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Stability-aware Preference Modeling for Sequential Recommendation
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Many researchers primarily rely on modeling user interests for sequential recommendation. However, dynamic user behaviors often
accompany unstable interaction histories, and modeling user interests alone is insufficient for comprehensive user features. Some
studies notice the problem of interest drift, but they are usually limited to modeling at the item-level, unable to perceive the subtle
changes at the feature-level. To this end, we propose a Stability-aware Preference Model (SAPM), which consists of three modules.
The LSI module for extracting long and short-term interests, the FLC module for extracting feature-level candidate information, and
the SAF module for fusing them according to the stability score. In particular, we propose a Multi-head GRU (MHGRU) structure in
the LSI module, which is more efficient than the general GRU and has stronger expression ability. Through extensive experiments, our
framework shows significant mitigation of the impact of unstable interactions. On the two real data sets, we improve MRR by 5.7%
and 14.0% compared with the recent baselines. Moreover, we conduct an in-depth analysis of user interaction stability and obtain
several interesting findings that can benefit future studies.
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1 INTRODUCTION

User interest modeling is an essential part of recommendation models. It aims to capture user preferences to produce
proper recommendations. Some studies [10, 61] focus on modeling long-term interests but overlook the temporal
dynamics of user interests. With the widespread adoption of sequence models (e.g., GRU [7]), [3, 11, 13, 14, 45, 60] start
extracting short-term interests and achieve some research outcomes. To comprehensively capture the evolution of user
interests and changes in behavior, some researchers amalgamate the two and propose Long and Short-Term Interest
recommendation models [41, 55, 59].

While existing models improve recommendation effectively, they still face three main challenges. First, interest drift
has not been fully studied. Second, the modeling is usually at the item level or explicit aspect level, and the information
on fine-grained dimensions, such as implicit feature level, hasn’t been well explored. Third, existing methods either
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use a sequential structure which lacks expression ability, or quadratic computational complexity structures such as
graph-based and transformer-based which are usually quite complex [19].

For the first challenge, some studies focus on the interest drift issue in the sequential recommendation, treating
it as uncertainty or noise. Lin et al. [30] propose a modeling approach to integrating global and local preferences,
succinctly addressing user intent uncertainty. Zhang et al. [57] devise a hierarchical sequence denoising model to
eliminate noise items, while [32, 56] employ soft denoising techniques, allocating lower weights to reduce the impact of
noises. However, denoising may compromise semantic information, weaken implicit feature signals, and destabilize
sequences. Recent research [8, 9, 17, 44] employ Gaussian distribution modeling method for interaction sequences
to counteract uncertainty. However, Gaussian-based studies have not explored interest drift from the perspective of
stability. Complex user interaction behavior may lead to sequence instability. If the entire interaction history is regarded
as the user’s interest, it may lead to performance degradation. Meanwhile, most of these studies only focus on modeling
at the item level but fail to perceive the subtle changes at the feature level. In fact, the problem of interest drift can be
regarded as the stability of item-level and feature-level in the interaction history.

SUM DIEN GRU4REC CLSR0.35
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Fig. 1. (a): The negative effects of unstable sequences. (b): An illustrative example of fine-grained features.

To check the impact of unstable sequences on recommendation, we divide the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset into two equal parts
(Please refer to Section 4.1 for the processing): stable dataset and unstable dataset. Then, we use them as different
testing data, along with the same training data, to train and test three representative models (i.e., SUM [25], DIEN [60],
GRU4REC [11], and CLSR [59]). Figure 1(a) shows that existing models perform better on stable sequences (i.e., higher
MRR), which validates the negative effects of unstable sequences.

As for the second challenge of fine-grained modeling, existing methods usually rely solely on item-level or explicit
aspect-level interest modeling. Taking smartphones as an example, smartphones possess multiple attributes such as
appearance, Soc (System on Chip), camera, and more. Modeling based solely on item-level interest results in embeddings
that blend information from various attributes, thus failing to effectively capture the relationships between these
attributes. Meanwhile, some researchers (e.g., Chin et al. [6]) model aspect level explicit interest, but in reality, the data
set lacks enough labels to train. Considering this, Lin et al. [31] proposes implicit feature-level modeling and uses a
routing mechanism to simulate the evolution of user behavior. Chen et al. [4] introduce feature-level memory channels
to model users in more detail. They achieve good results in fine-grained modeling, but they still regard all learning as
interest, without considering interest drift. The interaction history of some users may not be completely dominated by
interest, because they may be exploring fresh items.

We provide an illustrative example in Figure 1(b), where a user clicks on five mobile phones in sequence. When
evaluating the situation solely at the item level, we can only see the five devices and ignore deeper insights into the
user preferences. By analyzing the smartphones’ fine-grained features in terms of camera quality, Soc performance,
Manuscript submitted to ACM
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Stability-aware Preference Modeling for Sequential Recommendation 3

and appearance level, we can see the stability of users’ deep interest. Figure 1(b) shows the scores of the three features
of the five mobile phones browsed by the user. It can be found that the Camera score and Appearance score of the
five mobile phones are high and in a stable state, while the score of Soc fluctuates significantly. This indicates the
importance of capturing fine-grained user interest stabilities and dealing with them carefully. Lin et al. [31] emphasizes
the effectiveness of implicit feature-level modeling over explicit modeling. Considering the limited availability of real
training data, we focus on interest drift at the implicit feature level.

As for the third challenge of the modeling technique, 𝑅𝑁𝑁𝑠 (i.e., RNN, GRU, LSTM, etc.) is an efficient linear
structure but with limited expression ability. Therefore, DIEN [60] and CLSR [59] employ dual 𝑅𝑁𝑁𝑠 structures, which
achieve good results. However, as the sequence length increases, the time required also increases linearly, making it
unsuitable for scalability. Graph-based and Transformer-based recommendation models have quadratic computational
complexity. To address this issue, AutoMLP [19] proposes a linear MLP model. Nevertheless, this model lacks the
sequential relationship of 𝑅𝑁𝑁𝑠 . Thus there is an urgent need for a simple and efficient sequential model.

In this paper, we strive to address the above three challenges. Firstly, we find that interest drift can be transformed
into a sequence stability problem and demonstrate that unstable sequences indeed impact interest recommendations (as
shown in Fig. 1(a)). We also analyze interest drift at the feature level. Based on this, we propose a novel framework
called Stability-aware Preference Modeling (SAPM). It comprises three modules: Long and Short-Term Interests (LSI),
Feature-Level Channels (FLC), and Stability-aware Fusion (SAF). The LSI module effectively captures both the long-term
and short-term interests of users, providing a simplified interest representation. The FLC module extracts feature-level
information from interaction history to supplement the LSI module. The SAF module assesses sequence stability and
exploits the stability score to control the degree to which candidate feature-level information supplements the long and
short-term interests. In particular, to address the modeling challenge, we propose the MHGRU structure in LSI module,
which exhibits parallelism and efficiency compared to traditional 𝑅𝑁𝑁𝑠 models, while retaining the sequential nature
of 𝑅𝑁𝑁𝑠 . It can reduce model inference time. Finally, we conduct extensive experiments to validate the effectiveness of
the SAPM framework and conduct in-depth analyses of user interaction stability, providing novel insights into the
sequential recommendation.

The contributions of this research can be summarized as follows:

• We discover that interest drift can be transformed into a sequence stability problem and demonstrate that
unstable sequences indeed impact interest recommendations. Additionally, we analyze interest drift at the
feature level.

• We propose a simple and efficient SAPM framework, which effectively extracts long and short-term interests
while measuring interest drift through stability perception, subsequently complementing relevant feature-level
information.

• To validate the effectiveness of the SAPM framework, we conduct extensive experiments and in-depth analyses
of user interaction stability, thereby providing novel insights into the field of sequential recommendation.

The remainder of the paper is organized as follows. Section 2 describes the problem we address. The details of our
SAPM framework are presented in Section 3. Extensive experiments with two real-life datasets are presented and
analyzed in Section 4. The related work is discussed in Section 5. Section 6 concludes this paper and highlights future
directions.
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Fig. 2. The overview of the SAPM framework. The LSI module generates the long and short-term interests 𝑢𝑙𝑠 , and the FLC module
obtains the feature-level information 𝑢𝑓 , which is fused to 𝑢 by the SAF module according to the stability score.

2 PROBLEM FORMULATION

In sequential recommendation tasks, there is a set of users𝑈 and a set of items 𝐼 . The interaction sequence of a user
𝑢 ∈ 𝑈 can be described as 𝑆𝑢 =

[
𝑖1, . . . 𝑖𝑛, . . . , 𝑖 |𝑆𝑢 |

]
, where 𝑖𝑛 ∈ 𝐼 represents the item of the user’s 𝑛-th interaction, with

a total of |𝑆𝑢 | interactions, and the candidate item is 𝑖𝑐𝑎𝑛 . Different user sequences exhibit varying degrees of stability.
We denote the embeddings of 𝑆𝑢 and 𝑖𝑐𝑎𝑛 as 𝐸 =

[
𝑒1, . . . , 𝑒𝑛, . . . , 𝑒 |𝑆𝑢 |

]
and 𝑒𝑐𝑎𝑛 , respectively, where 𝑒𝑛, 𝑒𝑐𝑎𝑛 ∈ R𝐷 ,

𝐸 ∈ R |𝑆𝑢 |×𝐷 , and 𝐷 is the dimension. The goal of sequential recommendation is to predict the next item 𝑖 |𝑆𝑢 |+1 ∈ 𝐼 that
the user may interact with the known interaction sequence 𝑆𝑢 . Our specific task can be expressed as:

𝑃

(
𝑖 |𝑆𝑢 |+1 = 𝑖 |𝑆𝑢

)
. (1)

Owing to the negative impact of unstable sequences on recommendation quality, our objective is to maximize the
probability of prediction 𝑃 in Eq. 1. In the actual experiments, the maximum sequence length is 𝑇 . If the sequence
length 𝐿 is less than 𝑇 , it is padded on the left of 𝑇 . If the sequence length 𝐿 is greater than 𝑇 , the most recent 𝑇 items
are used for the experiment.

