed GA-SDN method attempts to distribute clusters
uniformly in the environment to reduce the number of nodes.
Additionally, the proposed method uses intra-cluster routing to
retrieve data from uncovered nodes, while direct transmission
or sleep/awake mechanisms are used in other methods to



(a) Scenario 1 (b) Scenario 2

Fig. 5: Death time of the first node

(a) Scenario 1 (b) Scenario 2

Fig. 6: Network life time.

manage uncovered nodes. Based on Fig. 4, GA-SDN has
been relatively successful in reducing energy consumption. In
this method, control packets are sent periodically, and during
the cycle, if the energy of the cluster head is less than the
threshold, it selects a new node as the cluster head from among
the cluster members and informs other members by sending
a message. This divides the tasks among the members of the
cluster and prevents premature death.

3) The Death Time of the First Node: This criterion deter-
mines whether different tasks are fairly distributed across the
network or not. If a node is continuously selected as a cluster
head, it consumes a significant amount of energy in collecting
and aggregating data from cluster members. This will lead to
the node’s rapid death. Evaluation findings shown in Fig. 5
indicate that the proposed strategy is significantly better than
alternative approaches because the proposed method leverages
SDN architecture for selecting optimal clusters and paths.
Having a comprehensive view of the network is very useful
and effective in selecting the best solution. In the proposed
strategy, attention to energy is one of the important criteria
for selecting, which has been considered in different phases
of the routing algorithm.

Additionally, the proposed algorithm selects balanced clus-
ters using the improved AVOA algorithm, which leads to a
balance in the energy consumption of cluster heads. Cluster
imbalance causes a cluster with more members to consume
more energy and its energy to be exhausted sooner than a
cluster with fewer members. The GA-SDN and ICA methods
also pay attention to cluster balance, while WOA uses asym-
metric clusters. It is noteworthy that WoA is more scalable
than GA-SDN in the event of the first node death. Meanwhile,
the BFA-ACO and ICA methods do not perform well due to
the lack of control packet management.

(a) Scenario 1 (b) Scenario 2

Fig. 7: Network stability.

(a) Scenario 1 (b) Scenario 2

Fig. 8: Packet delivery rate.

4) Network Lifetime: Since the death of some nodes results
in the loss of network connectivity, the lifetime of the network
is considered an important metric in the IoT. Fig. 6 shows the
network lifetime for different algorithms in various scenarios.
Additionally, in Fig. 7, we present the time of the first node
death, the time of 25% node deaths, the time of half of the
nodes dying, and the time of 75% node deaths. In all cases, the
proposed method performs significantly better, as it prevents
packet flooding. Moreover, the intra-cluster routing leads to
reduced energy consumption.

5) Packet Delivery Rate: Fig. 8 displays the packet delivery
rate expressed as a percentage. The proposed approach, due to
its use of multi-hop routing and intra-cluster routing, prevents
direct packet transmission and reduces packet loss. BFA-ACO
uses the ant colony algorithm for routing, but due to the
premature death of nodes, fewer packets reach the BS. GA-
SDN employs greedy routing, which increases the possibility
of path failure and may result in packets being trapped during
routing. The WOA approach uses multi-hop data transfer
to the BS, but due to the increased radio range of nodes,
the likelihood of packet collision and loss is significantly
increased. ICA also focuses on clustering and does not perform
routing within clusters.

6) Routing Overhead: The traffic overhead determines the
portion of the total energy consumption attributed to control
packets. Fig. 9 illustrates the traffic overhead for different
algorithms. This average energy consumption represents the
transmission and reception of control packets for IoT devices
and BSs. As evident, the proposed approach has been highly
successful in managing control packets and preventing their
indiscriminate dissemination. This has resulted in a significant
improvement in energy consumption and network lifetime.
SDN-based approaches are highly efficient due to the need



(a) Scenario 1 (b) Scenario 2

Fig. 9: Routing energy consumption.

for a comprehensive view to better manage the network.
However, in networks such as the IoT, precautions must be
taken to consider their limitations. It appears that the proposed
approach has been able to address this issue.

VI. CONCLUSION

In this paper, we proposed an energy-aware routing mech-
anism for IoT environments. The proposed method leverages
SDN programmability to establish optimal paths using Fuzzy
logic and the IAVOA heuristic algorithm. The global view
of the SDN controller is utilized to create optimal clusters
in terms of energy. Comprehensive performance evaluation
showed that implementing the proposed method as a routing
module in the SDN controller is a feasible solution for IoT
environments, leading to improved energy efficiency and QoS.
Future work could explore the scalability and feasibility of the
proposed method in larger-scale IoT environments.
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