Computer Networks 257 (2025) 110994

journal homepage: www.elsevier.com/locate/comnet

Contents lists available at ScienceDirect

ter
rks

Computer Networks S

ABUV: Adaptive bitrate and upsampling for video streaming on mobile

devices

Yichen Lu®®, Ji Qi?, Sheng Zhang "®-*, Gangyi Luo?, Andong Zhu ", Jie Wu ¢, Zhuzhong Qian "

a China Mobile (Suzhow) Software Technology Co., Ltd., Suzhou, Jiangsu, China
b State Key Laboratory for Novel Software Technology, Nanjing University, China
¢ Center for Networked Computing, Temple University, Philadelphia, PA 19122, USA

ARTICLE INFO

Keywords:

Video streaming
Mobile computing
Super-resolution

Deep neural networks
Reinforcement learning

ABSTRACT

Fueled by the popularity of mobile devices, mobile channels have become the preferred video delivery
medium. However, users often encounter a poor quality of experience (QoE) due to bandwidth limitations,
despite the implementation of adaptive bitrate (ABR) techniques. Recent advancements in super-resolution
(SR) models have offered a potential solution to this situation, while the process of SR on mobile devices can
introduce energy overhead and latency. To tackle these issues, we present ABUV, a system designed to enhance
mobile video streaming by integrating adaptive bitrate and super-resolution technologies. ABUV leverages
deep reinforcement learning to dynamically adjust both the bitrate and upsample decisions jointly based on
considerations such as energy overhead and available bandwidth. It employs an optimized SR model specifically
tailored for mobile devices, selectively applying the upsample process to chosen frames. Additionally, ABUV
incorporates user-specific streaming information and adapts to the unique network environment through online
training. In our experiments, we evaluate ABUV using real network traces and a diverse collection of videos,
and the results show that ABUV can save up to 59% of data consumption and improve QoE by 27% compared

to other video streaming systems.

1. Introduction

With the continuous increase in the number of mobile users, recent
reports indicate that the average user spends over 5 h per day using
their mobile phones [1,2]. Concurrently, there has been an exponential
surge in the demand for mobile video streaming, with mobile devices
contributing to over 75% of all video views [3]. However, the ever-
changing network environment poses a significant challenge to seam-
less video streaming for mobile users. The instability and fluctuations
in mobile networks often lead to issues such as video stuttering, blurri-
ness, and prolonged loading times, significantly impacting user satisfac-
tion and engagement. Mobile users have increasingly high expectations
for video quality, prompting video streaming service providers to strive
for higher resolutions and an enhanced user experience.

Dynamically Adaptive Streaming over HTTP (DASH) is a widely em-
ployed video streaming technology that utilizes Adaptive Bitrate (ABR)
algorithms to enhance users’ Quality of Experience (QoE) under fluc-
tuating network conditions. These ABR algorithms collectively aim to
determine the optimal bitrate for each video chunk, taking into account
the current network conditions. Nevertheless, they face challenges in
upholding QoE, particularly in scenarios with limited bandwidth, as

* Corresponding author.

E-mail addresses: sheng@nju.edu.cn (S. Zhang), jiewu@temple.edu (J. Wu).

https://doi.org/10.1016/j.comnet.2024.110994

they must strike a delicate balance between video smoothness and
quality.

Super-resolution (SR) is a powerful tool that can reconstruct high-
resolution images from low-resolution ones. Researchers have investi-
gated the application of SR models to videos [4-6], and recent studies
have specifically aimed at leveraging these models to enhance video
streaming [7-9]. While SRAVS [9] integrates SR into adaptive stream-
ing to enhance user QOE, it relies on a PC with a GPU to run complex
neural networks, making it unsuitable for mobile devices which often
lack sufficient computing resources. While NEMO [8] has been success-
ful in upsampling videos on mobile devices using the VP9 codec, it is
limited by a fixed upsampling factor and the inability to consider bitrate
selection. As a result, it struggles to enhance the quality of experience
(QoE) effectively, which hampers NEMO’s ability to adapt to dynamic
changes in the network environment and deliver optimal video quality.

Based on SR models, we have the capability to upsample low-
definition video chunks that are fetched in low-bandwidth environ-
ments. However, this process introduces additional energy overhead
and potentially increases the inference latency, which can degrade
the user’s QoE. Therefore, before running client-side upsampling, it is

Received 19 April 2024; Received in revised form 19 November 2024; Accepted 11 December 2024

Available online 25 December 2024

1389-1286/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Y. Lu et al.

crucial to optimize the SR models specifically for mobile devices. The
goal is to minimize energy overhead and inference time while main-
taining the improvement in video quality. Furthermore, the definition
of the fetched video chunk also affects the complexity of running SR.
It becomes a challenging task to determine which bitrate of the chunk
to fetch and which upsampling factor to apply. Balancing the energy
consumption and video quality is essential, and finding a solution
to achieve this balance is critical. Reinforcement learning emerges
as an important tool to tackle this problem, as it allows us to learn
the complex relationships among bitrate, upsampling factor, network
environment, and battery information.

In this paper, we present a novel system for video streaming on
mobile devices, which combines ABR and SR models to enhance the
viewing experience. To the best of our knowledge, ABUV represents
the first energy-efficient mobile video streaming system capable of
dynamically adjusting both the bitrate and upsampling factors in a
synchronized manner. Our contributions are outlined as follows:

» We introduce an agent based on Proximal Policy Optimization
(PPO) [10] that dynamically adjusts bitrate and upsampling de-
cisions jointly in response to real-time network and energy con-
sumption, instead of conventionally changing bitrate with a fixed
upsample factor.

We optimize the super-resolution model, ensuring its lightweight
nature to facilitate efficient video upsampling on resource-
constrained mobile phones.

We enable our system, ABUV, to perform adaptive retraining
based on user-specific video transmission history, enabling im-
proved adaptation to diverse mobile environments.

To validate our approach, we conduct experiments employing
real-world network traces and videos to train and evaluate ABUV.
Our results demonstrate that ABUV achieves up to 59% reduction
in data consumption while enhancing the QoE by 27%.

2. Related works and background

Adaptive bitrate streaming, commonly used in DASH [11] and
HTTP live streaming (HLS) [12], facilitates the streaming of video
content at varying bitrates according to the available network band-
width. Videos are encoded into multiple bitrates and segmented into
fixed-length chunks. During streaming, the client-side employs an ABR
algorithm to dynamically select the appropriate chunk based on current
network conditions.

The current state-of-the-art ABR algorithms can be categorized into
two main types: rule-based ABR [13,14] and learning-based ABR [15,
16]. Rule-based ABR algorithms utilize predefined rules to determine
the optimal bitrate for the given network conditions. For instance,
BOLA [17] is a classic rule-based ABR algorithm that selects the down-
load bitrate of each video chunk based on a utility function consid-
ering the segment’s quality level and buffer occupancy at the time of
downloading. BOLAE [18] extends BOLA by incorporating available
bandwidth and latency estimation into the bitrate decision process,
leading to improved video quality and reduced rebuffering time. MPC
[19] adjusts the video bitrate in real-time based on feedback from the
video buffer and the available network bandwidth.

On the other hand, learning-based ABR algorithms employ machine
learning to predict the best bitrate selection. Pensieve trains a neural
network model based on observations such as occupancy, through-
put, and latency, collected from client video players. Similarly, Fugu
combines classical control strategy with a learning network predictor
trained on data from real deployment environments.