We define the cosine similarity between 𝑒𝑛 and 𝑒𝑛+1 for 𝑛, 𝑛 + 1 ∈ |𝑆𝑢 | as the local stability of the sequence. A higher
similarity score indicates that two adjacent items are more similar and thus more stable. The average similarity score of
the entire sequence represents the overall stability of the sequence.

3 THE SAPM FRAMEWORK

Our SAPM framework consists of three main modules (Figure 2): the LSI module for extracting long and short-term
interests, the FLC module for extracting feature-level candidate information, and the SAF module for fusing them
according to stability score.

3.1 Long and Short-Term Interests (LSI)

When it comes to interest recommendation, long and short-term interest modeling is widely used. Among these, SLi-Rec
[55] and CLSR [59] are two recent representative models. We design the long and short-term interests (LSI) module,
which enhances the expression ability and robustness of the model while maintaining the linear complexity. The module
includes our proposed Multi-head GRU (MHGRU) and Attention pool, which can effectively extract users’ long and
short-term interests. To better illustrate our design, we compare the structures of SLi-Rec, CLSR, and our LSI in Figure 3.
Manuscript submitted to ACM
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Fig. 3. Comparison of SLi-Rec, CLSR, and our LSI for extracting long and short-term interests. The first two need to generate 𝑢𝑠 and
𝑢𝑙 and then merge them into 𝑢𝑙𝑠 , while we generate 𝑢𝑙𝑠 at one time.

3.1.1 MHGRU. Many researchers use 𝑅𝑁𝑁𝑠 to extract short-term interests because this structure can capture context
information. However, compared to the transformer-based and the graph-based neural network, the effect of GRU with
linear complexity is inferior. SLi-Rec utilizes an 𝑅𝑁𝑁𝑠 to extract interests and CLSR uses a dual 𝑅𝑁𝑁𝑠 structure to
extract short-term interests, as shown in Figure 3. Although it achieves good performance, the efficiency of dual 𝑅𝑁𝑁𝑠
is low because general 𝑅𝑁𝑁𝑠 cannot be executed in parallel. Inspired by this and taking advantage of the Multi-head
attention mechanism, we propose MHGRU to effectively aggregate several GRU into one, thus reducing the parameter
quantity and improving the parallel efficiency. MHGRU incorporates multiple heads to offer diverse perspectives, with
each head positioned differently in the sequence. This allows for independent viewpoints on short-term interests,
enhances parallel processing, and improves the expression ability of the model.

First, let’s review GRU’s formula. GRU is a cyclic neural network structure optimized relative to LSTM, which
contains only two gating units. In GRU, hide status ℎ𝑡 is used to transmit status information, but each GRU unit can
only transmit one status information, which limits its expression ability to a certain extent.

𝑧𝑡 = 𝜎 (𝑊𝑧 · [ℎ𝑡−1, 𝑒𝑡 ]), (2)

𝑟𝑡 = 𝜎 (𝑊𝑟 · [ℎ𝑡−1, 𝑒𝑡 ]), (3)

ℎ̂ = tanh(𝑊 · [𝑟𝑡 ∗ ℎ𝑡−1, 𝑒𝑡 ]), (4)

ℎ𝑡 = (1 − 𝑧𝑡 ) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̂. (5)

Our MHGRU implementation is as follows. The status group at time 𝑡 can be expressed as:

𝐻𝑡 =

[
ℎ1𝑡 , ℎ

2
𝑡 , . . . , ℎ

𝑀
𝑡

]
, (6)

where 𝐻𝑡 ∈ R𝑀×𝑑 contains states of𝑀 heads at time 𝑡 and 𝑑 represents the dimension of ℎ∗𝑡 . We use a trainable matrix
𝑊𝑧 to generate an update gate group:

𝑍𝑡 = 𝜎 (𝑊𝑧 · [𝐻𝑡−1, 𝑒𝑡 ]), (7)
Manuscript submitted to ACM
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6 Chaoyong Wei, Wenjun Jiang, Kenli Li, and Jie Wu

where 𝜎 is the sigmoid function and 𝑍𝑡 is used to control whether each head of the input information at the current
time needs to be updated to the hidden state. It uses the input 𝑒𝑡 and the hidden state group 𝐻𝑡−1 is used as input and a
sigmoid function is used to generate a value 𝑍𝑡 . When 𝑍𝑡 is close to 1, it indicates that the input information needs to
be updated. Then we use a trainable matrix𝑊𝑟 ∈ R𝑀×𝑑 to generate reset gate group:

𝑅𝑡 = 𝜎 (𝑊𝑟 · [𝐻𝑡−1, 𝑒𝑡 ]), (8)

where 𝑅𝑡 determines how much information from the previous time step hidden state group 𝐻𝑡−1 should be retained. It
also takes the 𝑒𝑡 and the hidden state group 𝐻𝑡−1 as input and a sigmoid function is used to generate a value 𝑅𝑡 .

The candidate hidden state ℎ̂ in Eq. 4 in GRU is a temporary hidden state calculated based on the reset gate 𝑟𝑡 and
the current time step input 𝑒𝑡 . It cannot directly be applied to Multi-head in MHGRU, so we design the independent
candidate hidden states 𝐻̂ , which is expected to provide separate candidate states for each attention head. The hidden
state updates of each head no longer depend on the same state ℎ̂; instead, they gather information from their respective
independent candidate states. We use the trainable parameter matrix𝑊alone ∈ R(𝑀×𝑑+𝐷 )×(𝑀×𝑑 ) to obtain independent
candidate state group:

𝐻̂ = tanh(𝑊𝑎𝑙𝑜𝑛𝑒 · [𝑅𝑡 · 𝐻𝑡−1, 𝑒𝑡 ]), (9)

where 𝐻̂ =

[
ℎ̂1, ℎ̂2, . . . , ℎ̂𝑀

]
contains the information of the previous time step reserved by each head. This design

enables each head to independently acquire and process its own candidate states and improves the modeling ability of
the model for the input sequence. We then update the final hidden state group 𝐻𝑡 :

𝐻𝑡 = (1 − 𝑍𝑡 ) · 𝐻𝑡−1 + 𝑍𝑡 · 𝐻̂ . (10)

The output of MHGRU can be expressed as:

𝑀𝐻𝐺𝑅𝑈

(
𝑒1, 𝑒2, . . . , 𝑒𝑇

)
=

[
𝐻1, 𝐻2, · · · , 𝐻𝑇

]

=



ℎ11 ℎ11 . . . ℎ𝑀1
ℎ12 ℎ22 . . . ℎ𝑀2
.
.
.

.

.

.
.
.
.

.

.

.

ℎ1
𝑇

ℎ2
𝑇

. . . ℎ𝑀
𝑇
,


which includes𝑀 ×𝑇 small states output by𝑀 heads at 𝑇 times.

Our design for MHGRU involves implementing GRU in a multi-head parallel manner. This approach can enhance
execution efficiency as well as improve the overall performance. RNN, LSTM, and GRU share similar model structures,
theoretically making it possible to design MHRNN and MHLSTM using the same principle. However, specific designs
may vary with model structures, such as carefully determining which gating mechanism to parallelize. We chose GRU
as the foundation because of its relatively simple structure and strong expression ability.

3.1.2 Attention pool. Existing researches [1, 55, 58, 59] usually extract the long-term interest 𝑢𝑙 and short-term 𝑢𝑠

interest separately, and then fuse them to generate the final interest representation 𝑢𝑙𝑠 . Different from these methods,
our design which obtains them simultaneously is more concise as shown in Figure 3, because long-term and short-term
interest candidates are in the same semantic space. We use the attention pool to consider both long-term and short-term
interest candidates through one-time query and generate the final interest representation. This design not only reduces
the steps but also realizes interactive learning between long-term and short-term interest candidate states.
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Stability-aware Preference Modeling for Sequential Recommendation 7

Similar to SLi-Rec [55] and CLSR [59], we also use the query embedding table and the output of 𝑅𝑁𝑁𝑠 to capture
different dynamics information over time and use them as query vectors. Different from them, we improve the modeling
process of long and short-term interests in two aspects. First, our 𝑅𝑁𝑁𝑠 is a Multi-head GRU. We choose𝑚 (where
𝑚 < 𝑀) heads to extract the information from the query vector. Multi-head output can provide more independent
query perspectives. According to the needs of different scenarios, different numbers of head channels can be selected to
provide a wider selection range. Second, we use a unified query vector to capture the user’s final interest expression 𝑢𝑙𝑠
at once. There will be no long-term interest 𝑢𝑙 and short-term interest 𝑢𝑠 in the middle steps, because 𝑢𝑙𝑠 integrate the
characteristics of long and short-term interest, reducing the steps of fusion. The details are as follows.

