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 The non-attention areas 
of CNNs are probably to 
be the focus of ViTs, and 
vice versa.

 The masked image 
induced high ratios of 
attention overlaps across 
both homogeneous and 
heterogeneous models

Challenge: How to make the best of individual model 
while stabilizing update direction among ensemble 
models?

 We propose a novel ensemble attack, NAMEA, which ensures 
stable update direction and model diversity at once, exhibiting 
superior cross-architecture transferability.

 NAMEA decouples gradients from non-attention and attention 
regions and integrates meta-learning into iterative optimization 
for efficient gradient merging.

① Attention meta-training updates the gradient 𝒈𝒈𝒕𝒕𝒕𝒕𝒌𝒌+𝟏𝟏 based on model's attention areas.
② Non-attention meta-testing updates the gradient 𝒈𝒈𝒕𝒕𝒆𝒆𝒌𝒌+𝟏𝟏 based on model's non-attention areas.
③ Final update merges the gradients from meta-training and meta-testing steps to obtain the final gradient 𝒈𝒈𝒕𝒕+𝟏𝟏. 

Non-Attention Extraction Gradient Scaling Optimization Module
Generate attention maps (Grad-CAM) & Create non-attention masks CNN: emphasize intermediate-layer gradients
Mask attention areas & Obtain gradients from non-attention regions ViT: suppress low-magnitude gradients
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