Among these approaches, GreenABR represents a significant ad-
vancement by introducing energy consumption considerations into ABR
decisions. It develops a power model and evaluates QoE using the
standard perceptual quality metric VMAF rather than just the video

Computer Networks 257 (2025) 110994

bitrate. However, GreenABR has several limitations: (1) it can only ad-
just bitrate selection to save energy, without the capability to enhance
video quality through super-resolution; (2) its fixed decision strategy
cannot adapt to diverse mobile environments and user preferences; and
(3) the power model it uses may not accurately reflect the complex
energy consumption patterns in modern mobile devices, especially
when processing high-resolution videos. In contrast, our ABUV system
addresses these limitations by: (1) integrating super-resolution capa-
bilities to enhance video quality while maintaining energy efficiency;
(2) employing adaptive retraining to accommodate different network
environments and user patterns; and (3) incorporating real-time energy
consumption feedback for more accurate decision-making.

While OnRL takes a different approach by using online training
instead of offline training and adapts its models over time based on real-
world user-specific network traces, it still lacks the ability to enhance
video quality through super-resolution and cannot make joint decisions
on bitrate selection and upsampling factors like ABUV does.

Super-resolution is a technology that enhances the resolution of
low-resolution images using various methods. Recent advances in SR
research include deep learning-based approaches that use convolu-
tional neural networks (CNN) [20-22], generative adversarial networks
(GAN) [23,24], or probabilistic models [25] to learn the mappings be-
tween low and high-resolution domains. Although video is more com-
plex than a single image, recent advances in super-resolution research
have led to the development of many effective video super-resolution
(VSR) systems [4]. Real-ESRGAN uses a multi-scale architecture and
a perceptual loss function to enhance the quality of super-resolved
images. It performs well in scenarios where high-resolution images are
not available during training and can be useful in various applications,
such as image and video editing, medical imaging, and surveillance [6].
BasicVSR++ [5] leverages a spatial-temporal alignment module to
align the input frames accurately, which helps enhance the spatial
details and temporal coherence of super-resolved videos.

To overcome the challenges of applying SR models on mobile
devices with limited resources, several innovative frameworks have
emerged, each with distinct trade-offs:

» MobiSR [26] optimizes hardware collaboration among CPU, GPU,
and DSP to enable real-time SR, but focuses solely on image
enhancement without considering video streaming dynamics.
NEMO [8] achieves mobile-friendly video upsampling through
VP9 codec optimizations and frame-level cache reuse. However,
its fixed upsampling approach limits adaptation to varying net-
work conditions.

BiSR [27] improves efficiency by selectively applying SR to key
frames, reducing computational overhead. Yet, it treats bitrate
selection and upsampling as separate decisions, missing opportu-
nities for joint optimization.

SRAVS [9] integrates SR into adaptive streaming but relies on
PC-based GPUs, making it impractical for mobile devices.

These existing approaches highlight several key challenges in mo-
bile video streaming enhancement: (1) the need for efficient SR models
that can run on resource-constrained devices, (2) the importance of
dynamic adaptation to network conditions, and (3) the challenge of
balancing video quality with energy consumption. ABUV addresses
these challenges through joint optimization of bitrate and upsampling
decisions, mobile-optimized SR models with adaptive retraining capa-
bilities, and comprehensive consideration of network conditions, video
quality, and energy constraints.

3. Motivation

The fluctuating nature of mobile users’ network bandwidth chal-
lenges pure ABR algorithms in delivering high-quality video experi-
ences consistently. Employing client-side SR, given recent advance-
ments in smartphone GPUs, is both imperative and feasible. By using SR

Y. Lu et al.

Computer Networks 257 (2025) 110994

100 B Energy (per frame) Battery Life 200
-~ x8.83
g 7
=3
= ,\/\/\/\/W 06 g o
2 z 2
= GreenABR (low-band) 803 =l
i GreenABR (high-band) E ’ 55 100
<~ — ABUV (low-band) g
0 , , , X , .
0.0
> 10 Ch{lflk N020 s 30 X1 | ABUV | X2 X3 X4

(a) Quality gain

No SR Adaptive

(b) Energy consumption

Per-frame SR

(c) Time consumption

Fig. 1. Motivating measurements for adaptive bitrate and upsample factor.

models to enhance low-resolution video segments, significant improve-
ments can be achieved. However, frame-by-frame upsampling with a
fixed upscaling factor demands substantial time and energy resources,
potentially affecting mobile phone battery life. We conducted experi-
ments using a Mi 10 (SnapDragon 865) running the Android platform,
utilizing videos from YouTube [28].

Limitations of ABR. ABR algorithms face the challenge of com-
promising video quality to maintain smooth playback under band-
width constraints. Harnessing SR models can mitigate this trade-off
by enhancing low-definition video segments. Our experiment compares
GreenABR [16] with our proposed ABUV, which integrates SR. Fig. 1(a)
highlights the potential of SR in delivering high-quality videos in low-
bandwidth environments. ABUV outperforms GreenABR by making
joint decisions regarding bitrate and upscaling factor, optimizing the
downloading and upscaling process in low-bandwidth scenarios.

Limited throughput of SR. Despite ABPN [29] being a lightweight
SR model, real-time processing is unattainable due to excessive time
consumption. Inference time increases for higher resolutions and larger
upsample factors. Fig. 1(c) depicts the relationship between upsample
factor, input resolution, and inference time. To deliver a seamless view-
ing experience, it is crucial to address frame selection for upsampling
and develop lightweight models for real-time upsampling on mobile
devices.

Excessive energy consumption of SR. We evaluate the energy
consumption of mobile devices executing ABPN with various upsample
factors, measuring the current battery level using Android API [30].
Fig. 1(b) shows per-frame energy consumption and battery life. Per-
frame SR incurs significant energy overhead, reducing battery life
substantially. Adaptive upsampling in ABUV selectively applies SR
when necessary, achieving a balance between video quality and energy
consumption.

Challenges in Joint ABR and SR Implementation. The integra-
tion of ABR and SR techniques on mobile devices presents several
interconnected challenges:

First, developing lightweight SR models is essential for real-time
upsampling on resource-constrained mobile devices. These models must
minimize computational complexity and reduce inference time while
maintaining acceptable upsampling quality. The challenge intensifies
when considering that lower bitrate selections, while reducing network
load, increase the computational demands for SR processing.

Second, the system must simultaneously optimize two interdepen-
dent decisions — bitrate selection and upsampling factor. This joint
optimization is particularly complex as network conditions and device
battery levels constantly fluctuate. Higher upsampling factors can im-
prove video quality but at the cost of increased energy consumption
and processing time. Additionally, to prevent stuttering and minimize
latency, careful chunk selection for upsampling becomes necessary.

Third, the system must efficiently manage resources by balancing
computational demands between video decoding and SR processing
while maintaining acceptable battery consumption levels. This requires
a dynamic trade-off between video quality improvements through SR,

energy consumption from processing, network bandwidth usage, and
buffer occupancy levels.

ABUV addresses these challenges through an integrated approach
using the Proximal Policy Optimization (PPO) algorithm [10]. Through
iterative training, ABUV learns optimal policies for joint adaptive
decision-making, capturing intricate relationships among network con-
ditions, video quality, computational resources, and energy consump-
tion. In contrast to NEMO and BiSR, which separate bitrate decisions
from upsampling, ABUV simultaneously adjusts both bitrate and up-
sample factors, considering the complete system state. This holistic ap-
proach achieves a balance between video quality, playback smoothness,
and energy efficiency.

4. ABUV designs

ABUV is a mobile video streaming system that combines ABR and
SR decisions. These decisions are made on the server-side, while the
upsampling process occurs on the client-side. The overall system archi-
tecture is illustrated in Fig. 2.