The 𝑞𝑢𝑒𝑟𝑦 vector 𝑄 is expressed as:
𝑄 =

[
ℎ1𝑇 , ℎ

2
𝑇 , . . . , ℎ

𝑚
𝑇 , 𝑒

𝑐𝑎𝑛
]
, (11)

which includes the final states of𝑚 heads and candidate item 𝑒𝑐𝑎𝑛 .
Similar to CLSR [59], we also use the outputs of 𝑅𝑁𝑁𝑠 as the 𝑘𝑒𝑦 for the attention pooling to effectively model

the temporal dependencies of sequential data and capture the evolving relationships of short-term interests. We still
employ the partial outputs of the Multi-head GRU model as representations of short-term candidate interests, where
each head provides a unique and distinct perspective on interest evolution. When it comes to capturing long-term
interests, we need to consider long-term candidate interests as well. Long-term interests represent the interests that
remain relatively stable over time and are less influenced by factors 𝑡 . Therefore, we use the encoded vectors of the
historical sequences embedding 𝐸 =

[
𝑒1, 𝑒2, . . . , 𝑒𝑇

]
as the features for long-term interest candidates. We only have

𝑀 −𝑚 heads to use on 𝑘𝑒𝑦 and our candidate 𝑘𝑒𝑦 can be represented as 𝐾 :

𝐾 =



ℎ𝑚+1
1 ℎ𝑚+2

1 . . . ℎ𝑀1 𝑒1

ℎ𝑚+1
2 ℎ𝑚+2

2 . . . ℎ𝑀2 𝑒2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

ℎ𝑚+1
𝑇

ℎ𝑚+2
𝑇

. . . ℎ𝑀
𝑇
, 𝑒𝑇


, (12)

which includes both long and short-term candidate states. We use an MLP layer to learn the similarity scores 𝜌𝑡 between
the query vector 𝑄 and the key vector 𝐾 . We perform the query operation:

𝑉 =𝑊𝑘𝐾, (13)

{𝑎1, 𝑎2, . . . , 𝑎𝑇 } = MLP(𝑉 | |𝑄 | | (𝑉 −𝑄) | | (𝑉 ·𝑄)) (14)

𝜌𝑡 =
𝑒𝑥𝑝 (𝑎𝑡 )∑𝑇
𝑖=1 𝑒𝑥𝑝 (𝑎𝑖 )

, (15)

where𝑊𝑘 is a transformation matrix and 𝜌𝑡 represents the score at time 𝑡 .
With Eq. 15, we obtain the score vector 𝐴 = concat (𝜌1, 𝜌2, . . . , 𝜌𝑇 ). Then, the final interest representation 𝑢𝑙𝑠 can be

expressed as:

𝑢𝑙𝑠 =𝑊𝑡𝑜 (𝐴 · 𝐾) (16)

where𝑊𝑡𝑜 is a transformation matrix that converts the result to 𝐷 dimensions, and 𝑢𝑙𝑠 contains the long and short-term
interest information of the user.

3.1.3 Complexity. We analyze the complexity of MHGRU and𝑀 GRU models, supposing a sequence length of 𝑇 . Since
GRU is linear and is difficult to parallelize, the complexity of executing𝑀 GRU models is𝑂 (𝑀 ×𝑇 ). We set the number
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8 Chaoyong Wei, Wenjun Jiang, Kenli Li, and Jie Wu

of heads in MHGRU to 𝑀 , which can produce outputs of the same size as 𝑀 GRU models, but with an approximate
complexity of 𝑂 (𝑇 ). This is because we only need to execute the 𝑅𝑁𝑁𝑠 once, thus improving parallel efficiency. It is
important to note that as𝑀 increases, the number of parameters also increases, which may introduce some additional
time overhead. The impact of this additional overhead is influenced by GPU parallel computing. In real scenarios, the
complexity of MHGRU falls in the (𝑂 (𝑇 ),𝑂 (𝑀 ×𝑇 )). In summary, compared to DIEN [60] and CLSR [59] models, our
MHGRU structure is more efficient, because those two models require executing two regular 𝑅𝑁𝑁𝑠 , such as GRU or
other 𝑅𝑁𝑁𝑠 .

3.2 Feature-Level Channels (FLC)

Considering interests alone may not effectively capture the overall representation of the user, as user interests tend to
drift over time. To model users more accurately, we need to consider multiple dimension features other than just interests,
particularly user stability. When a user’s choices of items have been unstable in past interactions, it may indicate
that the user is exploring new items. Treating this exploration process as interest learning would be unreasonable.
Furthermore, the feature-level features also matter, we need to consider fine-grained feature-level information beyond
interests. Inspired by RUM [4] and SUM [25], we use memory networks to store feature-level information, which may
reflect users’ hidden and subtle preferences in interacting.

In this section, we propose the FLC memory network (As shown in Figure 2). Each channel represents a dimension
of the low-dimensional features of the item. We update and utilize the memory network by writing and reading. As
described in Figure 1(b), a series of user interactions can be transformed into feature-level dimensions such as Soc,
appearance, and camera. However, many features are implicitly hidden, and we do not have ready-made explicit
labels to train them. Therefore, we exploit the reading and writing operation methods of RUM and SUM to obtain
multi-dimensional implicit features and make improvements and simplifications.

We use 𝑁 channels as the memory matrix, denoted as 𝐶 =
{
𝑐1𝑡 , 𝑐

2
𝑡 , . . . , 𝑐

𝑁
𝑡

}
, where 𝑐𝑛𝑡 represents the embedding

representation of feature 𝑛 updated after the user interacting with the 𝑡-th item. Since each channel is also a hidden
state, we set the dimension as 𝑑 for ease of searching for optimal parameters. Meanwhile, we have a global feature map
𝐹𝑤 =

{
𝑓 𝑤1 , 𝑓

𝑤
2 , . . . , 𝑓

𝑤
𝑁

}
for writing operations and 𝐹𝑟 =

{
𝑓 𝑟1 , 𝑓

𝑟
2 , . . . , 𝑓

𝑟
𝑁

}
for reading operations. The details are the

follows.

3.2.1 Writing operation. The writing operation is to write the feature-level information of interaction history into the
memory network. When the user interacts with the 𝑡-th item, the attention scores of 𝑒𝑡 for each feature-level channel
can be calculated as:

𝑤𝑤
𝑡𝑛 = 𝑒𝑡 · 𝑓 𝑤𝑛 , (17)

𝑧𝑤𝑡𝑛 =
𝑒𝑥𝑝 (𝛽𝑤𝑤

𝑡𝑛)∑𝑁
𝑗 𝑒𝑥𝑝 (𝛽𝑤𝑤

𝑡 𝑗
)
,∀𝑛 ∈ {1, 2, . . . , 𝑁 } (18)

where 𝛽 represents the scaling factor, and 𝑧𝑤𝑡𝑛 denotes the attention score, which represents the weight of each item in
each feature dimension at the 𝑡-th time step. Based on these scores, we synthesize the candidate memory state 𝑐 . In
SUM [25], an additional Highway Channel is introduced to enhance the evolution of sequential relationships. Since we
capture the interest evolution with our MHGRU structure, we delete the Highway Channel to simplify the network
structure and operations. Therefore, the synthesis of 𝑐 is as follows:

𝑐 =
∑︁
𝑛

𝑧𝑤𝑡𝑛 · 𝑐𝑛𝑡−1 . (19)
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Stability-aware Preference Modeling for Sequential Recommendation 9

We propose a simpler structure compared to RUM [4] and SUM [25], which achieves the same effects. Both SUM and
RUM employ the operations "add," "erase," and "reset" to update the memory state. However, we notice redundancy in
the functionality of the "erase" and "reset" operations. Additionally, since 𝑐 already retains important memories from
the previous time step, we introduce the operations "update" and "add" for memory updates. The new memory state is
influenced by both the input of the new interaction and the past memory. The calculation is as follows:

update𝑡 = 𝜎 (𝑊𝑢𝑝𝑑𝑎𝑡𝑒 [𝑒𝑡 , 𝑐]), (20)

add𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎𝑑𝑑 [𝑒𝑡 , 𝑐]), (21)

where𝑊𝑢𝑝𝑑𝑎𝑡𝑒 and𝑊𝑎𝑑𝑑 are trainable weight matrices. Next, we update memory as follows:

𝑐𝑛𝑡 = update𝑡 · add𝑡 + (1 − update𝑡 ) · 𝑐𝑛𝑡−1, (22)

where 𝑐𝑛𝑡 represents the updated state of the 𝑛-th feature-level memory after the user’s 𝑡-th interaction.

