
Int. J. Security and Networks, Vol. x, No. x, xxxx 1

slackFS – resilient and persistent information hiding
framework

Avinash Srinivasan*
Department of Cyber Science,
United States Naval Academy,
597 McNair Road, Hopper Hall – Room 478,
Annapolis, MD 21402, USA
Email: srinivas@usna.edu
*Corresponding author

Christian Rose
Amber Orchard Ct.,
Odenton, MD 21113, USA
Email: christian.j.rose00@gmail.com

Jie Wu
Department of Computer and Information Sciences,
Center of Networked Computing,
Temple University,
SERC 362, 1925 N. 12th Street,
Philadelphia, PA 19122, USA
Email: jiewu@temple.edu

Abstract: The ever-expanding cyberspace, driven by digital convergence, inadvertently broadens
the attack surface. Savvy modern cybercriminals have embraced steganography as a key weapon.
This paper introduces slackFS, a novel steganographic framework utilising file slack space for
covert data concealment. Unlike prior methods focusing on individual files, slackFS hides entire
filesystems, offering a structured means for data exfiltration. It ensures persistence across system
reboots, robust detection resistance, portability, and minimal performance impact. Incorporating
erasure-code-based fault-tolerance, slackFS enables recovery from partial loss due to accidental
slack space overwriting. Prototype validation on Ubuntu 20.04 with ext4 filesystems as the
cover medium and FAT16 as the hidden malicious filesystem is conducted. The study includes
testing of three coding libraries and two Reed-Solomon erasure code implementations –
VANDERMONDE and CAUCHY matrices – highlighting slackFS’s resilience and effectiveness.

Keywords: attacker; data exfiltration; fault-tolerance; filesystem; information hiding; malicious;
operating system; persistence; resilience; security; steganography.

Reference to this paper should be made as follows: Srinivasan, A., Rose, C. and Wu, J. (xxxx)
‘slackFS – resilient and persistent information hiding framework’, Int. J. Security and Networks,
Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Avinash Srinivasan is an Associate Professor in the Cyber Science
department at the US Naval Academy. He holds a PhD, an MS in Computer Science, and a
BE in Industrial Engineering. His research interests span the broad areas of cybersecurity and
forensics focusing on network security and forensics, security and forensics in cyber physical
systems, and critical infrastructure, steganography and information hiding. He has published 50
papers in prestigious refereed conferences and journals including IEEE INFOCOM, ICDCS,
and ACM SAC. He is a co-inventor on a patent (Patent number: 11210396). He is a Certified
Ethical Hacker (CEH) and Computer Hacking Forensics Investigator (CHFI).

Christian Rose is currently an active-duty Lieutenant in the US Navy. He holds a BS in
Computer Science and Information Technology from the United States Naval Academy (Class
of 2023) and he is working on his MS in Computer Science. His current research interests are
in network and hardware security, focusing on adversarial approaches to compromising systems
and protocols.

Copyright 20XX Inderscience Enterprises Ltd.

2 A. Srinivasan et al.

Jie Wu is the Director of the Center for Networked Computing and Laura H. Carnell Professor
at Temple University. He also serves as the Director of International Affairs at College of
Science and Technology. His current research interests include mobile computing and wireless
networks, routing protocols, cloud and green computing, network trust and security, and social
network applications. Dr. Wu regularly publishes in scholarly journals, conference proceedings,
and books. He serves on several editorial boards, including IEEE Transactions on Mobile
Computing, IEEE Transactions on Service Computing, Journal of Parallel and Distributed
Computing and Journal of Computer Science and Technology. He is a CCF Distinguished
Speaker and a Fellow of the IEEE. He is the recipient of the 2011 China Computer Federation
(CCF) Overseas Outstanding Achievement Award.

This paper is a revised and expanded version of a paper entitled ‘Steganography
with FileSystem-in-SlackSpace’ presented at IEEE International Conference on Networking,
Architecture and Storage (NAS), Philadelphia, PA, USA, 3–4 October 2022.

1 Introduction

Cyber threats, whether internal or external, pose risks
to organisations regardless of size or sector. The
ever-expanding cyberspace, driven by digital convergence,
widens the potential targets for attacks. Rapidly evolving
technology, while beneficial, has an inevitable dark side
and that is it affords the malicious users the exact same
capabilities. In this dynamic ecosystem, adversaries exhibit
intelligence and adaptability, especially those employing
advanced persistent threats. Their primary goals include
maintaining stealth and persistence within target systems
to evade detection for as long as possible. Achieving
these objectives necessitates operating beneath the detection
thresholds of deployed security measures. Prolonged
presence within a target system significantly enhances
the adversary’s likelihood of success, emphasising the
importance of effective detection and response mechanisms
in mitigating cyber threats.

Steganography originates from the Greek
steganographia, with steganós meaning covered or
concealed and graphia meaning writing. Concealing
files and folders is a commonly used method for
hiding information, serving both beneficial and malicious
purposes. Beneficial applications involve system
administrators concealing certain files to safeguard them
from accidental corruption, or operating systems hiding files
to prevent inadvertent access by regular users. Conversely,
malicious applications entail adversaries modifying file and
folder attributes to render them hidden, aiming to evade
detection effectively.

Computer systems utilise filesystems to manage data
stored on storage mediums. A file system is a method
used by computers and operating systems to organise
and store data on storage devices such as hard drives,
solid-state drives (SSDs), or external storage media. It
provides a structured way to manage files, directories
(also known as folders), and metadata associated with
them. However, filesystem specifications can sometimes
lead to unexpected behaviours, such as concealing data
within filesystem data structures or partial and complete
unused data blocks (slack). Apart from the filesystem, these
storage mediums often contain protected and hidden regions
suitable for concealing information. For instance, areas

like host protected area (HPA) and device configuration
overlay (DCO) were introduced by manufacturers to offer
flexibility to vendors. HPA, situated at the disk’s end,
allows computer vendors to store data unaffected by user
formatting or erasing of disk contents. DCO, on the other
hand, enables vendors to limit a hard disk’s capabilities
by implementing optional features (Carrier, 2005). These
regions provide additional avenues for information hiding
beyond the conventional filesystem structures.

Other regions on a storage disk that can be exploited
for information hiding include partition slack, volume slack,
and inter-partition gap among others, all of which occur
naturally and cannot be prevented. Furthermore, all of
the aforementioned regions are inaccessible by the normal
users and more importantly they are transparent to the
operating system and commercially-off-the-shelf (COTS)
security tools. However, a sophisticated threat actor can
readily exploit these regions for hiding information that
can be later exfiltrated. Consequently, the last decade has
seen the adversaries’ cyber arsenal expand significantly
to encompass storage disk for steganography and other
information hiding techniques that offer robust persistence
and stealth.