RL for Adaptive Decisions. ABUV utilizes a reinforcement learning
(RL) agent to make informed decisions regarding bitrate and upsam-
pling. The RL agent is based on the Proximal Policy Optimization (PPO)
algorithm and is trained within a predefined environment that emulates
the video streaming process. Once trained, the RL agent receives input
from the client-side video player and server-side preknown data and
dynamically adjusts bitrate and upsampling settings as needed. To ac-
commodate changing network conditions, ABUV incorporates adaptive
retraining. When performance degradation is detected, the RL agent
undergoes retraining using user-specific streaming history, allowing it
to enhance its decision-making capabilities.

SR for Video Upsampling. ABUV introduces the ability to select
different upsampling factors by utilizing various ABPN-light models for
super-resolution. Initially, a large dataset is employed for pretraining
to obtain the base weights once in an offline manner. Subsequently,
ABUYV utilizes both high-resolution and low-resolution versions of the
target video to train content-aware super-resolution models. During the
video streaming process, when a mobile user requests a specific bitrate
version of a video chunk from the server and decodes it using the video
player, ABUV’s client-side implementation comes into play. It performs
upsampling on the decoded frames based on the adaptive decisions
made by the RL agent. This upsampling process significantly enhances
the quality of the fetched low-resolution (LR) video chunk, resulting
in output super-resolution (SR) frames. Consequently, users can enjoy
videos with greatly improved visual quality within the same mobile
device and environment.

In the following sections, we will provide further details on the SR
model (Section 4.1) and RL model (Section 4.2) employed in ABUV,
our mobile video streaming system.

Y. Lu et al.

RL (§4.2)
Pretrain
Pre-defined Env States
= User-specific Env g Actions
o Retrain
B b T T T L Ll ITiii.
& | SR (§4.1) -
Pretrain APBN-light Models Fine-tune
Large @
Dataset Target Video
J
Transfer Weights Fetch
A 4
E SR Module Controller —
S H
Device Status

Fig. 2. ABUV system overview.

4.1. Mobile video super-resolution

To enhance the efficiency of super-resolution on mobile devices, we
conduct performance tests on various state-of-the-art SR models. After
careful evaluation, we selected the anchor-based plain net (ABPN) [29]
as the most suitable choice, considering its favorable balance between
effectiveness and computational cost. In order to further improve its
efficiency, we have customized the ABPN model at the layer level,
resulting in a highly optimized variant known as ASPN-light. This
model exhibits remarkable performance, enabling real-time delivery of
2K videos on mobile devices.

4.1.1. Model selection

To perform super-resolution on the mobile client side, the model
must be able to output frames in real-time. For instance, if a low-
resolution chunk is to be upsampled by 4 times, each frame in that
chunk shall be upsampled. As a result, the model shall be able to output
frames in real-time after decoding the chunk and before rendering the
frames. It is not feasible to do upsampling in advance (e.g., as soon
as the chunk is downloaded [9]) as chunk-level reconstruction brings
extra decoding and encoding overheads, which is not acceptable for
mobile users.

Given that super-resolution models demand substantial computing
resources and memory, it is vital to strike a delicate balance between
computational complexity and performance to achieve real-time super-
resolution on mobile client devices. Moreover, energy consumption and
memory usage must also be taken into consideration, as battery life
is one of the Quality of Experience (QoE)-related metrics for mobile
users. Additionally, when adaptive upsampling during video streaming
is required, models for various upsample factors (X2/X3/X4) need to
be delivered and loaded on the client side, making models with smaller
sizes and lower memory usage preferable.

To determine the most suitable super-resolution model for mo-
bile devices, we conducted tests using the Vimeo-90K dataset [31]
and state-of-the-art mobile super-resolution models. Our evaluation
criteria encompassed quality improvement, inference time, energy con-
sumption, and memory usage. Instead of relying solely on PSNR, we
employed VMAF [32] as the video quality metric. VMAF accounts for
critical factors such as color accuracy, contrast, and sharpness, which
are essential for human perception of video quality. Our test results
on the Android platform (Xiaomi 10, SnapDragon 865) revealed that
RealSR [33] achieved the highest quality improvement, albeit with an
average frame upsampling time of 702 ms. In contrast, XLSR [34] pro-
vided real-time upsampling (over 30 frames/s) but with a slightly lower
quality gain. ABPN [29] demonstrated a favorable balance between
VMAF improvement and acceptable latency, indicating its efficiency
potential. Consequently, we selected ABPN for integration into our

Computer Networks 257 (2025) 110994

mobile video streaming system. Fig. 3 presents the test results for
upscaling videos from 720p to 1440p, showcasing both video quality
and the average inference latency per frame.

4.1.2. Super-resolution optimization

While ABPN has undergone optimization efforts, including INT8
quantization and anchor-based learning, it faces limitations in fully
supporting ultra-high-resolution videos. For example, upscaling a 360p
image to 1440p using ABPN results in an inference latency exceeding
70 ms. Additionally, minimizing memory consumption is crucial to en-
able the simultaneous loading of models for various upsampling factors,
enhancing the system’s adaptability. To address these challenges, we
have implemented several optimizations and introduced ABPN-light, a
lighter version with a simplified network structure. ABPN-light main-
tains real-time performance while supporting 2K video output. These
optimizations effectively reduce both inference latency and memory
consumption, facilitating the seamless integration of SR into ABUV.

Layer-level Modification. The adaptive upsample factor approach
requires downloading and initializing models for different upsampling
factors, making model size optimization crucial for efficient deploy-
ment. The original ABPN model, with a file size of approximately
58 kB, serves as our starting point. To support multiple upsampling
factors (X2/X3/X4) efficiently throughout the video streaming process,
we optimized the neural network architecture of ABPN. Specifically,
we reduced the model complexity by removing three deep feature
extraction layers while retaining one essential layer. To compensate
for potential quality degradation from this reduction, we optimized the
number of channels, which was previously fixed at 3 in ABPN. Fig. 4
illustrates the resulting network structure of ABPN-light.

These architectural modifications yielded substantial reductions in
model size while preserving satisfactory video quality. Although the
changes introduce a minor quality degradation of approximately 0.4 dB
in PSNR, they successfully reduce the total number of parameters from
42.54K to 21.29K and compress the model file size from 58 kB to under
27 kB. This optimization facilitates efficient model deployment in prac-
tice — downloading all three models with different upsampling factors
(totaling less than 90 kB) consumes less bandwidth than retrieving a
typical 240p video chunk (300 kbps, 30 fps, 4 s).

Key Frames Only. To further optimize inference latency and energy
consumption, we implemented a selective super-resolution strategy
inspired by BiSR [27]. This innovative approach strategically applies
super-resolution processing to key frames (I-frames) only, while in-
telligently propagating these enhancements to non-key frames (P and
B frames) through their dependency relationships. By leveraging the
hierarchical structure inherent in H.264 video encoding, where non-
key frames are derived from key frames through motion prediction, this
method achieves efficient quality enhancement across the entire video
sequence while significantly reducing computational overhead.

The implementation required careful modification of the FFm-
peg library and H.264 decoder, which we subsequently integrated
into Google Exoplayer. This optimization significantly reduces both
computational demands and inference time, enabling real-time super-
resolution on mobile platforms. Our evaluation shows that the chunk-
level inference latency is reduced by at least a factor of 4, though the
actual improvement varies with the key frame distribution in different
videos. When combined with our Layer-level Modification, the overall
inference latency decreases from 70 ms to an average of 31 ms per
frame, as shown in Fig. 5(a), representing a more than 2x improvement
in processing speed.