3.2.2 Reading operation. The reading operation is to read feature-level information from the memory network. For the
reading operation, we also utilize the global feature map 𝐹𝑟 =

{
𝑓 𝑟1 , 𝑓

𝑟
2 , . . . , 𝑓

𝑟
𝑁

}
to obtain the attention scores for each

channel:
𝑤𝑟
𝑡𝑛 = 𝑒𝑐𝑎𝑛 · 𝑓 𝑟𝑛 , (23)

𝑧𝑟𝑡𝑛 =
𝑒𝑥𝑝 (𝑤𝑟

𝑡𝑛)∑𝑁
𝑗 𝑒𝑥𝑝 (𝑤𝑟

𝑡 𝑗
)
.∀𝑛 ∈ {1, 2, . . . , 𝑁 } (24)

Then, we use the attention scores 𝑧𝑟𝑡𝑛 to weight the feature-level memory channels for reading and obtain the user’s
candidate feature 𝑢𝑓 :

𝑢𝑓 =
∑︁
𝑛

𝑧𝑟𝑡𝑛 · 𝑐𝑛𝑇 , (25)

where 𝑢𝑓 represents the aggregated feature-level memory from the user’s interaction history and can serve as a
complement for recommendation. It helps mitigate the influence of the user’s evolving interests when exploring items.

3.3 Stability-aware Fusion (SAF)

The SAF module regulates the extent to which candidate feature-level information complements the long and short-term
interests according to the stability score. By considering the stability of user interactions, we can better understand user
behavior patterns and preferences, providing more accurate user representations for personalized recommendations
and other tasks.

To obtain the stability score of the user sequences, we calculate the similarity between each pair of consecutive
interactions using cosine similarity, to measure the distance between the user’s new interaction and past ones. Based
on this distance, we can ascertain whether the user’s interactions are stable or unstable, thereby inferring whether they
are consistently engaging with interested items or exploring new ones. If it is the latter case and the overall interaction
stability is low, the computed overall similarity will also be lower. In such cases, we need to select some candidate
feature memories that go beyond the user’s interest and recommend them to the user, providing slightly surprising
recommendations while still within the user’s acceptance range of personalization.

We take into account the stability at both the item level and feature-level. The similarity score can be represented by
calculating the cosine similarity between the embedded features and the channel features of two consecutive moments:

𝑠𝑡−1 = cosine
( [
𝑐1𝑡−1, 𝑐

2
𝑡−1, . . . , 𝑐

𝑁
𝑡−1, 𝑒𝑡−1

]
,

[
𝑐1𝑡 , 𝑐

2
𝑡 , . . . , 𝑐

𝑁
𝑡 , 𝑒𝑡

] )
, (26)
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10 Chaoyong Wei, Wenjun Jiang, Kenli Li, and Jie Wu

where 𝑠𝑡−1 is the cosine similarity score between 𝑡 − 1 and 𝑡 moment. We then input this score into the following
formula to obtain the stability score 𝜇:

𝜇 = 𝜎

(
MLP

(
𝑜
𝑠1
1 , 𝑜

𝑠2
2 , . . . , 𝑜

𝑠𝑇 −1
𝑇−1

))
, (27)

where 𝑜𝑡 are trainable parameters of dimension 1. Since there are 𝑇 − 1 intervals among 𝑇 interactions, and each
position has different importance, we set 𝑇 − 1 individual 𝑜𝑡 parameters instead of a single unified base. 𝑜𝑠𝑡𝑡 represents
the influence of stability at that position on the user’s final representation learning, given the similarity score 𝑠𝑡 . 𝜇 is
the final stability score, which is exploited as the weight of LSI, and we perform weighting accordingly:

𝑢 = (1 − 𝜇) · 𝑢𝑓 + 𝜇 · 𝑢𝑙𝑠 , (28)

where 𝑢 is the final user representation considering the stability of historical interactions. The insights of Eq. 28
are that the stable users take more weight on their interests, while unstable users take more weight on the implicit
multi-dimensional features.

3.4 Output Layer

In this section, we introduce the final MLP output layer and loss function. To fully utilize the extracted user interest
features, we not only input the fused interest representation 𝑢 into the prediction layer but also consider the interest
features before fusion. Although the fused interest representation has strong expression ability, the gating network
may lose some feature information. Users’ interests may drift, and although interest fused with stability features can
reduce the impact of unstable sequences, there is still a particular degree of uncertainty. Therefore, we input both pre-
and post-fusion interest features into the prediction layer, allowing the MLP to adaptively select, as follows:

𝑦 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑢𝑙𝑠 ⊙ 𝑒𝑐𝑎𝑛 ∥𝑢𝑓 ⊙ 𝑒𝑐𝑎𝑛 ∥𝑢 ⊙ 𝑒𝑐𝑎𝑛 ∥𝑒𝑐𝑎𝑛), (29)

where 𝑦 represents the output score of the prediction layer, and ⊙ denotes the Hadamard product.
We combine the three interest features with the candidate item using the Hadamard product to enhance the model’s

ability to capture the interactions between features. The optimization objective is as follows:

L = − 1
|𝐺 |

|𝐺 |∑︁
𝑖=1

(𝑦𝑖𝑙𝑜𝑔𝑦𝑖 + (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑦𝑖 )) + 𝜆∥Φ∥2, (30)

where Φ represents the set of trainable parameters, 𝐺 is the training set, |𝐺 | is the number of instances in the training
set, 𝜆 controls the penalty strength, and 𝜆∥Φ∥2 is the regularization term.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the effectiveness of our SAPM framework. We first
compare the model’s performance with representative baselines. Then we conduct the ablation study on SAPM to
evaluate the role of each component. Next, we perform sensitivity analysis on model parameters. We also analyze the
role of the three modules of SAPM and the relationship between stability and user interaction behavior. Finally, we test
the complexity of our MHGRU structure. We will share our codes upon the acceptance of this paper.
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Stability-aware Preference Modeling for Sequential Recommendation 11

4.1 Experiment Setup

Datasets: We employ two real datasets of different platforms,𝑇𝑎𝑜𝑏𝑎𝑜 and 𝐴𝑚𝑎𝑧𝑜𝑛. The𝑇𝑎𝑜𝑏𝑎𝑜 dataset is derived from
user behavior sequence data on the Taobao e-commerce platform. Following the processing methods in [2, 3, 59], we
select data extraction sequences from November 25, 2017, to December 3, 2017. The data in the first seven days serve
as the training set, with the following two days as the validation set and test set, respectively. The 𝐴𝑚𝑎𝑧𝑜𝑛 dataset is
chosen from Amazon Movies and TV files, where we process data from the last ten years and take the data within the
200 most recent days. The first 100 days serve as the validation set and the latter 100 days as the test set, with data from
other periods as the training set. The statistical information for the two processed datasets is presented, as shown in
Table 1.

Table 1. Statistics from the𝑇𝑎𝑜𝑏𝑎𝑜 and 𝐴𝑚𝑎𝑧𝑜𝑛 datasets.

Dataset Users Items Instances Avg. Length Sparsity

𝑇𝑎𝑜𝑏𝑎𝑜 37283 65217 1517912 40.71 99.94%
𝐴𝑚𝑎𝑧𝑜𝑛 33326 21901 958986 28.78 99.87%

Partition of Stable and Unstable Datasets: By training the SAPM model and reaching the convergence saturation
stage, we obtain the weights of the model. We use these weights to recompute the testing set in the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset
and 𝐴𝑚𝑎𝑧𝑜𝑛 dataset. For each sequence of length 𝑇 , we calculate the average of 𝑇 − 1 cosine similarity distance scores
𝑠𝑡 in Eq. 26, denoted as 𝑠 , representing the stability score of a sequence in the testing set. Next, we sort these scores
in descending order, taking the top 50% scores (high scores) as the stable testing dataset and the bottom 50% scores
(low scores) as the unstable testing dataset. We use the same training set and different test sets to verify the impact of
unstable sequences.
Evaluation Metrics: We use three common metrics in sequential recommendation: MRR, NDCG, and HIT, and consider
top-k recommendation (𝑘 ∈ {2, 4, 6}). All metrics are the higher the better.
Baselines: We carefully select different interest modeling methods as baselines. As our comparative research focuses
on model structures, we mainly implement the baselines according to their original structure design. It is worth noting
that most of the current recommendation models adopt empirical risk minimization (ERM) as the learning framework,
which assumes that the training and testing data share the same distribution, neglecting the distribution drift between
the two. Yang et al. [53] proposes a Distributionally Robust Optimization mechanism for Sequential recommendation
(DROS) framework to enhance model robustness. In future work, it is promising to apply DROS to recommendation
models.

• NCF [10]: NCF is a neural recommendation model for predicting user interactions using generalized matrix
factorization.

• SASRec [16]: SASRec uses self-attention to balance the advantages of Markov Chains and 𝑅𝑁𝑁𝑠 , achieving
good performance on both sparse and complex data.

• DIN [61]: DIN employs an attention mechanism to aggregate user interest representations from user historical
behaviors.

• SUM [25]: SUM utilizes multiple channels to model users’ multiple interests, compensating for the inadequacy
of single embedding representations.

• Caser [45]: Caser embeds interaction sequences into images and then extracts local image features using
convolutional networks to capture interests.
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12 Chaoyong Wei, Wenjun Jiang, Kenli Li, and Jie Wu

• GRU4REC [11]: GRU4REC applies GRUs to evolve user session sequences, extracting user interests.
• DIEN [60]: DIEN improves upon DIN by designing an interest extraction layer to capture temporal interests

from historical behavior sequences.
• SLi-Rec [55]: SLi-Rec combines the attention framework with LSTM to extract long and short-term interests

using time-awareness.
• SURGE [3]: SURGE uses graph neural networks to model interaction sequences, extracting actual interests from

implicit and noisy signals.
• CLSR [59]: CLSR distinguishes long-term and short-term interests based on long and short-term modeling by

leveraging contrastive learning.