1.1 The big picture

In this paper, we present slackFS – a steganographic
information hiding framework that exploits the available
slack space on the target system to hide an entire filesystem
volume. We refer to the filesystem volume to be hidden as
the malicious filesystem volume, which is denoted as Mfs

vol.
The target system (i.e., file system) that will serve as the
cover medium is denoted as T fs

vol. After a vanilla installation
of an operating system, there are several hundred thousand
files created on the T fs

vol, prior to any updates or installation
of any user applications. Our proposed slackFS framework
leverages the slack space of these hundreds of thousands of
files for hiding the Mfs

vol. slackFS initially stores the files
to be hidden in the Mfs

vol. Then it unmounts the M
fs
vol, splits

it into smaller chunks, i.e., fragments, and distributes the
chunks across the T fs

vol by hiding each chunk in the slack
space of a different file, i.e., each fragment of the entire
Mfs

vol has a separate cover file. To access the information

slackFS – resilient and persistent information hiding framework 3

hidden in the Mfs
vol or to hide new information, slackFS

reassembles the Mfs
vol from the hidden chunks and remounts

it. The adversary has an optional advanced model, which
differs from the above described basic model, in that it adds
fault tolerance to the framework. Therefore, the advanced
model enables the adversary to recover the entire Mfs

vol even
if the hidden chunks are lost up to a certain threshold,
which is a tunable parameter.

Figure 1 Illustration of file slack space (see online version
for colours)

1.2 Unique features and key contributions

Our slackFS framework, unlike existing techniques,
uniquely hides entire filesystem volumes in slack space,
offering structured storage for numerous files with minimal
overhead. In our prototype, we confirm this with a 200MB
FAT16 volume, that the overhead is merely 0.11%. Unlike
concealing individual files, this approach enhances security
by making recovered filesystem fragments more complex to
analyse due to intermingled data from adjacent blocks and
filesystem structures.

Our slackFS framework is also lightweight, portable
and adaptable to the available slack space on the T fs

vol.
With a modular design, slackFS framework can be readily
expanded to implement and test various filesystems for their
suitability as T fs

vol as well as Mfs
vol. Information hidden

using slackFS framework has the following key strengths
which adds to its stealth and persistence.

• Persistence across system reboots and restarts: the
hidden information is part of the non-volatile disk
space. Additionally, it is impractical for the operating
system to clean the slack space of each and every file
on a system since the number of files can be in
millions on a production system.

• Robust detection resistance: information is hidden in
file slack space that is inaccessible to the operating
system and COTS security tools.

Furthermore, slackFS framework has minimum impact on
the target system’s performance, which we confirm in
Section 5. As part of the slackFS framework, we propose
and implement a basic model and an advanced model. A
key distinction between the basic and advanced models is
that the advanced model is designed to be fault-tolerance
given the volatile nature of a filesystem volume. The
advanced model, due to in-built fault-tolerance, is robust
to accidental modification or deletion of files on the T fs

vol

and therefore enables the adversary to reconstruct the
entire Mfs

vol. Traditional COTS security tools that scan for
deviations in disk space utilisation will fail to detect the
information hidden using the slackFS framework for the
following key reasons:

1 writing to the slack space of a file does not alter the
file’s content, i.e., the file size remains unaltered since
the slack space of a file is considered to be part of the
allocated disk space as it is factored in the file’s
logical size (Figure 1)

2 writing to the slack space of a file does not alter the
file’s accessed or modified date and time stamps.

We confirm the capacity, stealth, persistence, and
robustness of the proposed basic and advanced models
through prototype implementation on a Ubuntu 20.04
on ext4 filesystem as the T fs

vol. Additionally, for the
advanced model, we implement fault-tolerance with erasure
codes and confirm its performance. Finally, our proposed
slackFS framework satisfies the three key requirements of
steganography:

1. uses the T fs
vol as the cover file

2. hides the very existence of Mfs
vol

3. writes to the slack space of files on T fs
vol without

altering their contents.

1.3 Road-map

In Section 2, we discuss background information and
review research literature relevant to the presented research
work. In Section 3, we present the overview and the
working of the proposed slackFS framework. In Section 4,
we provide the implementation details of basic model of
the slackFS framework followed by discussion of results
and analysis. In Section 5, we present the implementation
details, results and analysis of the advanced fault-tolerant
model of the slackFS framework, followed by conclusions
in Section 6.

2 Background and related work

Digital information hiding can be broadly categorised
into three types – cryptography, steganography, and
watermarking (Rasmi et al., 2019). While they all strive
to achieve secure or proprietary communications, there
are some key differences (Berghel et al., 2006) and we
will specifically focus on the strength of and distinction
between cryptography and steganography. Cryptography
is a very powerful security tool that can protect data
at rest and in motion from unauthorised disclosures or
modifications. However, cryptography cannot hide the very
existence of such protected data and or communications.
Furthermore, in the ever-evolving cyber domain with
constantly expanding attack surface, the adversary seeks
stealth and strives to hide the very existence of any
hidden data or communications for which cryptography is
not the preferred tool. Consequently, over the last couple
of decades, steganography has evolved into a weapon
of choice for cyber-crime and cyber-espionage as the
adversaries increasingly seek to hide their malevolence in

4 A. Srinivasan et al.

plain sight – embedded in banner ads, text messages, or
images (Cameron, 2016).

Steganography has been and continues to be used
extensively for information hiding and exfiltration. It is
important to note that a well designed steganographic
information hiding technique can hold a significant payload
with no discernible impact on the cover file or the system’s
performance.

The quality of a steganographic technique is determined
by the following key characteristics (Metcheka and
Ndoundam, 2020; Evsutin et al., 2020) –

1 Stealth – how hard is it to detect?

2 Capacity – how much data can it hide?

3 Robustness – how much modification to the cover
medium can it survive?

Some of the existing works that consider hiding data or
individual files in slack space include Srinivasan et al.
(2013) and Thampy et al. (2018). In Srinivasan et al.
(2017), the authors use Shamir’s secret sharing (Shamir,
1979) for fault-tolerance in hiding of individual files. Other
similar fault-tolerant methods include Rabin (1989), where
in the authors present an information dispersal based on
non-systematic erasure codes and Reed-Solomon codes that
are block-based error correcting codes (Reed and Solomon,
1960).

2.1 Files – physical size, logical size and slack space

In this section, we provide background information relevant
to this work, more details on the geometric structure and
nested data structures of a filesystem and the basic hard
disk geometry can be found in Berghel et al. (2006).

A filesystem is the data structures used by the operating
system for storing files and folders in an organised
way and for retrieving them (Wirzenius et al., 1991).
Furthermore, it is the filesystem that manages access to
both the contents and metadata of all files and folders.
Some popular traditional filesystems used by mainstream
operating systems include:

• Windows operating systems: FAT12/16/32 and NTFS

• Unix/Linux operating systems: ext2/3/4, XFS, and JFS

• Macintosh operating systems: APFS and HFS+.

A file has two associated sizes – physical size and logical
size. Physical size of a file is the actual number of bytes
that constitute the file. Logical size is the total number
of bytes allocated to the file and is always a multiple of
512. Furthermore, on a given filesystem, there are two
types of allocation units – physical allocation unit and
logical allocation unit. Typically, a group of two or more
contiguous physical allocation units constitute a logical
allocation unit. On Windows systems, a physical allocation
unit is called a sector and a logical allocation unit is called
a cluster. On a Unix/Linux system, a physical allocation

unit is called a block and a logical allocation unit is
called an IO block. Physical-to-logical allocation mapping is
presented in Figures 2 and 3. Specifically, Figure 2 depicts
the physical-to-logical allocation mapping of a typical
Windows FAT16 filesystem volume and Figure 3 depicts
the physical-to-logical allocation mapping of a typical ext4
filesystem volume.