Activation Function. The choice of activation function is pivotal in
convolutional neural network-based SR models, such as the innovative
ABPN-light. Moving beyond the traditional ReLU, ABPN-light harnesses
the capabilities of Parametric ReLU (PReLU) [35], a sophisticated
variant that integrates a learnable parameter within each channel. This
subtle yet powerful adjustment allows for a more dynamic adaptation
during the learning process. By integrating PReLU, ABPN-light not

Y. Lu et al.

84

Computer Networks 257 (2025) 110994

EDSR
82

ABPN
80 @
78
76 XLSR

74

VMAF

72 ECBSR

o

FSRCNN

68 @)

66

70

LapSRN

RealSR Flop size (G)

mm <10

VDSR 10~30
30~60
. 60~100

mm >100

10' 10

Inference latency (ms)

Fig. 3. Mobile super-resolution models comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Low Resolution Shallow Feature Extraction | Deep Feature Extraction

Super Resolution

Fig. 4. The network architecture of ABPN-light.

—+— ABPN-light

=— ABPN

—+— ABPN-light

Quality Gain
=

Inference Latency (ms)

0 20 40 60 0 20 40 60
Chunk No. Chunk No.

(a) Inference Latency (b) Video Quality Gain

Fig. 5. ABPN-light vs. ABPN.

only enhances its inference performance but does so with a negligible
increase in energy consumption. The adaptive nature of PReLU ensures
that the model can fine-tune its activation pathways, resulting in a
more nuanced and efficient mapping of input to reconstructed high-
resolution outputs. This enables ABPN-light to set a new benchmark for
effective and energy-conscious super-resolution in image processing.

Content-aware Training. Super-resolution models are typically
trained using general dataset training or content-aware learning.
Content-aware learning trains and evaluates the model using low-
resolution and high-resolution versions of a specific video, leveraging
content-specific information for improved performance.

Training the model with a single target video may be insuffi-
cient due to its limited length. We use transfer learning [36] to fine-
tune the model on our server-side infrastructure. First, a large dataset
(e.g., DIV2K [37]) is used for pretraining once and offline. Then, for
each video, we perform content-aware fine-tuning on the server using
its low-resolution and high-resolution versions. While this approach
requires storing a separate model for each video on the server, the
storage overhead is minimal due to ABPN-light’s compact size (less than
27 kB per model). When a user requests a video, the corresponding
fine-tuned models are efficiently transmitted to the mobile device along
with the video chunks, adding negligible overhead to the streaming
process.

We conduct experiments on a YouTube video [28], upscaling an
image from 360p to 1080p using three methods: fine-tuned ABPN, fine-
tuned ABPN-light, and generally-trained ABPN-light. Fig. 6 presents
visual results. The upscaled image quality is acceptable, with some loss

compared to the original high-resolution image. ABPN-light, fine-tuned
through content-aware learning, outperforms training with a general
dataset.

Our optimization results in ABPN-light for real-time video upscaling
on mobile devices. By reducing parameters and improving inference
latency, ABPN-light achieves efficient performance. The server-side
content-aware learning and transfer learning techniques, combined
with the model’s small size, demonstrate the effectiveness of these
optimizations in enhancing super-resolution models while maintaining
practical deployment feasibility. This approach enables the ABUV sys-
tem to deliver seamless real-time super-resolution on mobile devices
with video-specific optimization.

4.2. Adaptive bitrate and upsample factor decision

ABR algorithms adapt video quality based on network conditions.
Traditional rule-based adaptive bitrate algorithms primarily consider
network throughput for bitrate selection. However, for mobile de-
vices, adaptive upsampling decisions should also account for remaining
battery capacity. To understand the complex relationship between
these variables, we employ deep reinforcement learning techniques to
learn mappings and make adaptive decisions in our research. Although
Pensieve [15], an A3C-based ABR algorithm, has gained popularity
in the research community, we have opted to use PPO [10] as our
intelligent agent. PPO replaces A3C and incorporates a novel objective
function that includes clipping surrogate gradients, preventing large
gradient updates. This approach significantly improves the stability and
efficiency of the learning process, ultimately enhancing our intelligent
agent’s performance.

4.2.1. PPO-based RL model

Fig. 7 depicts the architecture of ABUV’s RL model that we built
based on PPO, which reads the states from video streaming environ-
ment and makes adaptive decisions accordingly.

States. To make a decision, the agent needs to collect information
from the environment. Some pre-known information is available from
the server-side without additional communication, such as the sizes
and video qualities of different bitrates for the next chunk. Other
information must be transferred from the client-side, including the

Computer Networks 257 (2025) 110994

28.79

LR (360p)

Fig. 6. Visual results of different models and training sets.

Y. Lu et al.
PSNR (dB) [
Latency (ms)
Original (1080p)
States
Environment Actor Network
Server-side Chunk size
States s;
Bitrate
Video quality
.................. té‘
£
Video chunk E
g
=

l Clsif;gssige Upsample Criti A
i ritic Network WO
Ig Action a; — Value
Client roughput Vs(st) Estimate advantage

Fig. 7. The reinforcement learning architecture.

't

buffer size, as well as the time and energy consumption of the previous
chunk.

Actions. ABR algorithms allow the client to select the bitrate and
fetch the chunk from the server. In our case, the agent also selects the
upsampling factor to perform content-aware upsampling. The agent can
choose one of four upsampling factors: 1 (no super-resolution), 2, 3,
and 4. The actions are a combination of bitrate and an upsampling
factor and can be represented as {b,u} where b is the bitrate and u is
the upsampling factor.

Rewards. To measure the agent’s performance, we define the QoE
reward function as:

QoE; =axXq; — fX(q—q_1)—nXp —oXE, (€9)

where g; represents chunk i’s video quality, (¢; —¢;_;) is the smoothness
penalty, p; is the rebuffer penalty, and E; is the energy consumption
penalty. These metrics are weighted by different impacting factors
a, B, n,» and summed. Video quality ¢; is calculated using the Video
Multimethod Assessment Fusion metric (VMAF) and ranges from 0
to 100, making smoothness change fall within [-100,100]. Rebuffer
penalty p; is rebuffering time in seconds, typically less than 30 for one
video chunk.

The energy consumption penalty E; is determined through compre-
hensive benchmark measurements on the target device. We conducted
extensive experiments to measure the energy consumption for all possi-
ble combinations of bitrates and upsampling factors, using the Android
Battery Manager API [30]. For each combination, we performed mul-
tiple runs and calculated the average energy consumption to create a
device-specific energy consumption lookup table. During runtime, E;
is obtained by querying this pre-computed table based on the selected
bitrate and upsampling factor for chunk i. Note that this energy pro-
filing is device-dependent and needs to be performed once for each
new hardware platform to create its corresponding energy consumption
profile.

The reward function aims to maximize video quality while min-
imizing energy consumption and rebuffering time. To ensure QoE;
meaningfully guides the agent, metrics are normalized by adjusting pa-
rameters a, f, 7, w. In our ABUV experiment, to maximize video quality
without excessive energy overhead, they are empirically set to 0.04,
0.01, 0.2, and 0.0005, respectively.