Parameter Settings: We conduct experiments under the Microsoft Recommenders framework, setting the learning
rate to 0.001. The maximum training length for 𝑇𝑎𝑜𝑏𝑎𝑜 and 𝐴𝑚𝑎𝑧𝑜𝑛 dataset is set to 𝑇 = 50 and 𝑇 = 40, respectively.
The prediction layer hidden layers use feedforward neural networks with dimensions of [80, 40]. The ratio of positive
to negative examples in the validation set is 1:4, and in the test set, it is 1:99, with the batch size being set to 500. We set
𝜆 to 1 × 10−6.

4.2 Comparison study

Table 2. Comparison of the baselines and the SAPM. The best performance is indicated in bold, and the second-best performance is
indicated in underlining. The 𝐼𝑚𝑝. means the percentage of improvement of the best compared with the second best.

Dataset 𝑇𝑎𝑜𝑏𝑎𝑜 𝐴𝑚𝑎𝑧𝑜𝑛

Method/Imp. MRR NDCG@2 NDCG@4 NDCG@6 HIT@2 HIT@4 HIT@6 MRR NDCG@2 NDCG@4 NDCG@6 HIT@2 HIT@4 HIT@6

NCF 0.1417 0.0802 0.1128 0.1337 0.0963 0.1661 0.2222 0.1172 0.0631 0.0893 0.1072 0.0759 0.1322 0.1802
SASRec 0.2968 0.2280 0.2871 0.3166 0.2647 0.3907 0.4700 0.2047 0.1409 0.1850 0.2096 0.1658 0.2601 0.3260
DIN 0.3039 0.2284 0.2923 0.3263 0.2651 0.4014 0.4925 0.2428 0.1746 0.2246 0.2524 0.2034 0.3099 0.3846
SUM 0.3985 0.3392 0.3971 0.4230 0.3819 0.5049 0.5742 0.2541 0.1889 0.2372 0.2630 0.2185 0.3213 0.3905
Caser 0.3509 0.2886 0.3424 0.3696 0.3271 0.4415 0.5144 0.2057 0.1409 0.1843 0.2091 0.1656 0.2581 0.3248

GRU4REC 0.4043 0.3478 0.4017 0.4265 0.3893 0.5034 0.5701 0.2370 0.1711 0.2179 0.2440 0.1983 0.2981 0.3681
DIEN 0.3991 0.3380 0.3964 0.4244 0.3803 0.5041 0.5791 0.1982 0.1371 0.1750 0.1979 0.1592 0.2402 0.3017
SLi-Rec 0.3604 0.2963 0.3546 0.3834 0.3385 0.4624 0.5397 0.2718 0.2041 0.2567 0.2854 0.2364 0.3484 0.4253
SURGE 0.4260 0.3670 0.4250 0.4519 0.4099 0.5331 0.605 0.2723 0.2039 0.2553 0.2839 0.2352 0.3446 0.4213
CLSR 0.4312 0.3727 0.4307 0.4581 0.4164 0.5396 0.6129 0.2483 0.1798 0.2296 0.2577 0.2089 0.3150 0.3905

SAPM 0.4558 0.4006 0.4583 0.4844 0.4475 0.5702 0.6399 0.3105 0.2416 0.2968 0.3270 0.2768 0.3943 0.4755
Imp. 5.7% 7.5% 6.4% 5.7% 7.5% 5.7% 4.4% 14.0% 18.4% 15.6% 14.6% 17.1% 13.2% 11.8%

We present the performance comparison results of the baselines and our SAPM on the 𝑇𝑎𝑜𝑏𝑎𝑜 and 𝐴𝑚𝑎𝑧𝑜𝑛 datasets
in Table 2. We obtain three main findings.

Our SPAM framework achieves the best performance. For instance, SAPM demonstrates improvements of
5.7% and 14.0% in MRR, 5.7% to 18.4% in NDCG, and 4.4% to 17.1% in HIT. This is because our LSI module has greater
advantages in extracting long and short-term interests and stronger expression ability than traditional methods and we
exploit feature-level information in FLC module to adaptively complement the interest modeling. Although SLi-Rec and
CLSR can also extract long and short-term interests, SLi-Rec only uses one layer of GRU, so the effect is poor, while
CLSR uses two layers of GRU and comparative learning, and achieves better results. However, they are still inferior to
SAPM, because we use multiple GRU with small parameters to obtain stronger expression ability from different heads
independently. Meanwhile, SURGE is close to CLSR in performance, but it has high secondary complexity and requires
more resources.

The methods of considering evolution perform better than others. The graph network with quadratic
structure performs better on both datasets. Among the original baseline methods, SURGE and CLSR demonstrate
Manuscript submitted to ACM
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Table 3. Ablation analysis on SAPM.

Dataset Taobao Amazon
Order Method MRR imp. MRR imp.

(a) SAPM 0.4558 - 0.3105 -
(b) CLSR 0.4312 -5.40% 0.2483 -20.03%
(c) w/o FLC & SAF 0.4423 -2.96% 0.3020 -2.74%
(d) w/o LSI & SAF 0.3742 -17.90% 0.2773 -10.69%
(e) w GRU 0.3913 -14.15% 0.3022 -2.67%
(f) w SUM 0.4552 -0.13% 0.3032 -2.35%

relatively better performance on the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset. SURGE extracts users’ implicit interests through image modeling,
while CLSR distinguishes long and short-term interests through self-supervised contrastive learning. Both of them
model user representations from historical sequences. However, CLSR underperforms on the 𝐴𝑚𝑎𝑧𝑜𝑛 dataset, while
SURGE remains relatively stable in terms of performance, indicating that SURGE’s image modeling can better extract
users’ implicit interests in datasets with lower sequentiality.

Meanwhile, SLi-Rec, GRU4REC, and DIEN, which employ 𝑅𝑁𝑁𝑠 to evolve interaction sequences, and SUM, which
models interests through multiple channels and empowers memory networks to capture the exact sequence of events,
can capture users’ interests as they change over time from history. These sequence modeling methods perform much
better on 𝑇𝑎𝑜𝑏𝑎𝑜 than non-sequence modeling methods like NCF and DIN. We analyze the reason and find that users’
behaviors are significantly influenced by previous interactions, and we cannot ignore their sequential nature.

The results are quite different on 𝑇𝑎𝑜𝑏𝑎𝑜 and 𝐴𝑚𝑎𝑧𝑜𝑛, and all models perform better on 𝑇𝑎𝑜𝑏𝑎𝑜 than on
the 𝐴𝑚𝑎𝑧𝑜𝑛. Different from that on 𝑇𝑎𝑜𝑏𝑎𝑜 , SLi-Rec, and SURGE perform better than others, and DIN outperforms
Caser, GRU4REC, DIEN, and even CLSR on 𝐴𝑚𝑎𝑧𝑜𝑛. SURGE demonstrates excellent performance on both datasets,
thanks to its quadratic graph structure. Moreover, SURGE performs much better than CLSR on 𝐴𝑚𝑎𝑧𝑜𝑛. The reason
for this may be that the 𝐴𝑚𝑎𝑧𝑜𝑛 dataset spans over ten years, and its sequentiality and stability are not as strong as
that of 𝑇𝑎𝑜𝑏𝑎𝑜 . Moreover, Amazon users have shorter interaction sequences with weaker temporal patterns and less
interaction information. Therefore, the overall predictive performance is better on 𝑇𝑎𝑜𝑏𝑎𝑜 .

4.3 Ablation Study

We conduct a series of ablation experiments in Table 3 and Figure 5(a), labeled as groups (c)-(f), with groups (a) and
(b) serving as the reference groups. In groups (c)-(e), we eliminate specific structures to assess their impact on system
performance. In group (e), we replace the MHGRU structure with GRU, while in group (f), we substitute FLC with SUM,
further validating the effectiveness of our network architecture. We have the following four findings:

Our model performs better in extracting long and short-term interests. In group (c), only the LSI module is
active, while group (b) CLSR represents a similar long and short-term interest structure to LSI. By comparing groups
(c) and (b), our long and short-term interest modeling performs better on both datasets, demonstrating its ability to
effectively extract user interests.

Although feature-level information cannot serve as the main factor for recommendations, it can mitigate
the issue of interest drift. In group (d), relying solely on feature-level information leads to a noticeable decrease in
performance on both datasets, indicating that the sole application of feature-level information is insufficient. However,
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in group (c), removing the FLC module leads to a performance drop of almost 3%. This suggests that feature-level
information can effectively mitigate interest drift and serve as a valuable factor for interest recommendations.

Our model has a simple structure but stronger expression ability. By comparing group (e) with (a), MHGRU
exhibits greater expression ability compared to GRU, indicating the superiority of MHGRU which has a multi-head
structure. In group (f), we show that removing the Highway Channel and merging two operations into a single "update"
operation is effective because our interest modeling already includes evolutionary information. In Figure 3, our LSI
structure is simpler. We only perform one 𝑅𝑁𝑁𝑠 (MHGRU) and one attention operation, while CLSR performs two
𝑅𝑁𝑁𝑠 and three attention operations. However, comparing group (b) and (c), it can be observed that our approach
yields superior results in extracting long and short-term interests.