Figure 2 Physical-to-logical allocation mapping: Mfs
vol

(see online version for colours)

Figure 3 Physical-to-logical allocation mapping: T fs
vol

(see online version for colours)

When files are allocated space on a storage drive, the
underlying filesystem can only allocate whole blocks to
individual files. The block (or sector) size on a given
filesystem is typically a multiple of 512 bytes. Since file
size, i.e., physical size, is rarely exactly a multiple of
IOBlock size, such storage allocation results in wasted
space on the last IOBlock allocated to a file. This wasted
space within the last allocated IOBlock of a file is called
slack space. An example illustrating a file’s physical and
logical sizes, and the resulting slack space in illustrated in
Figure 1. The quantity of storage lost due to slack space
may seem trivial for an individual file. However, the total
amount of storage space lost due to file slack space can
be quite substantial across a given filesystem (Mulazzani
et al., 2013a). This is especially the case if the system uses
large block sizes to improve performance while the user
predominantly stores small files.

While slack space cannot be entirely eliminated, it
can be mitigated by optimising the logical allocation
unit size. Moreover, certain filesystems incorporate a
block sub-allocation feature, inherently addressing the
slack space issue. This feature, exemplified by a clever
BSD implemented algorithm, enables the storage of
partially-filled blocks from multiple files within a single
block, efficiently utilising slack space at the end of large
files (Wikipedia, 2022). However, our proposed method
is tailored for traditional filesystems lacking this block
sub-allocation capability.

2.2 Related work

Numerous ideas have been proposed that exploit various
aspects of a filesystem for steganography and information
hiding. Below is a summary of the broad ideas existing in
literature:

slackFS – resilient and persistent information hiding framework 5

• Bad cluster marking – adversary hides data by
writing it to clusters (a.k.a. IOBlocks) in the
unallocated space of the filesystem. Subsequently
adversary marks those specific clusters as ‘BAD’
clusters in a data structure the operating system uses
to track free clusters. This forces the operating system
to not use those clusters, thereby leaving the
attacker’s data unaltered.
Note: unallocated space is the region of the filesystem
volume (i.e., storage) that is unused and available for
allocation for incoming storage requests.

• Hidden partitions – attacker creates a partition that is
hidden from the operating system which stores
exfiltration data, malware, etc. (Hassan and Hijazi,
2017). Since the partition is hidden from the
operating system, it successfully evades detection by
security tools. Protection against hidden
partition-based attacks should scan and account for
every byte of used and unused disk space.

• Hidden files and folders – the adversary can change
the attribute of files and folders to hidden in order to
hide information and evade detection. On Linux/Mac
systems this is as simple as prefixing the file name
with a period (‘.’). Okrum, a Windows backdoor seen
in use since December 2016 is known to have used
hidden files to store logs and outputs from backdoor
commands before exfiltration (Microsoft, 2020;
MITRE T1564.001, 2020). Similarly, MacSpy, a
malware-as-a-service offered on the dark-web, hides
itself in the ‘\sim/Library/.DS_Stores/’ folder
(MITRE T1564.001, 2020; Ewane, 2017).

• Hiding filesystem – adversary may use a hidden
filesystem to evade detection. BOOTRASH (MITRE
T1564.005, 2020), a bootkit that targets Windows
operating system, is a VBR bootkit that uses the VBR
to maintain persistence. It is know to have used a
hidden filesystem stores components of the Nemesis
bootkit in the unallocated disk space between
partitions. Information hiding leveraging hidden
filesystems is the primary focus of the research
presented in this paper.

• Hiding in slack space – the adversary hides
information in the file slack space, i.e., the unused
allocated bytes beyond the physical end of the file
(see Figure 1). Over time a majority of files see very
little change during system updates and therefore are
better suited for information hiding. This is one of the
key aspects that our proposed slackFS framework
leverages. Some of the more relevant works that
focus on information hiding in slack space include
Srinivasan and Dong (2018), Srinivasan et al. (2013),
Mulazzani et al. (2013b) and Huebner et al. (2006).

In Alji and Chougdali (2021), the authors present a tool
that can extract information available in file slack associated
with each regular file within the new technology file
system (NTFS) formatted partition. The presented tool can

dump the file slacks in a RAW format and comes with
hashing capabilities using MD5 and SHA1 algorithms.
The limitation of this tool is that it is developed with
forensics analysis as the intended application looking for
fragments of deleted evidentiary files. This tool will fall
short of recovering and reassembling fragments of a file
or malware that is intentionally split into smaller chunks
and spread across the slack space of numerous files.
In Göbel and Baier (2019), the authors present fishy, a
framework designed to implement and analyse different
filesystem-based data hiding techniques on ext4, FAT and
NTFS filesystems. Subsequently, in Göbel et al. (2019),
the authors extend the fishy framework with a separate
module with specific data hiding techniques for APFS. In
Koolhaas and van Steenbergen (2020), the authors present
their findings regarding the automated detection of hidden
and/or modified data within APFS data structures and
slack. In Göbel and Baier (2018), the authors analyse the
feasibility of using timestamps of the ext4 file system to
hide data and the results reveal that the nanoseconds part
of the ext4 timestamps can be used to build a system with
steganographic strength.

3 slackFS – information hiding framework

3.1 Adversary capability and attacker model

In our proposed slackFS framework, the attacker(s) can
operate independently or in collusion. The attacker(s)
can be insider(s), outsider(s), or a combination thereof.
We assume that the attacker(s) has access to the T fs

vol

either through a colluding insider or via an existing
vulnerability. Our proposed slackFS framework assumes
that the adversary has penetrated and established a foothold
on the target system. The attacker’s objective is to utilise
a data exfiltration technique that is stealthy and more
importantly persistent across system reboots and restarts.

3.2 The framework

With the slackFS framework, upon initial entry, the
adversary runs a reconnaissance scan on the target
system’s secondary storage, i.e., T fs

vol. The objective of the
reconnaissance scan is to enumerate all files and compute
the total available slack space, i.e., cumulative slack space
of all files on the T fs

vol. The reconnaissance scan can target
specific file types (e.g., system files) or files within certain
folders (e.g., ‘/bin’, ‘/sys’). In particular, system files are
better suited for slackFS framework since system files are
less likely to be modified with the exception of log files.
However, in the prototype that we develop, we utilise the
files under ‘/usr’ folder which is less likely to raise alert
compared to ‘/bin’ or ‘/sys’ folders.

During the reconnaissance scan, the adversary generates
a map file. The map file maps the amount of slack
space available for each file scanned and stores it as
a tuple ⟨file name, slack space⟩. Once the map file is
generated, the adversary knows the total available slack

6 A. Srinivasan et al.

space on the entire or with a specific folder(s) on the T fs
vol.

Subsequently, the attacker creates a Mfs
vol, whose size is

less than the total available slack space on the T fs
vol or a

specific folder (e.g., ‘/usr’). Details of slackFS framework’s
reconnaissance scan are presented in Algorithm 1. Note
that the input required slack is a non-zero value. Also,
map file.T fs

vol is the map file for the T fs
vol generated by

Algorithm 1.