Network Architecture. ABUV uses a PPO-based model to learn the
mapping from the states to the actions. The network structure is shown

in Fig. 7. The input of the network is the states and the output is the
actions. The network is composed of two parts: the actor and the critic.
The actor predicts the actions, while the critic predicts the QoE reward.
The actor is a fully connected neural network with 3 hidden layers, and
the critic is also a fully connected neural network with 2 hidden layers.
Both the actor and the critic have 256 units in their hidden layers. The
output of the actor is the probability of each action, and the output of
the critic is the QoE reward. The loss function of the actor is the cross
entropy loss, while the loss function of the critic is the mean squared
error loss. Compared with other prediction algorithms, such as CNN or
rule-based methods, PPO shows better performance in making adaptive
decisions, and it is also more efficient for adaptive training.

4.2.2. RL agent training
The goal of RL model training is to maximize the total cumulative
rewards for each action:

N
R; = Z kaoEk, (2)
k=i+1

where the cumulative reward R; for video chunk i is the sum of
immediate rewards QoE, obtained by the agent for each chunk k that
can be gained in the future, discounted by a factor y between 0 and 1
that measures the discounting of future rewards. The maximum chunk
number of the task is denoted by N.

To guide policy updates and improve the agent’s decision-making
ability, advantage estimation is a critical part of RL model training.
In this work, we adopt the Generalized Advantage Estimation (GAE)
method proposed by Schulman et al. [38]. The GAE method introduces
a hyperparameter A, which controls the trade-off between bias and
variance in the advantage estimation. The advantage function A(s, a)
is defined as follows:

A(s,a) = QoE; — Vy(s) + yAA(s, d), 3)

where QoE; represents the immediate reward obtained by the agent
for chunk i as mentioned in Eq. (1), 4 is the GAE parameter, and s’ and
a' represent the next state and action in the trajectory, respectively.
By incorporating the GAE parameter A into the advantage estimation,
we are able to control the bias-variance trade-off and fine-tune the
advantage estimation according to the specific requirements of our RL
model training.

The loss function used by ABUV combines the policy loss and the
value loss in a PPO-like structure. The policy loss is defined as:

’ o (7p(a,s) - 2 >
L(s,a,0',0) = min | ——— A(s, a), g(e, A(s,a))), @
e (a,s)

where L(s,a,6',6) is the loss function of the current state s, selected
action a, and the parameters of the current policy network # and the old
policy network 6'. zy(a, s) refers to the probability of selecting action
a in state s according to the current policy network 6§, while A(s,a)
is the advantage estimate of action « in state s according to the old
policy network ¢'. g(e, A) is a clipped version of the advantage function,
where:

g(e’A)z{(l+e)A, l:fASO, -
(1-e)A, if A<O.

To ensure that policy updates are balanced and not excessively
conservative or drastic, it is common practice to introduce a small

Y. Lu et al.

positive value, denoted as ¢, during the clipping process. This value is
typically set to 0.1 and plays a crucial role in controlling the magnitude
of policy updates. By incorporating this smooth scaling mechanism, the
algorithm achieves improved stability and convergence while maintain-
ing the flexibility needed for effective policy updates. The RL model
training process employed in ABUV is included in Appendix A.
Adaptive retraining. For mobile users, the real-world network
traces can vary greatly from the predefined training environment,
which may cause the agent to fail drastically. To tackle this issue,
ABUV implements adaptive retraining, enabling the agent to become
user-specific. ABUV continually collects the video streaming data of
each user, including immediate rewards, rebuffer time, and estimated
bandwidth (throughput). When the system’s performance significantly
declines, the adaptive online retraining process is initiated. Specifically,
a counter records the number of consecutive chunks for which the
immediate reward is negative. When the counter reaches a threshold of
5, which we set to 3 in our experiments, the online retraining process
is activated. During online retraining, the agent uses the real-world
network trace collected over the last 100 video chunks to update its
policy network. The new policy network is then utilized to select the
next action. After the retraining process, the counter is reset to 0.

5. Implementation

We primarily implement ABUV using Python 3.10 on the server side,
with TensorFlow 2.11.0 [39] for the ABPN-light model and PPO-based
RL model, running on Ubuntu 18.04. On the client side, we implement
the SR module using C++ and Java within the Android platform, using
the TensorFlow Lite C++ API [40].

We make modifications to the ABPN repository [41] to run SR on
Android platforms. Specifically, we implement our ABPN-light model
with an input image patch size of 64 x 64 and a batch size of 16.
As discussed in Section 4.1.2, we pretrain three raw SR models with
different upsample factors using the DIV2K dataset once in an offline
manner. To fine-tune the models for content-aware upsampling, we
train them using different resolutions of the target video, with the train-
ing data sizes outlined in Appendix B.1. Finally, we use TensorFlow
Lite Converter [39] to convert the trained models to TensorFlow Lite
format.

In the offline-training phase, the RL agent is trained using a sim-
ulator environment where the network trace is generated based on
predefined rules. The energy and time consumption of upsampling are
collected through on-device testing with the fine-tuned super-resolution
models. To balance exploration and exploitation, we set the discount
factor y to 0.96, and both the actor and critic learning rates are set to
0.0003. We run 1000 training episodes, with each episode comprising
200 chunks. The batch size is set to 64, and the model is trained for 10
epochs.

6. Evaluation

We evaluate ABUV by answering the following questions:

» How well does ABUV perform in terms of QoE compared to other
baselines?

» What is the training cost of ABUV, including the pretraining and
fine-tuning for both super-resolution and reinforcement learning
models?

+ Can adaptive retraining help improve the performance in new
network environments?

Computer Networks 257 (2025) 110994
6.1. Methodology

Videos. We source popular YouTube videos from six categories:
Games (C1), Music (C2), Education (C3), News (C4), Sports (C5),
Entertainment (C6). Within each category, we carefully selected four
standard videos (horizontal orientation) and four shorts (vertical ori-
entation) based on their view counts, ranging from 46K to 140.8M
views. Standard videos have a maximum duration of 10 min, while
shorts are limited to 60 s. We download source videos encoded in H.264
with a 1440p (2K) resolution and re-encode them following YouTube’s
recommendations [42]. For RL training, we use 75% of the original
videos as the training set, with the remaining videos for testing. For SR
models, the training and validation set consist of low-resolution and
high-resolution videos, as shown in Appendix B.1.

Network Traces. We employ updated public network traces from
U.S. broadband (2020) [43] to simulate mobile environments. We filter
data for bandwidth, resulting in a downloading throughput range of
0.23 Mbps to 41.11 Mbps. We generate 400 network traces following
Pensieve’s approach [15], allocating the initial 300 traces for training
and reserving the remaining 100 traces for testing.

Hardware. We use the Xiaomi 10 device, powered by the Snap-
Dragon 865, as our mobile platform. We rely on the Al benchmark [44]
and Google’s ExoPlayer [45] to gather speed and energy cost measure-
ments for mobile video super-resolution. For SR and RL model training,
we utilize two GTX 3090 GPUs.

Action space. We consider upsample factors 1, 2, 3, 4 and bitrates
600, 1200, 2500, 4000, 8000, 12,000 kbps for each video chunk. We
set a maximum resolution limit of 2K for the target video to ensure
efficient resource utilization and avoid unnecessary delays or energy
costs. We have a total of 15 actions, as illustrated in Fig. 11. To simulate
the transfer of SR models, we initially set the upsample factor to 1 for
the first 3 chunks due to the small size of the SR models, as discussed
in Section 4.1.

Baselines. We compare ABUV with state-of-the-art baselines, in-
cluding the buffer-based approach BOLA [17], the learning-based ABR
approach GreenABR [16], and the SR-integrated-codec solution BiSR
[27]. NEMO [8] is not included in the comparison as it exclusively
supports videos encoded in VP9 format.