SAF is capable of effectively perceiving the stability of user interactions. In Figure 5(a), we vary the value of 𝜇
in Eq. 27 from 0.1 to 0.9 to replace the SAF structure, resulting in a significant decrease in performance on both datasets.
This demonstrates that SAF effectively perceives the stability of sequences and balances the weights of LSI and FLC.

4.4 Parameter Sensitivity

In this section, we study the impact of channel number 𝑁 and hidden dimension 𝑑 on the performance of the model,
and we also discuss the role of MHGRU head numbers 𝑀 and𝑚. When we change one parameter, we set the other
parameters to the best value to maintain consistency.

We search for the optimal value of 𝑁 within the range of 1 to 7 in Figure 4(a). The results show that setting 𝑁 = 4
achieves the best performance on the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset, while 𝑁 = 1 is sufficient for the 𝐴𝑚𝑎𝑧𝑜𝑛 dataset. This is because
the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset has longer sequence lengths and contains more interaction information, requiring a greater number
of memory units to store. We then search for the optimal hidden layer dimension 𝑑 within the range of 5 to 60 in Figure
4(b). According to the results, setting 𝑑 = 20 achieves the best performance on the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset. When 𝑑 is smaller
than 20, the model lacks the expression ability to learn all the information, leading to underfitting. On the other hand,
when 𝑑 exceeds 20, the increased model complexity results in overfitting and decreases performance. For the Amazon
dataset, which contains less information, the optimal value for 𝑑 is 10.

Figure 5(b) presents the results on the number of heads𝑀 in MHGRU and the number of heads𝑚 used for controlling
attention. We conduct a two-dimensional search, where𝑀 is in the range of 2, 3, 4, 5, and𝑚 is in the range of 1 to𝑀-1.
Here,𝑚 represents the number of query heads, and𝑀-𝑚 represents the number of key heads. We carry out experiments
involving 10 groups of parameters. The experimental results show that the best performance is obtained when𝑀 = 4
and𝑚 = 2 in the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset. It should be noted that when𝑀 = 2 and𝑚 = 1, there is a 15% difference from the best
performance, indicating that fewer parameters will result in underfitting. In the 𝐴𝑚𝑎𝑧𝑜𝑛 dataset, the best performance
is achieved when𝑀 = 5 and𝑚 = 1. However, with fewer parameters, such as𝑀 = 2 and𝑚 = 1, users’ interests can be
fully learned, with only a 3% difference from the best performance.

4.5 Stability and SAPM

In this section, we first analyze the effectiveness of our SAPM framework in mitigating interest drift. Next, we delve into
how our SAF module perceives sequence stability and adjusts the weights for interest recommendations. Additionally,
we analyze the stability of behavioral relationships in the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset and 𝐴𝑚𝑎𝑧𝑜𝑛 dataset, providing new insights
for sequence modeling and analysis. According to the partitioning method in Section 4.1, we compare all baselines on
the stable and unstable datasets, and the results are shown in Tables 4 and 5. We further analyze the sequence stability
in Figure 6. According to the experiment, we have the following four findings.
Manuscript submitted to ACM
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(a) Performance of different 𝑁 (b) Performance of different 𝑑

Fig. 4. The effects of channel number 𝑁 and hidden dimension 𝑑 .
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Fig. 5. The effects of interest weight 𝜇 and number of heads𝑀 and𝑚.

Table 4. Comparison of the baselines in stable testing dataset. The best performance is indicated in bold, and the second-best
performance is indicated in underlining. The 𝐼𝑚𝑝. means the percentage of improvement of the best compared with the second best.

Dataset 𝑇𝑎𝑜𝑏𝑎𝑜 𝐴𝑚𝑎𝑧𝑜𝑛

Method/Imp. MRR NDCG@2 NDCG@4 NDCG@6 HIT@2 HIT@4 HIT@6 MRR NDCG@2 NDCG@4 NDCG@6 HIT@2 HIT@4 HIT@6

NCF 0.1635 0.0992 0.1375 0.1608 0.1185 0.2005 0.2632 0.1306 0.0743 0.1044 0.1238 0.0880 0.1524 0.2045
SASRec 0.3237 0.2544 0.3182 0.3487 0.2961 0.4321 0.5139 0.2450 0.1756 0.2266 0.2547 0.2054 0.3139 0.3894
DIN 0.3388 0.2639 0.3329 0.3665 0.3060 0.4528 0.5428 0.2803 0.2088 0.2668 0.2985 0.2437 0.3672 0.4522
SUM 0.4175 0.3572 0.4199 0.4481 0.4042 0.5375 0.6130 0.3183 0.2567 0.3086 0.3342 0.2924 0.4027 0.4712
Caser 0.3817 0.3189 0.3786 0.4081 0.3635 0.4903 0.5692 0.2532 0.1912 0.2375 0.2614 0.2210 0.3196 0.3837

GRU4REC 0.4319 0.3748 0.4332 0.4586 0.4201 0.5439 0.6118 0.2771 0.2107 0.2637 0.2894 0.2425 0.3556 0.4243
DIEN 0.4258 0.3649 0.4267 0.4543 0.4108 0.5416 0.6157 0.2102 0.1551 0.1918 0.2117 0.1783 0.2565 0.3099
SLi-Rec 0.3965 0.3334 0.3960 0.4251 0.3794 0.5124 0.5902 0.3104 0.2442 0.2998 0.3287 0.2802 0.3987 0.4763
SURGE 0.4385 0.3778 0.4392 0.4696 0.4238 0.5541 0.6353 0.3185 0.2499 0.3108 0.3413 0.2891 0.4185 0.5002
CLSR 0.4529 0.3949 0.4564 0.4849 0.4446 0.5748 0.6515 0.2722 0.2069 0.2599 0.2880 0.2410 0.3540 0.4291

SAPM 0.4772 0.4211 0.4821 0.5111 0.4708 0.6002 0.6780 0.3323 0.2669 0.3221 0.3511 0.3041 0.4214 0.5008
Imp. 5.4% 6.6% 5.6% 5.4% 6.3% 4.4% 4.1% 4.2% 4.0% 3.6% 2.9% 4.0% 0.7% 0.1%

All baselines perform poorly under unstable datasets. Comparing the performance of each baseline on the
stable and unstable testing datasets, in Tables 4 and 5, we observe significant decrement in all metrics of MRR, NDCG,
and HIT. Taking MRR for instance, on the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset the baselines’ performance drops by 8.6%-51% on unstable
test sets compared to stable test sets. On the 𝐴𝑚𝑎𝑧𝑜𝑛 dataset, the drop is 16.9%-44.3%. This is due to the existence of
interest drift, which increases the difficulty of model recommendations. Especially on unstable sequences, interest drift
is more prominent, which also leads to poor test performance on unstable data.

Our SAPM effectively mitigates the impact of unstable datasets. As shown in Tables 4 and 5, we achieve the
best results on both stable and unstable testing datasets. Our improvement percentage over the second baseline is
greater on the unstable test set. On stable datasets, interest drift is not obvious, and other baselines can effectively
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Table 5. Comparison of the baselines in unstable testing dataset. The best performance is indicated in bold, and the second-best
performance is indicated in underlining. The 𝐼𝑚𝑝. means the percentage of improvement of the best compared with the second best.

Dataset 𝑇𝑎𝑜𝑏𝑎𝑜 𝐴𝑚𝑎𝑧𝑜𝑛

Method/Imp. MRR NDCG@2 NDCG@4 NDCG@6 HIT@2 HIT@4 HIT@6 MRR NDCG@2 NDCG@4 NDCG@6 HIT@2 HIT@4 HIT@6

NCF 0.1079 0.0547 0.0789 0.0956 0.0654 0.1171 0.1622 0.1057 0.0528 0.0767 0.0932 0.0631 0.1142 0.1586
SASRec 0.2751 0.2095 0.2624 0.2897 0.2429 0.3556 0.4288 0.1794 0.114 0.1546 0.1791 0.1349 0.2217 0.2875
DIN 0.3022 0.2315 0.2909 0.3226 0.2682 0.3949 0.4801 0.2012 0.1338 0.1761 0.2029 0.1556 0.2456 0.3177
SUM 0.3711 0.3153 0.3645 0.3899 0.3554 0.4601 0.5279 0.2375 0.1709 0.2171 0.2432 0.1977 0.2961 0.3664
Caser 0.3306 0.2703 0.3187 0.3457 0.3047 0.4083 0.4805 0.1755 0.1107 0.1497 0.1733 0.1310 0.2144 0.2778

GRU4REC 0.3750 0.3191 0.3681 0.3918 0.3552 0.4593 0.5229 0.1967 0.1313 0.1729 0.1966 0.1544 0.2432 0.3066
DIEN 0.3809 0.3220 0.3758 0.4007 0.3609 0.4755 0.5423 0.1798 0.1214 0.1574 0.1781 0.1421 0.2190 0.2744
SLi-Rec 0.3415 0.2761 0.3343 0.3616 0.3135 0.4371 0.5104 0.2297 0.1599 0.2087 0.2369 0.1870 0.2912 0.3669
SURGE 0.4039 0.3460 0.4007 0.4248 0.3874 0.5036 0.5682 0.2262 0.1594 0.2049 0.2312 0.1852 0.2822 0.3528
CLSR 0.4018 0.3436 0.3975 0.4240 0.3836 0.4982 0.5690 0.2181 0.1498 0.1944 0.2228 0.1740 0.2695 0.3457

SAPM 0.4267 0.3715 0.4256 0.4519 0.4166 0.5313 0.6020 0.2572 0.1892 0.2370 0.2655 0.2172 0.3191 0.3956
Imp. 5.6% 7.3% 6.2% 6.4% 7.5% 5.5% 5.8% 8.3% 10.7% 9.2% 9.2% 9.9% 7.8% 8.0%

identify user interests, so every baseline performs well, and our baseline has a smaller percentage improvement of
0.1%-6.6%. However, on unstable datasets, other baselines fail to adequately address the issue of interest drift, while
SAPM can alleviate this problem with the improvement of 5.5%-10.7%.