Algorithm 1 slackFS – target disk reconnaissance

Input: required slack; T fs
vol;

Output: map file.T fs
vol

Initialisation: map file← NULL; cover file← NULL;
file slack ← 0; total slack ← 0;
slack offset← 0;

1: while
(
! EOF [T fs

vol]
)
do

2: file← getNextF ile(T fs
vol)

3: file name← file.getName();
4: logSize← file.getSize(logical);
5: phySize← file.getSize(physical);
6: file slack ← [logSize− phySize];
7: file slack offset← [file.getLastByteOffset() + 1

];
8: map file←

[
file name, file slack,

file slack offset)
]

9: total slack ← total slack + file slack;
10: if (total slack > required slack) then
11: break;
12: end if
13: end while

14: return map file.T fs
vol;

Algorithm 2 slackFS – STRIP NULL(Mfs
vol)

Input: Mfs
vol;

Output: null map; noNullMfs
vol

Initialisation: null map← NULL;
noNullMfs

vol ← NULL;

1: while (! EOF [Mfs
vol]) do

2: currByte←Mfs
vol.getNextByte()

3: if currByte ̸= NULL then
4: noNullMfs

vol ←
noNullMfs

vol + currByte
5: for each null byte sequence do
6: null map← [null start offset, null seq len]
7: end for
8: end while
9: return null map, noNullMfs

vol

The data to be hidden is now saved to the Mfs
vol like any

normal file and when complete the Mfs
vol is unmounted.

The adversary then processes splits the Mfs
vol into smaller

chunks based on the available slack space of individual files
referring to the map file and writes them to the slack space
of the corresponding files on the T fs

vol. Note that the attacker
has the option of sorting the map file from largest to
smallest based on file slack space and using only files that
have a threshold minimum slack space as cover files. The

advantage of sorting the map file from largest to smallest
slack space is that it will minimise the number of chunks
the Mfs

vol has to be split into. Details of the slackFS hiding
process is presented in Algorithm 4.

Algorithm 3 slackFS – basic model hiding process

Input: map file.T fs
vol; M

fs
vol;

Initialisation: file name← NULL; read size← 0;
write offset← NULL;

write buf ← NULL;
cover file ctr ← map file.T fs

vol.getLen()
STATUS ← success;

1: STRIP NULL(Mfs
vol)

2: return (null map, noNullMfs
vol)

3: for (i = 0; i < cover file ctr; i++) do
4: curr cover file← map file.getEntry(i)
5: file name← curr cover file.file name;
6: read size← curr cover file.file slack;
7: write offset← curr cover file.slack offset;
8: write buf ← READ (noNullMfs

vol, read size);
9: WRITE (write buf, write at offset, read size);

write buf ← NULL;
10: end for

11: if (! EOF [noNullMfs
vol]) then

12: STATUS ← failure;
13: end if

14: return STATUS

Algorithm 4 slackFS – basic model retrieving process

Input: map file.T fs
vol; null map;

Initialisation: retrvdMfs
vol ← NULL

cover file ctr ← map file.T fs
vol.getLen()

STATUS ← success;

1: for (i = 0; i < cover file ctr; i++) do
2: curr cover file← map file.getEntry(i)
3: file name← curr cover file.file name;
4: read size← curr cover file.file slack;
5: read offset← curr cover file.slack offset;
6: write buf ←

READ (file name, read size,
read offset);

7: APPEND (retrvdMfs
vol, write buf);

write buf ← NULL;
8: end for

9: RESTORE NULL(retrvdMfs
vol, null map)

10: return rstordMfs
vol

11: if hash(rstordMfs
vol) != hash(Mfs

vol) then
12: STATUS ← failure;
13: end if

14: return STATUS

In our prototype implementation we only use files from the
‘/usr’ folder on the T fs

vol. Subsequently, to access the data
stored in the hidden Mfs

vol, the adversary uses the above
process in reverse order. In addition, the adversary uses the
same map file that he used for hiding to reassembles the

slackFS – resilient and persistent information hiding framework 7

hidden chunks and recreate the Mfs
vol, and remounts it on

the T fs
vol.

Algorithm 5 slackFS – advanced model hiding process

Input: map file; cover file ctr; Mfs
vol;

back-end; DATA FRAGS;
PARITY VALUE (in %);

Initialisation: file name← NULL; read size← 0;
write offset← NULL;

write buf ← NULL;
B ← back-end; M←Mfs

vol;
D ← DATA FRAGS;
P ← PARITY VALUE;
T ← D × (1 + P);
STATUS ← success;

1: fragments = ERASURE CODE
(
B,M,P, T

)
2: frag size← fragments.getSize()
3: for (i = 0; i < cover file ctr; i++) do
4: curr cover file← map file.getEntry(i)
5: if (curr cover file.file slack ≤ frag size) then
6: continue;
7: end if
8: curr frag ← fragments.getFrag()
9: if (curr frag == NULL) then
10: STATUS ← success;
11: break;
12: end if
13: file name← curr cover file.file name;
14: write offset← curr cover file.slack offset;
15: write buf ← READ (curr frag, frag size);
16: WRITE (write buf, write at offset, frag size);

write buf ← NULL;
17: end for

18: if
(
fragments.getFrag() ! = NULL

)
then

19: STATUS ← failure;
20: end if

21: return STATUS

4 slackFS – basic model

4.1 Implementation

We have implemented and tested a working prototype of
the proposed slackFS basic information hiding method on a
Ubuntu Linux 20.4 system with ext4 filesystem as the T fs

vol.
No updates, patches or any user applications are installed
on the T fs

vol with the exception of those tools that were
necessary for this research. However, we have excluded all
of the files that were created as a result of installing tools
necessary for this research, which provides a good baseline
estimate for the total available slack on a vanilla Ubuntu
Linux 20.04 installation with ext4 filesystem. A generic ext4
filesystem layout is shown in Figure 4.

We have used a 200 MB non-bootable (i.e., storage only
volume) FAT16 volume as our Mfs

vol, key specifications of
which are as follows:

• bytes-per-sector: 512

• sectors-per-cluster: 8

• bytes-per-cluster: 4,096

Detailed layout of the entire Mfs
vol is presented in Table 1.

The generic layout of a FAT16 filesystem is shown in
Figure 5. The ext4 filesystem, i.e., the T fs

vol has a block size
of 512 bytes and an IO block size of 4,096 bytes, which
is same as the ‘sector’ and ‘cluster’ sizes respectively on
FAT16, i.e., the Mfs

vol.

