
Local Performance Trade-Off in Heterogeneous
Federated Learning with Dynamic Client Grouping

Yingchi Maoa, b, Jun Wub, Yangkun Chengb, Ping Pinga, b, and Jie Wuc
a Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing, China

b School of Computer and Information, Hohai University, Nanjing, China
c Center of Networked Computing, Temple University, Philadelphia, USA

yingchimao@hhu.edu.cn, 1606010225@hhu.edu.cn, verne kon@foxmail.com
pingpingnjust@163.com, jiewu@temple.edu

Abstract—As an emerging machine learning paradigm, fed-
erated learning typically employs client selection to reduce
computational and communication overheads of the learning
process in mobile edge environment. Although client selection can
coordinate large-scale clients for efficient training, the inherent
characteristic of the scheme, i.e., the partial client participation
can lead to a performance bias of the global model among
clients. Besides, the system heterogeneity and data heterogeneity
in mobile edge environment can exacerbate the negative impact
of such bias on federated learning. To improve unbalanced local
performances on different clients of the global model caused by
client selection, this paper proposes a Federated Learning Clients
Dynamic Grouping Method based on Local Computational Effi-
ciency (FedGLCE). Considering the differences of computational
power between clients and combining the idea of grouping
clients, FedGLCE separates the framework of federated learning
into several client groups, each with cohesive local computing
efficiency, to balance the client participation in local training
while guaranteeing that clients are not discarded. Specifically,
FedGLCE calculates the local computational efficiency of clients
based on the number of local data and updated local training
time. Then, to complete client grouping, a polynomial distribu-
tion set is constructed and mapped to different groups, and one
client is randomly selected from each group to participate in the
local training. Compared with state-of-the-art client grouping
approaches, FedGLCE effectively balances the participation of
clients and improves the performance bias of the global model
among clients under evaluations on MNIST-Fed and CIFAR-10-
Fed heterogeneous datasets in federated learning.

Index Terms—federated learning, computational efficiency,
client grouping, client participation.

I. INTRODUCTION

The development of IoT technology and the popularity of
mobile edge devices have provided a plethora of data sources
and data types for building complex machine learning models
with realistic applications. The data gathered by edge devices
is uniformly transferred to a central server for processing
and computational [1] in the Mobile Edge Computing (MEC)
framework [2]. However, because this centralized learning
approach is risky in terms of data privacy [3], storing data
and executing local training on mobile edge devices with in-
creasing process capacities, such as drones [4], smart cameras
[5], and smartphones [6] is becoming more appealing.

Federated learning [7] is an emerging machine learning
paradigm that utilizes the local data and computational power
of mobile edge devices (called clients) for training local

Fig. 1. The federated learning process based on client selection

models. The central server in federated learning aggregates all
local models to construct the global model while maintaining
the security constraint of local data storage. In resource-
constrained mobile edge environment, federated learning fre-
quently employs partial rather than full client participation in
training (called client selection) to reduce the computational
and communication overhead of the learning process [8].
Client selection has been shown to minimize the communica-
tion cost [9] of federated learning. Fig. 1 depicts a schematic
diagram of the federated learning process based on client
selection.

While client selection scheme in federated learning can
coordinate large-scale clients for efficient training, the inherent
partial client participation caused by this scheme can lead
to performance biases of the global model among clients
such as local test accuracy [10] [11] [12]. The severity of
such biases is further enhanced in mobile edge environment
with high system and data heterogeneity. In terms of system
heterogeneity, generic client selection approaches like FedAvg
[7], FedProx [13], and FedDrop [14] discard a portion of
clients based on the computing efficiency, leaving the global
model unable to characterize these clients’ local performances.
In terms of data heterogeneity, both the random selection
strategy and the equal treatment that all clients participate in
the training make the global model skewed towards common
data distributions and underpowered to characterize particular
data distributions. Despite the high overall performance of the
global model, clients with weak computing power rarely have

the opportunity to participate in federated training, and even if
they do, their training results can be discarded by the central
server. These clients fail to meet the needs of user-sensitive
applications due to the performance bias [15] [16].