Shorter sequences are more prone to interest drift and SAPM effectively recognizes the stability of
sequences and adjusts the weight 𝜇 of LSI to cope with interest drift. In Figure 6(a), we demonstrate the
relationship between sequence length 𝐿, weight 𝜇, and stability score 𝑠 in 𝑇𝑎𝑜𝑏𝑎𝑜 dataset. When 𝐿 is less than 20,
there are more unstable sequences represented by the darker color. In this situation, the overall stability score 𝜇 is
lower, indicating a decrease in the weight of interest recommendations because users may still be in the exploration
phase. However, as the sequence length exceeds 20, stability increases, and the interaction history is more likely to be
learned as user interest, resulting in higher 𝜇 values. Moreover, when the sequence length 𝐿 is fixed, the darker points
(representing lower stability) tend to be positioned lower, while the lighter points (representing higher stability) are
positioned higher. This demonstrates that SAPM can identify stability differences among sequences of the same length
and adjust 𝜇 accordingly.

Analyzing the stability of sequences helps in understanding user behavior and implementing different
recommendation strategies. In Figure 6(b), we analyze the three behaviors and stability of "buy", "cart" and "category"
in the 𝑇𝑎𝑜𝑏𝑎𝑜 dataset. In the figure, the sequence order value of 0 indicates the current behavior, -1 indicates the
previous interactive product, and 1 indicates the next product. The triangle represents the corresponding interaction
behavior of the current product. The ordinate value of three lines represents the stability score of adjacent items. The
higher the stability score, the more similar the two adjacent items are. The "category" behavior indicates that the user
continuously interacts with products of the same category. The stability before and after the "category" behavior is
high, indicating that users interact with the same category continuously, are very interested in this kind of items, and
can recommend similar items. Meanwhile, the "cart" behavior refers to the behavior of adding goods to the shopping
cart. The stability score of interactive goods before and after the behavior changes little because the purchase link has
not been completed. Finally, the stability before and after the "buy" behavior is low, which indicates that users are more
inclined to explore new products after purchase.

We also conduct similar experiments on 𝐴𝑚𝑎𝑧𝑜𝑛 and obtain results similar to Figure 6(a). Due to the lack of behavior
labels in 𝐴𝑚𝑎𝑧𝑜𝑛, we do not conduct experiments in Figure 6(b).
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Fig. 6. (a): The relationship between 𝐿, 𝑠 and 𝜇. (b): The relationship between stability and user behaviors in𝑇𝑎𝑜𝑏𝑎𝑜 .

4.6 Verification of MHGRU complexity

The inference time is a focal factor of industry attention. Delay in producing results would significantly impact user
experience. If we can significantly reduce the inference time in the model phase, the industry can employ more complex
models in the recall, coarse ranking, and re-ranking stages to enhance recommendation effectiveness. Therefore, we
conduct two experiments to calculate the inference time required for the test dataset under different conditions, to
verify the low complexity advantages of MHGRU.
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Fig. 7. The impact of𝑀 and𝑇 on inference time.

The complexity of MHGRU is lower than that of a model that executes multiple general 𝑅𝑁𝑁𝑠. While
keeping other conditions unchanged, we vary the value of𝑀 to examine its correlation with runtime. In MHGRU,𝑀
represents the number of heads; while in GRU4REC, 𝑀 represents the execution of 𝑀 GRU operations, resulting in
outputs of the same dimension. In Figure 7(a), the runtime of GRU4REC increases linearly, whereas MHGRU’s runtime
slightly increases. This demonstrates the improved parallelism of MHGRU. Ideally, considering only𝑀 , our complexity
is 𝑂 (1), while GRU’s is 𝑂 (𝑀). However, in practice, influenced by GPU parallel acceleration, the complexity falls
𝑂 (1) < 𝑂𝑀𝐻𝐺𝑅𝑈 << 𝑂 (𝑀).

MHGRU can effectively reduce inference time. CLSR and DIEN perform two 𝑅𝑁𝑁𝑠 operations. We set MHGRU
with 2 heads to replace the two 𝑅𝑁𝑁𝑠 in these models and examine the impact on runtime for different sequence lengths
𝑇 . As shown in Figure 7(b), replacing the two 𝑅𝑁𝑁𝑠 structures with our MHGRU effectively reduces runtime, especially
in the DIEN model. From the observations in the figure, when considering only 𝑇 , the complexities of MHGRU and
RNN are both 𝑂 (𝑇 ). This validates the relationship 𝑂 (𝑇 ) < 𝑂𝑀𝐻𝐺𝑅𝑈 << 𝑂 (𝑀 ×𝑇 ) mentioned in Section 3.1.3.

Manuscript submitted to ACM



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Chaoyong Wei, Wenjun Jiang, Kenli Li, and Jie Wu

two GRUs
one GRU

MHGRU in Taobao MHGRU in Amazon

GRU(SLi-Rec) GRU(CLSR)

Fig. 8. The number of hidden layer parameters for MHGRU and GRU.

MHGRU does not significantly increase the dimensionality of hidden layers. Through experiments, it is
found that the hidden layer dimension of our model is similar to the value of the baseline model. We randomly select
two baselines to compare with this model in detail. For the values of the two parameters of dimension 𝑑 and the number
of heads𝑀 , we selected the optimal value in the parameter sensitivity analysis. For the Taobao dataset, we used 𝑑 = 20,
𝑀 = 4; and for Amazon, 𝑑 = 10,𝑀 = 5. In addition, the optimal hidden layer dimension for the GRU is 𝐷 = 40. We plot
the hidden layers of the MHGRU model on the Taobao and Amazon datasets, as well as the hidden layer dimensions of
the GRU in the SLi-Rec and CLSR models, as shown in Figure 8. The dimensions of the hidden layers of SLi-Rec and
CLSR are the same on both datasets, and the L is the sequence length. It is found that SLi-Rec uses a single GRU with a
hidden layer dimension of 40𝐿, while CLSR employs two GRUs with a resulting hidden layer dimension of 80𝐿. The
dimension of the MHGRU on the Taobao dataset is 80𝐿, and on the Amazon dataset, the hidden layer dimension is 50𝐿.
Therefore, our MHGRU model does not significantly increase the hidden layer dimension but performs exceptionally
well in terms of performance.

Based on the above experimental results, our MHGRU demonstrates good parallelism and effectiveness. It is worth
noting that this multi-head design is not limited to GRU but can also be applied to other 𝑅𝑁𝑁𝑠 such as RNN and LSTM,
as they share similar recurrent structures.

4.7 Case Study

We illustrate a case to explain the relationship between 𝜇 and 𝑠 in Figure 9, where a higher 𝜇 value suggests recommending
items with greater similarity to what the user has interacted with. A larger s value indicates a more uniform and stable
nature of the user’s historical sequence of interactions. Through analysis, it is found that User 1 and User 2 each interact
with 5 items. The 5 items interacted with by User 1 are diverse and have lower similarity, while the items interacted
with by User 2 are more uniform, all being tops. Hence, 𝑠1 < 𝑠2 and 𝜇1 < 𝜇2. This indicates that User 2’s interaction
sequence is more stable. The model will recommend items to User 2 that are more similar to his/her historical sequence
based on the larger 𝜇 value. Likewise, User 1 will be recommended a more varied range of items because of their lower
𝜇 value, indicating a higher acceptance of diverse item types. Therefore, the model recommends shoes to User 1, a
product type not seen in their historical sequence, and recommends tops, an item type that has appeared in User 2’s
historical sequence, to User 2.

5 RELATEDWORK

This section briefly reviews the closely related works, including interest modeling, interest drift, and classical structures
for the sequential recommendation.
Manuscript submitted to ACM



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Stability-aware Preference Modeling for Sequential Recommendation 19

Recommend

Recommend

User 1

User 2

Fig. 9. Illustration of the interpretation of sequence stability.

5.1 Researches on interest modeling

This section introduces the main approaches in the field of interest modeling and classifies them into four categories:
sequence recommendation, contrastive learning, multi-interest modeling, and diversified approaches for constructing
interest representations using auxiliary information. Specifically, the sequence modeling technology can fully capture
the diverse interests of users in the long and short term. Contrastive learning further optimizes the model performance
based on interest modeling. Multi-interest modeling captures multiple interest points of the user to fully represent the
complex interest structure of the user. By fusing other auxiliary information, the user’s interest preferences can be
studied and modeled in more detail.