Figure 4 An ext4 filesystem layout

Source: Bovet and Cesati (2005)

Table 1 Mfs
vol layout used in prototype

Mfs
vol region

(FAT16)
Size

(in sectors)
Size

(in bytes)
Sector range
Start End

VBR 1 512 0 0
FAT1 191 97,792 1 191
FAT2 191 97,792 192 382
Root fir. 32 16,384 383 414
Data 390,211 199,788,032 415 390,625

Figure 5 Typical FAT16 filesystem layout (see online version
for colours)

4.2 Results and analysis

During the reconnaissance scan, we analyse the T fs
vol

and compute the total available slack space. Additionally,
during the reconnaissance scan, we identify folders under
the root directory, i.e., ‘/’, of the filesystem that has the
maximum amount of slack space. Figures 6(a), 6(b) and
6(c), respectively present the available slack space for three
important folders under the root directory on the T fs

vol –
‘/bin’, ‘/usr’, and ‘/etc’. For each of the three folders,
we map the slack space for the following three different
scenarios:

8 A. Srinivasan et al.

Figure 6 Comparison of slack space (in bytes) for first 100 files (sorted and unsorted) and top 100 files, (a) ‘/bin’ slack space for
100 files (b) ‘/usr’ slack space for 100 files (c) ‘/etc’ slack space for 100 files (see online version for colours)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50 60 70 80 90 100

S
l
a
c
k

s
i
z
e

i
n

b
y
t
e
s

Files

first_100(unsorted)
first_100_files (sorted)
top_100

Analysis of 100 files from /bin folder

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50 60 70 80 90 100

S
l
a
c
k

s
i
z
e

i
n

b
y
t
e
s

Files

first_100(unsorted)
first_100_files (sorted)
top_100

Analysis of 100 files from /bin folder

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50 60 70 80 90 100

S
l
a
c
k

s
i
z
e

i
n

b
y
t
e
s

Files

first_100 (unsorted)
first_100_files (sorted)
top_100

Analysis of 100 files from /etc folder

(c)

Figure 7 Target filesystem volume slack space information, (a) total slack space (100 files) (b) ‘/usr’ file count.(c) ‘/usr’ total slack
space

150

200

250

300

350

400

450

`/bin' `/usr' `/etc'

T
o
ta
l
S
la
c
k
(i
n
K
B
)

Folders

 rst_100_ les
top_100_ les

(a)

0

10000

20000

30000

40000

50000

60000

70000

<1K [1K-2K) [2K-3K) [3K-4K) >=4K

T
o
ta
l
N
u
m
b
e
r
o
f
F
il
e
s

File slack space size (in bytes)

File Count

(b)

0

50

100

150

200

250

<1K [1K-2K) [2K-3K) [3K-4K) >=4K

T
o
ta
l
s
la
c
k
s
p
a
c
e
s
iz
e
(i
n
M
B
)

File slack space size (in bytes)

Slack Space Size

(c)

1 slack space distribution for the first 100 files
(unsorted)

2 slack space for the first 100 files (first 100 files on
T fs
vol or within a folder T fs

vol sorted largest to smallest
slack space)

3 slack space for top 100 files (top 100 files with all
files on the T fs

vol or within a folder on the T fs
vol sorted

largest to smallest slack space).

As can be seen from the results in Figure 6, all three folders
have different distribution in the slack space of first 100
files (unsorted). When the first 100 files in each of the
three folders are sorted from largest to smallest slack space,
we have the following results – the ‘/bin’ folder has the
smallest fraction of the first 100 files, with approximately
30%, each having a slack space of 2,000 bytes or more;
in the ‘/usr’ folder approximately 70% of the first 100
files each has a slack space of 2,000 bytes or more; and
the ‘/etc’ folder has the highest fraction of the first 100
files, with approximately 85%, each having a slack space
of 2,000 bytes or more. Finally, due to the existence of
very small files, when top 100 files are selected, based on
all files on the T fs

vol sorted largest to smallest slack space,
almost all of the top 100 files in the ‘/usr’ and ‘/etc’ folders
have a slack space of ≥4,000 bytes but ≤4,095 bytes.
This is because, the size of an IOBlock (i.e., cluster) on
our T fs

vol ext4 is 4096 and at least one byte in an IOBlock
(i.e., cluster) has to contain a file’s data for the IOBlock
(i.e., cluster) to be considered allocated. It is important to

note that the maximum possible slack space on a given
filesystem volume is the size of the IOBlock (a.k.a. cluster)
in bytes minus 1 byte.

In Figure 7, we present the slack space information
for our ext4 T fs

vol. Figure 7(a) presents a summary of the
cumulative slack space for the first 100 and top 100 (slack
space sorted largest to smallest) files in the following three
folders – ‘/bin’, ‘/usr’, and ‘/etc’. As can be seen from
the results, ‘/etc’ folder with approximately 305 KB has
the most available slack space for the first 100 files while
the ‘/usr’ folder with approximately 410 KB has the most
available slack space for the top 100 files.

Figure 7(b) shows the number of files in ‘/usr’ folder
for different sizes of slack space and Figure 7(c) presents
the total slack space available from files with slack space
in a specific range. As can be seen, a total of about
67, 000 files have slack space in the 3,000–3,999 bytes
range [Figure 7(b)], which adds up to a total slack space
of about 240 MB [Figure 7(c)]. Similarly, a total of about
41, 000 files have slack space in the 2,000–2,999 bytes
range [Figure 7(b)], which adds up to a total slack space of
about 110 MB [Figure 7(c)].

4.3 Caveats

In this section we discuss the caveats of the slackFS basic
model, motivating the need for the slackFS advanced model
with fault-tolerance. With the basic model, one particular
scenario wherein the hidden Mfs

vol could potentially be lost

slackFS – resilient and persistent information hiding framework 9

partially or completely is when a file on the T fs
vol, whose

slack space contains a portion of the Mfs
vol changes in size.

Here again, there are two possible scenarios. If the file
grows in size, then it will overwrite the hidden contents in
the slack space. If the file shrinks in size, then the operating
system can potentially de-allocate one or more blocks and
mark it as free for other incoming disk space requests. Since
both the scenarios are realistic on a production system, we
have used a vanilla instance of the Ubuntu operating system
to identify files that are less likely to change in size over
long periods of time.

Another realistic operations scenario the hidden Mfs
vol

could be lost is if the operating system on the target system
uses a tool to overwrite the slack space of each and every
file stored on the T fs

vol. Although realistic, such a tool comes
with a significant disk input/output overhead that would
affect the performance of the system. However, if faced
with a tool that achieves robust slack space sanitisation, no
existing method of information hiding in slack space will
be successful.

5 slackFS – advanced model

5.1 Adding fault tolerance for resilience

To address the caveats of the basic model presented
in Section 4.3, we have incorporated fault-tolerance and
designed the slackFS advanced model. The primary
objective of the advanced model is to render slackFS robust
to data loss resulting from modification or deletion of files
on the T fs

vol. Over time, files tend to change, some more
than others, and hence data hidden the the slack space of
those file can be lost partially or completely. As a first
step to address this challenge, in the proposed slackFS
framework, we focus on system files in the ‘/usr’ folder that
are the least likely to change.

Table 2 Number of unmodified files (in the ‘/usr’ folder) over
different time periods

Last modified (in days) Number of files (in ‘/usr’)

>1,000 99,874
>750 114,965
>500 118,682
>365 126,881
>250 131,139
>100 164,304
>50 210,714
>30 221,704

Table 2 presents data on the number of files that are
unmodified within the ‘/usr’ folder of an ext4 filesystem
on a production Ubuntu Server 20.04.6. As can be seen
from the results, there are 114, 965 files that have not been

modified in over 750 days (2+ years), 164, 304 files that
have not been modified in over 100 days (3+ months), and
221, 704 files that have not been modified in over over 100
days. Therefore, there are hundreds of thousands of files on
a target system that remain unmodified over long periods
that the adversary can exploit using a tool like the proposed
slackFS.