QoE metrics. When comparing the RL model, which is trained to
maximize the QoE score described in Eq. (1), it would be unfair to
directly utilize it for comparison purposes. Therefore, we adopt the
perceptual QoE model created by the GreenABR team [16]. This model
is built upon the Waterloo Streaming QoE Database III (SQoE-III) [46]
and defined as follows:

n n
QOE:a*Zqi_ﬂ*ZPi_V*ZEi
i=1 i=1 i=1

n n
lg; — q;_|
— o) (16— gy) = 1 * ZL'2—O[]J,
i=2 i=2

where ¢;, p;, E; represent video quality (VMAF), rebuffer penalty,
energy cost just like in Eq. (1). The parameters «, §, 7, o, u are set to
0.0771, 1.2497, 2.8776, 0.0494 and 1.4365, respectively to align with
the QoE model in baselines [16,27]. This QoE model is used to evaluate
the performance of all the baselines and ABUV.

(6)

6.2. ABUV vs. Baselines

QoE improvement. ABUV aims to enhance the QoE for mobile
users in low-bandwidth environments through efficient SR. To evaluate
its performance, we compare ABUV with state-of-the-art baselines,
including BOLA, BiSR, and GreenABR, using real videos.

Fig. 8 presents the average QoE results, where BOLA is used as
the baseline, and the results are normalized. ABUV outperforms all
other baselines in all tested categories. However, the performance of
ABUV is sensitive to the video content, with frequent scene changes
leading to a reduction in super-resolution performance. For instance, in

Y. Lu et al.

% Bola S\

BiSR = GreenABR W ABUV

212

o it

%0.9 2\

S 0.6F

) ff

z03 ff
0.0-2

Cl C2 (3 C4 C5 C6
Fig. 8. QoE comparison with baselines.

Bola S BiSR = GreenABR B ABUV

Rebuffer
penalty

quality penalty penalty

Fig. 9. QoE breakdown analysis.

category C3 (Education), which often includes consecutive still frames
like slides or whiteboards, ABUV achieves the highest QoE gain of
32.1%. On the other hand, in category C1 (Games), which has complex
and fast-changing scenes, ABUV still achieves a significant 12.7% QoE
improvement.

As per Eq. (6), QoE comprises four factors: video quality, rebuffer
penalty, energy cost, and smoothness penalty. We analyze the contribu-
tion of each factor to the overall QoE improvement achieved by ABUV,
and present the results in Fig. 9. Our findings suggest that ABUV’s QoE
gain is mainly contributed by the increase in video quality and decrease
in rebuffer and smoothness penalty. However, ABUV increases energy
penalty by 28.9% on average, as it requires super-resolution on the
client-side. Despite this trade-off, we conclude that the QoE gain of
ABUV is significantly higher than the energy cost, hence the trade-off
is acceptable. Notably, the calculation of QoE is unbiased as we do not
use the QoE model for training ABUV directly, but the QoE as defined
in Eq. (6), which has been adopted and verified by the GreenABR
team [16].

Bandwidth savings. Limited bandwidth is a major challenge that
prevents mobile users from enjoying high quality videos. Despite the
requirement of downloading three super-resolution models for each
video, ABUV consumes much less bit than other video delivery systems,
as mentioned in Section 4.1.2. ABUV saves approximately 59.2% data
consumption compared to BOLA and 32.6% compared to GreenABR.
Although ABUV selects low bitrate like other ABR algorithms when the
bandwidth is limited, it can avoid video quality degradation through
super-resolution. By integrating SR into ABR, ABUV can save band-
width and improve QoE simultaneously.

Energy-efficient upsampling. As depicted in Fig. 10, ABUV, when
compared to GreenABR and BOLA, does introduce an increase in energy
consumption due to super-resolution processing. However, in contrast
to BiSR which runs SR more aggressively, ABUV’s adaptive upsample
decisions enable more efficient energy usage. By dynamically adjusting
bitrate and applying super-resolution judiciously, ABUV effectively
balances improved video quality and reduced bandwidth consumption
while keeping energy consumption in check. This characteristic makes
ABUV a more energy-efficient choice compared to SR-integrated-codec
methods like BiSR. Further insights into the video streaming process
are detailed in Appendix B.3.

Computer Networks 257 (2025) 110994

—Bola

BiSR — GreenABR—ABUV

Sy

N
3
[}
S

Battery Level (mAh)
>
S
(e}

N
D
=2
=}

0 100 200 300 400
Time (seconds)

Fig. 10. Battery consumption trace.

X1 # X2 W X3 ¥ X4

<20

(]

)

s

= :
§ 10 % l%
o AN
A 0 22722

1440p1080p 720p 480p 360p 240p

Fig. 11. Bitrate and upsample decisions.

6.3. Improvement with adaptive retraining

The training expenses for ABUV encompass both pretraining and
retraining, with the pretraining cost specifics provided in Appendix B.2.
Mobile network environments are inherently unstable, and real-world
network traces frequently deviate substantially from predefined ones.
Consequently, the RL agent must undergo retraining whenever the net-
work environment shifts to maintain optimal performance. Fig. 12(a)
demonstrates the influence of a new network environment on the
agent’s decision-making process, where catastrophic decisions (reward
< 0) may transpire.

To simulate changes in the network environment, we select three
network distributions with identical IP addresses based on a publicly
available dataset [43]. These distributions are as follows: 0.3 Mbps to
2 Mbps (Env-A), 1.2 Mbps to 20.4 Mbps (Env-B), and 13.8 Mbps to
41.1 Mbps (Env-C). To address performance degradation, ABUV utilizes
historical network traces to retrain the RL agent offline. Fig. 12(b) de-
picts the cumulative distribution function (CDF) of the QoE for both the
pretrained and retrained RL agent in different network environments.

For the pretrained RL agent, the QoE can be negative in Env-A,
as the agent does not learn how to make correct decisions with such
limited bandwidth. However, the retrained RL agent is more likely to
achieve not only positive but also higher QoE in new environments.
This indicates that adaptive retraining is necessary for the RL agent to
adapt to a new network environment.

7. Conclusion

This paper introduces ABUV, an innovative video streaming system
designed specifically for mobile devices. ABUV leverages a lightweight
super-resolution model called ABPN-light, which is optimized to oper-
ate efficiently on mobile platforms. Additionally, ABUV incorporates a
PPO-based RL agent that enables adaptive bitrate and upsample factor
decisions. The RL agent can be retrained to adapt to changing network
environments. To assess the effectiveness of ABUV, we perform rigorous
experiments using real-world network traces. The results unequivocally
indicate that ABUV delivers a remarkable enhancement in QoE, with
improvements ranging from 12.7% to 27.3%. What is more, ABUV
demonstrates substantial savings in network usage, reaching up to

Y. Lu et al.

GreenABR-ABUYV (pretrained)~ABUV (retrained)

10 20 30
Training Epoch (K)

40

(a) Training iteration comparison

Computer Networks 257 (2025) 110994

Env-A (pretrin) -- Env-B (pretrin) -- Env-C (pretrin)
Env-A (retrain) — Env-B (retrain) — Env-C (retrain)

1.0f —

0.5}

005 00 05 10 15 20 25
Chunk QoE

(b) CDF of QoE with pretrain and retrain RL in different

environments

Fig. 12. Effects of adaptive retraining.

Bola BiSR GreenABR — ABUV

_12f ~ 100 2
[72) £
g S =
S 8 z =
Y < 5o e
£ 4} 4= e
~— <
= 2.5 = 2
m —

0.6 1 L < 0 L ﬁ 0 A A H

20 40 20 40 20 40
Chunk No. Chunk No. Chunk No.