Sequential recommendations [20, 28, 34, 35, 42] is a popular research direction aimed at using historical interaction
sequences to predict the items. Interest modeling is a prevailing research area in the field of sequential recommendations.
Several research [26, 54] use richer information to model interests. Targeting users’ dynamic short-term interests and
static long-term interests, a subset of studies [41, 43, 47, 55, 59] concurrently extracts long and short-term interests
for a comprehensive user representation. Sun et al. [43] cleverly applies long short-term modeling to Point-of-Interest
(POI) recommendation. Yu et al. [55] discuss the importance of user modeling in recommender systems and presents
techniques to adapt to both long-and-short-term interests of users. [41, 59] enhance the accuracy of CTR prediction
by disentangling the entanglement characteristics between long and short-term interests. Tran et al. [47] propose a
novel approach to model user preferences in recommendation systems by utilizing quaternion space to encode both
long-term and short-term interests, leading to improved performance over traditional Euclidean space methods.

Lots of research [27, 33, 37, 49] employ contrastive learning to optimize model performance based on interest
modeling. For example, Lin et al. [27] adopt a dual-contrastive learning approach to handle data sparsity issues. Wang
et al. [49] propose a framework of multilevel contrastive learning to achieve cross-view learning of user and item
representations. Liu et al. [33] utilize contrastive learning to exploit item correlations and alleviate length skewness
problems in sequential recommendation. Qin et al. [37] propose a novel anchor-guided contrastive learning process to
perform basket denoising without requiring item-level relevance supervision.

Multi-interest modeling [12, 25, 29, 38] can capture the different interest points of users and model the rich interests
of users more fully. For example, Lian et al. [25] introduce a memory matrix to store multiple interests of users and
utilizes a high-speed channel to enhance the model. Qin et al. [38] explore multiple interests through interest evolution
and then aggregates them to calculate user intent. Lin et al. [29] propose a dual-interest encoding layer to identify
positive and negative feedback and untangles them. Huai et al. [12] introduce graph neural networks and meta-paths to
learn and model multiple interests of users.

Regrettably, relying solely on interests is insufficient for a complete user representation, necessitating auxiliary
modeling. For instance, [2, 5, 15, 18, 22, 40, 46] adopt intent to supplement user representation learning. Cai et al. [2]
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use self-attention to identify transition patterns between categories and then infer user intent. Shen et al. [40] propose
a model with three components for CTR to identify deeper user intent. Chen et al. [5] extract a user intent distribution
function from unlabeled user behavior sequences and consider the learned intent. Tanjim et al. [46] learn item similarity
from a user’s interaction history using self-attention layers and obtain latent representations of user intent by using a
time convolutional network layer on the user’s behavior towards specific categories. Jin et al. [15] design a dual-intent
network that learns user intent from attention mechanisms and historical data distributions to simulate the user’s
decision-making process and interaction with new items. Li et al. [18] combine multiple single-objective item lists
with different user intents and learns personalized item-level weights in the model. Li et al. [22] combine the strength
of hypergraph neural networks with disentangled representation learning to derive intent-aware representations of
hyperedges to capture subtle differences in user purchase patterns; Wu et al. [51] unravel user characterization through
social relationships. In addition, several research [21, 23, 24] employs novelty-based interest modeling to recommend
innovative items. Some research [2, 39] explores item categories and attributes, utilizing their divergences to provide
distinct perspectives for interest supplementation.

Although current interest modeling methods have achieved good results, existing methods have not fully considered
the impact of user interest drift, and it is challenging to accurately model user interest with unstable interaction
sequences.

5.2 Researches on interest Drift

This section explores research work related to interest drift. Interest drift is a common problem in e-commerce
recommendations. The methods to deal with interest drift can be mainly divided into two categories. One is to treat
interest drift as an uncertainty problem in the sequence. The other is to treat it as noise and deal with it accordingly.

Interest drift increases the difficulty of interest modeling. Some research treats interest drift as a sequence uncertainty
problem[8, 9, 44, 48]. This approach describes uncertainty in items and sequences as Gaussian distributions.For
instance,Fan et al. [8] utilize a Self-Attention module to capture item-item position-wise relationships in sequences,
effectively incorporating uncertainty into model training. Sun et al. [44] employ uncertainty-aware graph convolutional
networks to assist in uncovering and reducing uncertainty in unreliable scenarios. Fan et al. [9] use elliptical Gaussian
distributions to describe uncertain items and sequences. Wang et al. [48] propose a two-branch VAE framework for
sequential recommendation. It introduces model augmentation and variational augmentation to address the semantic
inconsistency caused by traditional data augmentation. This type of method only coarsely handles interest drift, and
fine-grained interest fluctuations remain unaddressed.

Most recently, researchers deal with interest drift between the training data and the testing data to enhance model
robustness. Representative researches include [50, 53], which utilize and optimize the objective function of DRO
(Distributionally Robust Optimization), to address the shortcomings of ERM (Empirical Risk Minimization), a widely
used learning framework in recommendation models. Streaming-DRO [50] focuses on addressing the problem of group
fairness by maximizing the worst-case performance, which reduces the variance in loss estimations due to data sparsity
in recommendation systems. Distributionally Robust Optimization mechanism for SeqRec (DROS) [53] incorporates
DRO into sequential recommendation to deal with the discrete data. It has a carefully-designed distribution adaption
paradigm to achieve better generalization ability, handling the dynamics of data distribution and exploring possible
distribution shifts between training and testing. These two methods belong to model-agnostic learning framework.
Our work is different from them in twofold: (1) Our research primarily focuses on dealing with interest drift in the
interaction sequence, while the two works propose the DRO methods that mainly study the robustness of the models to
Manuscript submitted to ACM
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deal with the distribution shift between the training set and the testing set. (2) Both of them belong to model-agnostic
frameworks, focusing on the design of loss functions or optimizer. While our study emphasizes the design of model
structures.

Other methods consider interest drift as a noise issue[2, 30, 36, 52]. This method accounts for item transitions and
similarity within interaction sequences, identifying noise in unstable sequences. Lin et al. [30] introduce a global
representation learning module and a gating module. The former is used to improve the modeling of the user’s global
preference, while the latter balances local and global representations by considering candidate item information. Xie et al.
[52] incorporate contrastive learning into a VAE model to learn distinctive features of different users using contrastive
loss. It further optimizes the contrastive loss to ensure personalized and salient features across different users. Ma et al.
[36] propose a hierarchical attention mechanism. Building upon personalized attention attribute perception, it enhances
item representation learning by activating interactions caused by specific attributes. Soft denoising methods employ
attention mechanisms to reduce focus on noisy items, while hard denoising [57] strictly filters and removes strong
noise items to enhance the sequence. However, denoising methods cannot entirely resolve the issue of interest drift,
and deletion operations may result in a loss of semantic information. In addition, they do not consider feature-level
interest drift.

In our work, we propose a novel method to quantify interest drift with stability. At the same time, we can visually
see user interest drift with stability indicators.

5.3 Research on classical structure for sequential recommendation

In this section, we analyze the two mainstream model architectures in the field of sequence recommendation: 𝑅𝑁𝑁𝑠
and Transformer architectures, and summarize their respective advantages and limitations. Different methods show
their advantages and challenges when utilizing these model architectures. By analyzing how these architectures are
used, we can more easily explore where optimization approaches can start.

The𝑅𝑁𝑁𝑠 structure has been widely used in sequential recommender systems due to its inherent sequence processing
ability. However, the 𝑅𝑁𝑁𝑠 structure is unable to implement parallel computation, which limits their computational
efficiency. The Transformer architecture is also widely used for sequence recommendation because it does not have this
limitation, but it will encounter quadratic time complexity when dealing with large-scale data. To solve these challenges,
researchers have proposed different improvement methods. For example, Li et al. [19] proposed the AutoMLP method
to further improve the recommendation performance, but it still cannot make full use of the inherent advantages
of 𝑅𝑁𝑁𝑠 in capturing temporal information. DIEN[60]and CLSR[59] adopted two RNN structures to extract time
interval features for optimization, but this method is less efficient. To address the above challenges, we need to optimize
the parallelized RNN architecture to improve computational efficiency while retaining the advantages of 𝑅𝑁𝑁𝑠 for
processing sequential data.

Our differences from other works are threefold, corresponding to three key challenges in existing works: (1) For
the first challenge that interest drift has not been fully studied, we transform interest drift into a sequence stability
problem to better study drift learning. (2) For the second challenge that the implicit feature level modeling hasn’t been
well explored, we consider both item-level and feature-level stability to better explore fine-grained information and
design a framework that incorporates stability-aware preference to mitigate interest drift. (3) For the third challenge
that existing methods either lack expression ability or are quite complex, we design an efficient parallel 𝑅𝑁𝑁𝑠 structure
with Multi-head GRU to address the shortcomings of the 𝑅𝑁𝑁𝑠 model architecture.
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6 CONCLUSION

In this paper, we identify three challenges of interest drift (i.e., unstable interaction sequences), fine-grained implicit
features, and the expression ability of the modeling technique in the sequential recommendation. To address those
challenges, we propose the stability-aware preference modeling framework SAPM. It can capture both long and
short-term interests with an efficient multi-head GRU (MHGRU) structure, and obtain multi-dimensional feature-level
information with an improved memory network; Then it measures interest drift through stability awareness and
adaptively fuses both item-level and feature-level information into user interest. We conduct extensive experiments in
two real-world datasets and the results demonstrate the effectiveness of our work as well as the importance of each
component. Furthermore, we analyze the relationship between stability and interaction behaviors and obtain several
useful insights. In future work, we will further explore the associations between stability, categories, behaviors, and
time, as well as serendipity, to enhance user interest modeling and personalized recommendations.
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