5.2 Erasure codes

To further augment the survivability of the hidden Mfs
vol,

we have leveraged erasure codes, a forward error correction
code, to build fault-tolerance into the slackFS framework.
Erasure coding uses a set of algorithms to allow the
recovery of missing data using a subset of original data
(How Erasure Coding is Configured in Object Storage,
2014). Erasure coding works as follows: input data is
split into multiple fragments, known as data fragments.
Subsequently, it creates additional fragments, known as
parity fragments, over the data fragments that can be used
for data recovery in case of loss of or errors in the original
data fragments. For illustration of how each parity fragment
is created based on the original data fragments consider a
D + p erasure coding scheme. Here, D is the number of
data fragments an input message M is split into and p is
the number of parity fragments generated. Such a coding
scheme will have an overhead of p

D%. In the remainder of
this paper, we shall consider parity the number of parity
fragments p as a percentage of data fragments D denoted
as P = p

D%.
Reed-Solomon codes are used to detect and correct

errors in the data introduced during transmission or on the
storage devices (Reed and Solomon, 1960). Our prototype
leverages Reed-Solomon implementation of erasure code
for achieving fault-tolerance with slackFS framework with
the following three popular coding libraries available
from the open-source liberasurecode project (Erasure Code
API Library Written in C with Pluggable Erasure Code
Backends, 2014) – INTEL STORAGE ACCELERATION
(ISA), JERASURE LIBERASURECODE.

Specifically, we have two different implementations
of Reed-Solomon codes – VANDERMONDE
matrix and CAUCHY matrix. In Table 3,
ISA RS VAND, JERASURE RS VAND and
LIBERASURECODE RS VAND are back-end
implementations of the Reed-Solomon Encoding with
VANDERMONDE matrix. ISA RS CAUCHY is a
Reed-Solomon code implementation based on CAUCHY
matrices over finite fields (MacWilliams and Sloane, 1977;
Luby and Zuckermank, 1995; Wicker and Bhargava, 1999).
All possible combinations of the back-ends and parity
percentages (P) used in our implementation are presented
in Table 3.

10 A. Srinivasan et al.

Table 3 Table summarising the various back-ends and parity combinations implemented and tested

Parity

12.50% 25% 50%

Ba
ck
-e
nd ISA L RS CAUCHY (i-rs-c) CASE 1 CASE 2 CASE 3

ISA L RS VAND (i-rs-v) CASE 4 CASE 5 CASE 6
JERASURE RS VAND (j-rs-v) CASE 7 CASE 8 CASE 9

LIBERASURECODE RS VAND (l-rs-v) CASE 10 CASE 11 CASE 12

Table 4 Average hiding and retrieval run time performance for 10 MB Mfs
vol for various combinations of P ∈ {12.5%, 25%, 50%}

and T ∈ {16, 62, 64}

Back-end P = 12.5% P = 25% P = 50%
Hide Retrieve Hide Retrieve Hide Retrieve

T = 16

i-rs-c 2.6483 1.3797 2.6473 1.2444 2.7069 1.3348
i-rs-v 2.6096 1.2623 2.5588 1.2326 2.615 1.2778
j-rs-v 2.6218 1.2704 2.5408 1.1723 2.6028 1.3347
l-rs-v 2.5187 1.2181 2.5576 1.207 2.7028 1.3769

T = 32

i-rs-c 2.3469 0.5072 2.2962 0.511 2.3211 0.5031
i-rs-v 2.3447 0.5043 2.2961 0.5313 2.335 0.5389
j-rs-v 2.3281 0.5424 2.3166 0.5037 2.4064 0.5186
l-rs-v 2.3609 0.5072 2.334 0.5158 2.3527 0.5155

T = 64

i-rs-c 2.2678 0.4981 2.372 0.5264 2.3851 0.5874
i-rs-v 2.3696 0.5272 2.3621 0.5124 2.3889 0.5241
j-rs-v 2.3815 0.5107 2.2777 0.4891 2.4217 0.5656
l-rs-v 2.3414 0.5034 2.3508 0.5332 2.3367 0.5056

5.3 Results and analysis

In this section, we shall denote and refer to our prototype
slackFS framework as a 4-tuple: EC(B,M,P, T) where:

• B ∈ {i-rs-c, i-rs-v, j-rs-v, l-rs-v}

• M ∈ {10, 25, 50} MB

• P ∈ {12.5, 25, 50}%

• T ∈ {16, 32, 64} fragments

Due to paper length restrictions and in appreciation of the
reader’s time, we specifically discuss results for P = 25%
and T = 32, i.e., EC(B,M, 25, 32). We chose these two
values as they provide a good mid-point for evaluating
the performance of our prototype implementation. We have
evaluated the performance for all 12 CASES (Table 3) over
50 trial runs. Average performance of EC(B,M,P, T)
in terms of hiding and retrieval times of all 12 CASES
is summarised in Tables 4, 5 and 6, which are plotted
in Figures 8, 9 and 10 respectively. Furthermore, we are
evaluating the prototype slackFS framework with empty
malicious filesystem volumes. This gives the baseline
performance for hiding and retrieval times. As the adversary
adds or removes files from the the Mfs

vol volume, the hiding
and retrieval times will change accordingly.

From these results, it can be seen that while the hiding
and retrieval times have similar trends, each CASE (see
Table 3) has a unique performance. From Figure 9, it can
be seen that EC(i-rs-c, 25, 50, 32) [Figure 9(e)] achieves
the fastest 50-run average hiding time. Similarly, EC(i-rs-v,
25, 25, 64) achieves the fastest 50-run average retrieval
time. In Figure 9(c) it can be seen that with P = 25%, the
hiding time increases by over 3% from D = 32 to D =
64, which is the most significant for all cases with 25MB
volume.

Other important observations are as follows. The
retrieval times for EC(B, 10,P, 16) [Figure 8(b)] is
approximately 2.5 times longer than the retrieval times
for EC(B, 10,P, 32) [Figure 8(d)] and EC(B, 10,P, 64)
[Figure 8(f)]. Similarly, the retrieval times for
EC(B, 25,P, 16) is over 4 times longer than the retrieval
times for EC(B, 25,P, 32) and EC(B, 25,P, 64). Finally,
the retrieval times for EC(B, 50,P, 16) is approximately 10
times longer than the retrieval times for EC(B, 50,P, 32)
and EC(B, 50,P, 64). Based on these observations, it can
be concluded that for all four back-ends and across all three
parity values, as the total number of fragments increases
from 16 to 32 or 64, the time to both hide and retrieve
dramatically decreases. However, the time difference is not
significant going from 32 to 64 fragments, especially for
retrieval.

slackFS – resilient and persistent information hiding framework 11

Figure 8 Average hiding and retrieval run times for 10 MB Mfs
vol for various combinations of P and T , (a) hiding (P = 12.5%)

(b) retrieval (P = 12.5%) (c) hiding (P = 25%) (d) retrieval (P = 25%) (e) hiding (P = 50%) (f) retrieval (P = 50%)

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

10MB 12.5% Parity-Hiding

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

10MB 12.5% Parity - Retrieval

(b)

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

10MB 25% Parity-Hiding

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

10MB 25% Parity - Retrieval

(d)

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

10MB 50% Parity-Hiding

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

10MB 50% Parity - Retrieval

(f)