Fig. 13. Detail trace of video streaming.

an impressive 59.2% reduction compared to existing state-of-the-art
video streaming systems. These outcomes unequivocally demonstrate
the immense potential of ABUV in greatly augmenting the user expe-
rience of video streaming on mobile devices, especially in scenarios
characterized by demanding network conditions.

CRediT authorship contribution statement

Yichen Lu: Writing — review & editing, Writing - original draft, Val-
idation, Software, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization. Ji Qi: Data curation, Conceptualization.
Sheng Zhang: Writing — review & editing, Methodology, Conceptual-
ization. Gangyi Luo: Data curation, Conceptualization. Andong Zhu:
Writing - review & editing, Investigation. Jie Wu: Writing — review &
editing. Zhuzhong Qian: Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by Nanjing University-China Mo-
bile Communications Group Co.,Ltd. Joint Institute, Nanjing Key S&T
Special Projects (202309006), and Collaborative Innovation Center of
Novel Software Technology and Industrialization. Sheng Zhang is the
corresponding author.

Appendix A. PPO-based RL model training
Algorithm 1 outlines the RL model training process employed in

ABUV, which utilizes a memory buffer to store the trajectories and
samples mini-batches from it to update the policy and value function

networks. Batch-level updates are adopted instead of step-level updates
to reduce the variance of gradient estimates and improve the training
stability.

Algorithm 1 ABUV’s RL Training

Initialize policy network z,(a,s) and value function network V,,(s)
with random weights;
Initialize memory buffer M to store trajectories;
for each training episode do
Initialize or reset the video streaming environment;
for each video chunk do
Sample an action a; from current policy network;
Store the state p;, action aq;, reward r; (Equation (1)) and new
state s;,; in memory M;
end for
for each mini-batch update do
Sample mini-batch D from memory buffer M;
Calculate the rewards-to-go R (Equation (2)) and advantage
estimates A (Equation (3));
Update policy network:
0 « argmaxﬁ >
(4 (s,a,r,s'")ED
Update value function network:

T (Vo-R)

(s,a,r,s")ED

L(s,a,0',0)

¢« arg;ninﬁ

end for
end for

Appendix B. Experimental details
B.1. Training sizes for SR models

To fine-tune the models for content-aware upsampling, we train
them using different resolutions of the target video, with the training
data sizes outlined in Table B.1. We exclude 480p and 1440p from
training the X3 model since scaling up a 480p (854 x 480) video by

Y. Lu et al.

— /1 — 12— 1/6 — 1/10 1/15 — 1/30
@].7- P ——
g
S 1.0}
&
Z
£0.0 ' I : '

0 20 40 60 80 100

Training Time (seconds)
(a) Shorts

Computer Networks 257 (2025) 110994

 — 11— 12— 1/6 — 1/10 — 1/15 — 130
823} - ~—= <=
Z 1o

<

S

o

Z

0.0, 200 400 600 800

Training Time (seconds)

(b) Normals

Fig. B.14. Training time with different intervals.

Table B.1
Resolutions of videos for model fine-tuning.

Upsample factor Input size Output size

X2 720p: 1280 x 720 1440p: 2560 x 1440
X3 360p: 640 x 360 1080p: 1920 x 1080
X4 360p: 640 x 360 1440p: 2560 x 1440

three times does not correspond to the resolution of a 2K (2560 x 1440)
video, and neither clipping nor resizing can fix this pixel discrepancy.

B.2. Training cost on server-side

We analyze the training cost of ABUV’s server-side components,
including both SR model training and RL agent training, as shown in
Fig. B.14.

B.3. Video streaming traces

Fig. 13 illustrates the video streaming process by chunks. As a rule-
based ABR algorithm, BOLA can sometimes be overly conservative,
leading to a low bitrate selection. GreenABR exhibits a similar trend,
as it is trained to conserve energy. In contrast, BiSR and ABUV in-
telligently utilize SR to enhance video quality. However, BiSR does
not account for the energy cost of super-resolution, resulting in the
upsampling of low-definition chunks even when bandwidth is suffi-
cient. ABUV, on the other hand, achieves higher QoE by dynamically
balancing download and upsampling times.

B.3.1. SR models training

To train the super-resolution models, ABUV adopts the DIV2K
dataset [37] as the base checkpoint for pretraining the ABPN-light
model. The DIV2K dataset consists of 800 training images and 100
validation images. This pretraining process is conducted once and
typically takes approximately 6 h to complete. For each video, ABUV
employs transfer learning to fine-tune the models and enable content-
aware neural enhancement. However, for videos longer than 5 min, the
total number of frames can exceed 9000. Training the models using
all frames can become excessively time-consuming and may lead to
overfitting. To address this, ABUV adopts a strategy where one frame is
selected for every 10 frames in short videos (<60 s) and 15 frames for
normal videos (<10 min). This approach effectively reduces the training
cost while maintaining reasonable training times and mitigating the
risk of overfitting. Fig. B.14 illustrates the reason why we chose 10
and 15 as intervals for horizontal and vertical videos, respectively. We
experimented with different frame selection ratios: 1/1, 1/2, 1/6, 1/10,
1/15, and 1/30 for both short and normal videos. Since shorts are
shorter, a selection ratio of 1/15 is appropriate to achieve high PSNR
gain and fast training speed. However, for normal videos, a selection
ratio of 1/15 would result in a loss of about 0.2 dB PSNR gain, so we
chose the ratio of 1/10. With the introduction of frame selection, the
training process takes less than 40 s for short videos and less than 180 s
for long videos.

10

B.3.2. RL agent training

The RL agent training process consists of two steps, as shown in
Fig. 2. First, the RL agent is trained offline using predefined network en-
vironments and video samples. Then, when degradation occurs during
online video streaming, the RL agent undergoes retraining. Fig. 12(a)
compares the cumulative rewards of GreenABR and ABUV during train-
ing. For GreenABR and the pretraining stage of ABUV, we use the same
network trace (0.4 Mbps~32.0 Mbps). During the pretraining stage,
ABUYV is more likely to experience reward degradation due to its more
complex action space than GreenABR, leading to slower convergence.
However, during retraining, we choose a network trace with a different
bandwidth distribution (2.3 Mbps~4 Mbps), and ABUV converges in
less than 10,000 epochs since it does not need to start from scratch.

Data availability

Data will be made available on request.

References

[1] DataReportal, Digital 2023: Local country headlines report, 2023, https://
datareportal.com/reports/digital-2023-1local-country-headlines.

data.ai., State of mobile 2023, 2023, https://www.data.ai/en/go/state-of-mobile-
2023/.

Irina Kegishyan, Mobile video statistics, 2023, https://www.yansmedia.com/
blog/mobile-video-statistics.

Kelvin C.K. Chan, Shangchen Zhou, Xiangyu Xu, Chen Change Loy, Investigating
tradeoffs in real-world video super-resolution, 2022, pp. 5962-5971, 2022.
Kelvin C.K. Chan, Shangchen Zhou, Xiangyu Xu, Chen Change Loy, BasicVSR++:
Improving video super-resolution with enhanced propagation and alignment,
2022, pp. 5972-5981, 2022.

Xintao Wang, Liangbin Xie, Chao Dong, Ying Shan, Real-esrgan: Training real-
world blind super-resolution with pure synthetic data, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 1905-1914.
Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, Dongsu Han, Neural
adaptive content-aware internet video delivery, in: Operating Systems Design and
Implementation 2018, 2018.

Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, Dongsu Han, Nemo:
enabling neural-enhanced video streaming on commodity mobile devices, 2020,
pp. 1-14, 2020.

Yinjie Zhang, Yuanxing Zhang, Yi Wu, Yu Tao, Kaigui Bian, Pan Zhou, Lingyang
Song, Hu Tuo, Improving quality of experience by adaptive video streaming
with super-resolution, in: IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, IEEE, 2020a, pp. 1957-1966.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov,
Proximal policy optimization algorithms, 2017, arXiv preprint arXiv:1707.06347
2017.

Iraj Sodagar, The mpeg-dash standard for multimedia streaming over the
internet, IEEE Multimed. 18 (2011) (2011) 62-67, 4.

Roger Pantos, William May, HTTP Live Streaming, Technical Report, 2017.
Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, Hui Zhang, Oboe: Auto-tuning
video ABR algorithms to network conditions, in: Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, 2018,
pp. 44-58.

Junchen Jiang, Vyas Sekar, Hui Zhang, Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with FESTIVE, in: Conference
on Emerging Network Experiment and Technology 2012, 2012.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

et al.

Hongzi Mao, Ravi Netravali, Mohammad Alizadeh, Neural adaptive video stream-
ing with pensieve, in: ACM Special Interest Group on Data Communication 2017,
2017.

Bekir Oguzhan Turkkan, Ting Dai, Adithya Raman, Tevfik Kosar, Changyou Chen,
Muhammed Fatih Bulut, Jaroslaw Zola, Daby Sow, GreenABR: energy-aware
adaptive bitrate streaming with deep reinforcement learning, 2022, pp. 150-163,
2022.

Kevin Spiteri, Rahul Urgaonkar, Ramesh K. Sitaraman, BOLA: Near-optimal
bitrate adaptation for misc videos, 2016.

Kevin Spiteri, Ramesh Sitaraman, Daniel Sparacio, From theory to practice: Im-
proving bitrate adaptation in the DASH reference player, ACM Trans. Multimed.
Comput. Commun. Appl. (TOMM) 15 (2019) (2019) 1-29, 2s.

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, Bruno Sinopoli, A control-theoretic
approach for dynamic adaptive video streaming over HTTP, in: Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication,
2015, pp. 325-338.

Pattathal V. Arun, Krishna Mohan Buddhiraju, Alok Porwal, Jocelyn Chanussot,
CNN-based super-resolution of hyperspectral images, IEEE Trans. Geosci. Remote
Sens. 58 (2020) (2020) 6106-6121, 9.

Rushi Lan, Long Sun, Zhenbing Liu, Huimin Lu, Cheng Pang, Xiaonan Luo,
MADNet: a fast and lightweight network for single-image super resolution, IEEE
Trans. Cybern. 51 (2020) (2020) 1443-1453, 3.

Juhyoung Lee, Jinsu Lee, Hoi-Jun Yoo, SRNPU: An energy-efficient CNN-based
super-resolution processor with tile-based selective super-resolution in mobile
devices, IEEE J. Emerg. Sel. Top. Circuits Syst. 10 (2020) (2020) 320-334, 3.
Xining Zhu, Lin Zhang, Lijun Zhang, Xiao Liu, Ying Shen, Shengjie Zhao, GAN-
based image super-resolution with a novel quality loss, Math. Probl. Eng. 2020
(2020) (2020) 1-12.

Tairan Liu, Kevin De Haan, Yair Rivenson, Zhensong Wei, Xin Zeng, Yibo Zhang,
Aydogan Ozcan, Deep learning-based super-resolution in coherent imaging
systems, Sci. Rep. 9 (2019) (2019) 1-13, 1.

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li,
Yueting Chen, Srdiff: Single image super-resolution with diffusion probabilistic
models, Neurocomputing 479 (2022) (2022) 47-59.

Royson Lee, Stylianos I. Venieris, fLukasz Dudziak, Sourav Bhattacharya,
Nicholas D. Lane, Mobisr: Efficient on-device super-resolution through hetero-
geneous mobile processors, in: Computer Vision and Pattern Recognition 2019,
2019, arXiv.

Qian Yu, Qing Li, Rui He, Gareth Tyson, Wanxin Shi, Jianhui Lv, Zhenhui
Yuan, Peng Zhang, Yulong Lan, Zhicheng Li, BiSR: Bidirectionally optimized
super-resolution for mobile video streaming, in: Proceedings of the ACM Web
Conference 2023, 2023, pp. 3121-3131.

J.MLK. Freeskates, First time at the skatepark, 2022, https://www.youtube.com/
shorts/1L423DSEebl.

Zongcai Du, Jie Liu, Jie Tang, Gangshan Wu, Anchor-based plain net for mobile
image super-resolution, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 2494-2502.

Google, Monitor the battery level and charging state, 2023, https://developer.
android.com/training/monitoring-device-state/battery-monitoring.

Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, William T. Freeman, Video
enhancement with task-oriented flow, Int. J. Comput. Vis. 127 (2019) (2019)
1106-1125, 8.

11

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

Computer Networks 257 (2025) 110994

Netflix Technology Blog., Toward a practical perceptual video quality metric,
2016.

Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, Lei Zhang, Toward real-
world single image super-resolution: A new benchmark and a new model, in:
Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 3086-3095.

Mustafa Ayazoglu, Extremely lightweight quantization robust real-time single-
image super resolution for mobile devices, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 2472-2479.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification, in: Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp. 1026-1034.
Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson, How transferable are
features in deep neural networks, Adv. Neural Inf. Process. Syst. 27 (2014)
(2014).

Eirikur Agustsson, Radu Timofte, Ntire 2017 challenge on single image super-
resolution: Dataset and study, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017, pp. 126-135.
John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, Pieter Abbeel,
High-dimensional continuous control using generalized advantage estimation,
2015, arXiv preprint arXiv:1506.02438 2015.

J.J. Allaire, Dirk Eddelbuettel, Nick Golding, Yuan Tang, TensorFlow: Large-scale
machine learning on heterogeneous systems, 2022, https://tensorflow.org.
TensorFlow Lite C++ API reference, 2023, https://www.tensorflow.org/lite/api_
docs/cc.

Zongcai Du, Jie Liu, Jie Tang, Gangshan Wu, Github: SR mobile quantization,
2021, https://github.com/NJU-Jet/SR_Mobile_Quantization.

Youtube Help, YouTube recommended upload encoding settings, 2023, https:
//support.google.com/youtube/answer/1722171.

U.S. broadband, Measuring broadband America mobile data, 2022,
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/
measuring-broadband-america-mobile-data.

Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley,
Luc Van Gool, Ai benchmark: Running deep neural networks on android
smartphones, in: Proceedings of the European Conference on Computer Vision
Workshops, 2018.

Google, ExoPlayer, 2023, https://exoplayer.dev/.

Zhengfang Duanmu, Abdul Rehman, Zhou Wang, A quality-of-experience
database for adaptive video streaming, IEEE Trans. Broadcast. 64 (2018) (2018)
474-487, 2.

Yichen Lu is currently pursuing his graduate studies at
Nanjing University, where his research interests lie at
the intersection of artificial intelligence and mobile video
streaming technology. He has dedicated his studies to
improving the user experience of mobile video streaming
through cutting-edge techniques such as super-resolution
algorithms and reinforcement learning (RL).

His work aims to significantly enhance the efficiency
and quality of video streaming on mobile platforms, ad-
dressing the challenges posed by limited bandwidth and
varying network conditions. Lu’s commitment to innovation
is reflected in his contributions to the field, where he seeks
to push the boundaries of video technology for mobile
devices.