Table 5 Average hiding and retrieval run time performance for 25 MB Mfs
vol for various combinations of P ∈ {12.5%, 25%, 50%}

and T ∈ {16, 62, 64}

Back-end P = 12.5% P = 25% P = 50%
Hide Retrieve Hide Retrieve Hide Retrieve

T = 16
i-rs-c 5.518 2.2906 5.5905 2.4383 5.6778 2.3692
i-rs-v 5.6318 2.3236 5.5843 2.2814 5.6387 2.4193
j-rs-v 5.7548 2.4256 5.6828 2.569 5.7632 2.5927
l-rs-v 5.5384 2.3043 5.5371 2.3192 5.605 2.44

T = 32
i-rs-c 5.3366 0.4094 5.3261 0.4068 5.2209 0.4243
i-rs-v 5.3688 0.4093 5.2646 0.4136 5.326 0.4099
j-rs-v 5.398 0.4338 5.2461 0.4077 5.3229 0.4181
l-rs-v 5.3477 0.4098 5.276 0.4131 5.3277 0.414

T = 64
i-rs-c 5.3272 0.4083 5.317 0.4146 5.317 0.4102
i-rs-v 5.2871 0.4063 5.3097 0.406 5.4058 0.4099
j-rs-v 5.2899 0.4197 5.4175 0.416 5.3653 0.4179
l-rs-v 5.3504 0.4139 5.3119 0.4105 5.3553 0.4125

12 A. Srinivasan et al.

Figure 9 Average hiding and retrieval run times for 25 MB Mfs
vol for various combinations of P and T , (a) hiding (P = 12.5%)

(b) retrieval (P = 12.5%) (c) hiding (P = 25%) (d) retrieval (P = 25%) (e) hiding (P = 50%) (f) retrieval (P = 50%)

 5.2

 5.3

 5.4

 5.5

 5.6

 5.7

 5.8

 5.9

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

25MB 12.5% Parity-Hiding

(a)

 0.5

 1

 1.5

 2

 2.5

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

25MB 12.5% Parity - Retrieval

(b)

 5.2

 5.3

 5.4

 5.5

 5.6

 5.7

 5.8

 5.9

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

25MB 25% Parity-Hiding

(c)

 0.5

 1

 1.5

 2

 2.5

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

25MB 25% Parity - Retrieval

(d)

 5.2

 5.3

 5.4

 5.5

 5.6

 5.7

 5.8

 5.9

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

25MB 50% Parity-Hiding

(e)

 0.5

 1

 1.5

 2

 2.5

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

25MB 50% Parity - Retrieval

(f)

Table 6 Average hiding and retrieval run time performance for 50 MB Mfs
vol for various combinations of P ∈ {12.5%, 25%, 50%}

and T ∈ {16, 62, 64}

Back-end P = 12.5% P = 25% P = 50%
Hide Retrieve Hide Retrieve Hide Retrieve

T = 16
i-rs-c 10.6234 4.173 10.775 4.4786 10.7306 4.3104
i-rs-v 10.6906 4.1817 10.7435 4.2069 10.8087 4.2223
j-rs-v 10.7393 4.447 10.7458 4.5448 10.7108 4.2323
l-rs-v 10.5581 4.2785 10.8124 4.4168 10.6965 4.3703

T = 32
i-rs-c 10.2768 0.4068 10.3482 0.4085 10.2586 0.4085
i-rs-v 10.3527 0.4072 10.2634 0.4058 10.3205 0.3997
j-rs-v 10.3006 0.4005 10.2971 0.4119 10.3713 0.4259
l-rs-v 10.2477 0.41 10.1259 0.4051 10.3929 0.3917

T = 64
i-rs-c 10.2716 0.4028 10.2854 0.4019 10.4498 0.4212
i-rs-v 10.2462 0.4057 10.2513 0.4095 10.2454 0.4154
j-rs-v 10.295 0.4276 10.1894 0.4052 10.3562 0.4298
l-rs-v 10.2508 0.4192 10.3642 0.4105 10.183 0.4175

slackFS – resilient and persistent information hiding framework 13

Figure 10 Average hiding and retrieval run time performance for 50 MB Mfs
vol for various combinations of P and T , (a) hiding

(P = 12.5%) (b) retrieval (P = 12.5%) (c) hiding (P = 25%) (d) retrieval (P = 25%) (e) hiding (P = 50%) (f) retrieval
(P = 50%)

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

 10.7

 10.8

 10.9

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

50MB 12.5% Parity-Hiding

(a)

 0

 1

 2

 3

 4

 5

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

50MB 12.5% Parity - Retrieval

(b)

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

 10.7

 10.8

 10.9

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

50MB 25% Parity-Hiding

(c)

 0

 1

 2

 3

 4

 5

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

50MB 25% Parity - Retrieval

(d)

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

 10.7

 10.8

 10.9

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

50MB 50% Parity-Hiding

(e)

 0

 1

 2

 3

 4

 5

i-rs-c i-rs-v j-rs-v l-rs-v

A
v
er

ag
e

T
im

e
(i

n
 s

ec
)

Backend

16 Fragments 32 Fragments 64 Fragments

50MB 50% Parity - Retrieval

(f)

Our proposed method has very robust detection resistance
as it introduces a strong asymmetry between the attacker
and the target. We would like to restate that the Mfs

vol

is completely hidden by splitting it up into chunks and
spreading it across the T fs

vol in the slack space of multiple
files. Since the slack space is not accessible to the operating
system or to the administrator without special tools, it
is extremely hard, if not impossible, to even detect the
presence of the Mfs

vol. In the rare circumstance where it
is detected, even then its recovery by a third party tool
is impractical due to how it is hidden in a distributed
manner. To further strengthen the asymmetry in favor of
the adversary, simply regrouping the distributed chunks of
Mfs

vol using the map file and mounting it on the T fs
vol

provides ready access to all hidden data. Furthermore, since
the slack space is considered as part of the allocated disk
space, security tools that scan for deviation in disk space
utilisation or modifications to file date and time stamps
will not be able to detect information hidden with slackFS
framework.

6 Conclusions and future work

In this paper, we introduce slackFS, a pioneering
steganographic method that conceals entire filesystems
within the slack space of another filesystem. Unlike
previous approaches focusing on individual file
concealment, slackFS leverages the entirety of slack
space, offering robust detection resistance against standard
security tools. Since slack space persists across system
reboots and restarts, slackFS ensures persistent data hiding,
enhancing its effectiveness for covert operations. Moreover,
the ability to hide and un-hide the filesystem at runtime
provides a structured means for adversaries to extract data
clandestinely. The slackFS framework incorporates two
models: a basic version without fault tolerance and an
advanced model with fault tolerance. The advanced model
facilitates recovery from accidental cover file modifications
or deletions, ensuring the reliability of the hidden malicious
filesystem. Extensive testing of the prototype validates its
robustness and computational overhead, with and without

14 A. Srinivasan et al.

fault tolerance. Additionally, our reconnaissance scan of
target filesystem volumes reveals significant slack space
availability, highlighting slackFS’s potential for efficient
information hiding. Furthermore, the framework exhibits
characteristics of a robust steganographic technique, laying
the foundation for future research into expanding slackFS
and exploring further avenues for covert data concealment
within target systems.

References

Alji, M. and Chougdali, K. (2021) ‘File slack handling tool’, 2021
International Conference on Cyber Situational Awareness, Data
Analytics and Assessment (CyberSA), pp.1–3.

Berghel, H., Hoelzer, D. and Sthultz, M. (2006) ‘Data hiding tactics
for windows and unix file systems’, Advances in Computers,
Vol. 74, pp.1–17, http://www.berghel.net/publications/data_
hiding/data_hiding.php.

Bovet, D.P. and Cesati, M. (2005) Understanding the Linux Kernel,
3rd ed., 208 Incremental Checkpointing for Grids.

Cameron, L.M. (2016) With Cryptography Easier to Detect,
Cybercriminals Now Hide Malware in Plain Sight. Call it
Steganography. Here’s How It Works.

Carrier, B. (2005) File System Forensic Analysis, Addison-Wesley
Professional.

Erasure Code API Library Written in C with Pluggable Erasure
Code Backends (2014) [online] https://github.com/openstack/
liberasurecode (accessed 25 June 2023).

Evsutin, O., Melman, A. and Meshcheryakov, R. (2020) ‘Digital
steganography and watermarking for digital images: a review
of current research directions’, IEEE Access, Vol. 8,
pp.166589–166611.

Ewane, P. (2017) MacSpy: OS X Mac RAT as a Service,
June [online] https://cybersecurity.att.com/blogs/labs-research/
macspy-os-x-rat-as-a-service (accessed 7 June 2022).

Göbel, T. and Baier, H. (2018) ‘Anti-forensics in ext4: on
secrecy and usability of timestamp-based data hiding’, Digital
Investigation, Vol. 24, pp.S111–S120.

Göbel, T. and Baier, H. (2019) ‘Fishy – a framework for
implementing filesystem-based data hiding techniques’, Digital
Forensics and Cyber Crime: 10th International EAI Conference,
ICDF2C 2018, Proceedings, 10–12 September, Springer,
New Orleans, LA, USA, pp.23–42.

Göbel, T., Türr, J. and Baier, H. (2019) ‘Revisiting data
hiding techniques for apple file system’, Proceedings of the
14th International Conference on Availability, Reliability and
Security, pp.1–10.

Hassan, N.A. and Hijazi, R. (2017) ‘Chapter 6 – Data hiding
forensics’, in Hassan, N.A. and Hijazi, R. (Eds.): Data Hiding
Techniques in Windows OS, pp.207–265, Syngress, Boston,
https://doi.org/10.1016/978-0-12-804449-0.00006-3.

How Erasure Coding is Configured in Object Storage (2014) [online]
https://docs.openio.io/latest/source/admin-guide/configuration_
ec.html (accessed 25 June 2023).

Huebner, E., Bem, D. and Wee, C.K. (2006) ‘Data hiding in
the NTFS file system’, Digital Investigation, Vol. 3, No. 4,
pp.211–226, https://doi.org/10.1016/j.diin.2006.10.005.

Koolhaas, A. and van Steenbergen, W. (2020) ‘APFS slack
analysis and detection of hidden data’, Security and Network
Engineering, pp.2019–2020.

Luby, M. and Zuckermank, D. (1995) An XOR-Based
Erasure-Resilient Coding Scheme, Tech report.

MacWilliams, F.J. and Sloane, N.J.A. (1977) The Theory of
Error-Correcting Codes, 1st ed., 1 January, Vol. 16, Elsevier.

Metcheka, L.M. and Ndoundam, R. (2020) ‘Distributed data hiding in
multi-cloud storage environment’, Journal of Cloud Computing,
Vol. 9, No. 1, p.68.

Microsoft (2020) Trojan:win32/okrum!msr Threat Description
[online] https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Trojan:Win32/Okrum!
MSR&ThreatID=2147755899 (accessed 7 June 2022).

MITRE T1564.001 (2020) Hide Artifacts: Hidden Files and
Directories, Sub-Technique T1564.001 – Enterprise, March
[online] https://attack.mitre.org/techniques/T1564/001/ (accessed
7 June 2022).

MITRE T1564.005 (2020) Hide Artifacts: Hidden File System,
Sub-Technique T1564.005 – Enterprise, June [online]
https://attack.mitre.org/techniques/T1564/005/ (accessed 7 June
2022).

Mulazzani, M., Neuner, S., Kieseberg, P., Huber, M.,
Schrittwieser, S. and Weippl, E. (2013a) ‘Quantifying windows
file slack size and stability’, Advances in Digital Forensics
IX: 9th IFIP WG 11.9 International Conference on Digital
Forensics, Revised Selected Papers, 28–30 January, Springer,
Orlando, FL, USA, pp.183–193.

Mulazzani, M., Neuner, S., Kieseberg, P., Huber, M., Schrittwieser,
S. and Weippl, E. (2013b) ‘Quantifying windows file slack size
and stability’, in Peterson, G. and Shenoi, S. (Eds.): Advances in
Digital Forensics IX, pp.183–193, Springer Berlin Heidelberg,
Berlin, Heidelberg.

Rabin, M.O. (1989) ‘Efficient dispersal of information for security,
load balancing, and fault tolerance’, J. ACM, Vol. 36, No. 2,
p.335–348.

Rasmi, A., Arunkumar, B. and Anees, V.M. (2019) ‘A comprehensive
review of digital data hiding techniques’, Pattern Recognition
and Image Analysis, Vol. 29, pp.639–646.

Reed, I.S. and Solomon, G. (1960) ‘Polynomial codes over certain
finite fields’, Journal of the Society for Industrial and Applied
Mathematics, Vol. 8, No. 2, pp.300–304.

Shamir, A. (1979) ‘How to share a secret’, Commun. ACM, Vol. 22,
No. 11, p.612–613.

Srinivasan, A. and Dong, H. (2018) ‘SURE-FIT – secure and
adaptive framework for information hiding with fault-tolerance’,
Journal of Cyber Security and Mobility, Vol. 6, pp.427–456,
https://doi.org/10.13052/jcsm2245-1439.643.

Srinivasan, A., Dong, H. and Stavrou, A. (2017) ‘Frost: anti-forensics
digital-dead-drop information hiding robust to detection & data
loss with fault tolerance’, Proceedings of the 12th International
Conference on Availability, Reliability and Security, ARES ‘17,
Association for Computing Machinery, New York, NY, USA.

Srinivasan, A., Nazaraj, S.T. and Stavrou, A. (2013) ‘HIDEINSIDE
– a novel randomized & encrypted antiforensic information
hiding’, 2013 International Conference on Computing,
Networking and Communications (ICNC), pp.626–631, https:
//doi.org/10.1109/ICCNC.2013.6504159.

Thampy, R.V., Praveen, K. and Mohan, A.K. (2018) ‘Data hiding in
slack space revisited’, International Journal of Pure and Applied
Mathematics, Vol. 118, No. 18, pp.3017–3025.

Wicker, S.B. and Bhargava, V.K. (1999) Reed-Solomon Codes and
Their Applications, John Wiley & Sons.

slackFS – resilient and persistent information hiding framework 15

Wikipedia (2022) Block Sub-Allocation, December [online]
https://en.wikipedia.org/w/index.php?title=
Blocksuballocation&oldid=1127107338 (accessed 7 June 2022).

Wirzenius, L., Oja, J., Stafford, S. and Weeks, A. (1991) The Linux
System Administrator’s Guide – Filesystems [online] https://tldp.
org/LDP/sag/html/filesystems.html (accessed 25 June 2023).