Based on the above analysis, the decisive factor for whether
a client is discarded or not lies in the computing power of
the client, i.e., local computational efficiency. With high local
computational efficiency, one client can complete the compu-
tation in a short time even if the data volume is large. However,
if a client has low local computational efficiency, the client
must consume a long computation time even though the data
volume is small. To the best of our knowledge, existing client
grouping schemes fail to accurately reflect differences in com-
putational efficiency between clients. Furthermore, present
approaches only produce results of the static grouping, which
are incompatible with mobile edge scenarios where clients’
computational capacities fluctuate. Therefore, to enhance the
participation of weaker clients (clients with poor computa-
tional efficiency) in federated learning, this paper proposes
a Federated Learning Clients Dynamic Grouping Method
based on Local Computational Efficiency (FedGLCE), starting
from the difference in computational power of clients and
under the guarantee of convergence provided by the clus-
tering construction of polynomial distribution. Specifically,
FedGLCE firstly characterizes the computational power of
clients by their local computational efficiency, and constructs
a polynomial distribution set for mapping to client groups
based on their local computational efficiency. Clients with
similar local computational efficiency are divided into the
same group, and then randomly select one client from each
group to participate in the training. Meanwhile, because
the computational power of clients varies in mobile edge
environment, clients in FedGLCE dynamically update their
local computational efficiency after completing their training.
Finally, the central server periodically updates client grouping
results in specified iteration rounds according to clients’ local
computational efficiency. In general, FedGLCE improves the
overall participation of weaker clients by grouping them based
on their local computational efficiency, and equalizes the
performance differences of the global model among clients
at the client level.

The main contributions of this paper include,
• The local computational efficiency is employed to charac-

terize the computational power of clients, and a polyno-
mial distribution set is constructed for mapping to groups
of clients based on their local computational efficiency.
Clients with similar local computational efficiency are
divided into the same group.

• One client from each group is randomly selected to
participate in the training and dynamically updates its
local computational efficiency after completing train-
ing. Besides, considering variations in the computational
power of clients in the mobile edge environment, the
central server adjusts the client grouping results within a
specified iteration round.

• Evaluations on several heterogeneous datasets in feder-

ated learning demonstrates that FedGLCE outperforms
FedAvg, FedDrop, TiFL, and FedSS by about 1.30 times,
1.86 times, 1.49 times, and 1.23 times in client partici-
pation variance, respectively, and in local test accuracy
variance by about 1.24 times, 1.04 times, 1.40 times and
1.01 times, respectively.

The remainder of this paper is organized as follows. Section
II presents the related work of client grouping. The system
model of FedGLCE is shown in Section III. In Section IV,
FedGLCE is discussed in detail. Then, FedGLCE is compared
with state-of-the-art client grouping approaches in Section V.
At last, conclusions are drawn in Section VI.

II. RELATED WORK

Grouping clients prior to federated training is one of the
effective approaches to address the performance bias of the
global model among clients. The essence of client grouping
is to divide clients into different groups based on their
own characteristics, with similar client characteristics within
the group and distinct client characteristics between groups.
After clients are grouped, client selection is performed within
groups to guarantee that clients, particularly those who would
otherwise be discarded, receive access to the local training.

For example, the FRL framework [17] groups clients based
on the similarity of user behavior performance and constructs
a secondary global model for each group to receive intra-
group updates from clients, reducing the negative impact
of low-relevance data samples on the global model’s per-
formance. However, FRL cannot specify the evaluation cri-
teria and grouping strategy for the client similarity metric.
Ghosh et al. [18] employ the clustering of data distribution
to complete client grouping and divide clients with similar
local datasets into the same group, thereby alleviating the
data heterogeneity problem in federated learning. However,
this approach requires clients to share their local metadata
with the central server, which is contrary to the nature of
privacy protection for federated learning. Fraboni et al. [9] also
introduce clustered sampling for client grouping, that is, taking
the number of local data samples into account for grouping to
achieve a more uniform client selection effect. However, this
approach only groups clients during the initialization phase
in federated learning, and it is not applicable to the mobile
edge environment, where local computational power varies
dynamically.

Furthermore, some researchers consider employing the local
training time of clients for client grouping. TiFL [19] groups
clients based on their local training time to ensure that clients
with long training time have the opportunity to participate
in training, but TiFL ignores the effect of data samples on
training time, resulting in local performance biases of the
global model. Unlike TiFL, FedSS [9] examines client training
time indirectly from the perspective of local data volume,
and groups clients with similar amount of local data into the
same client group, allowing clients with long training times,
i.e., large data volume to participate in training. However,
FedSS also groups clients during the federated learning’s

··· ···

Clients

Initialize

Local computational

efficiency
E={ei | i=1,...,n}

Construct

Polynomial distribution set

Dk-2 Dk-1 Dk Dk+1 Dk+2··· ···

···

gk-2 gk-1 gk gk+1 gk+2··· ···

···

Calculate the probability

of a client sampled in

each distribution

The client belongs to

the distribution with the

highest probability
Subsets of clients

involved in training

Randomly select clients

from each group

Update local

computational efficiency

of corresponding clients

Fig. 2. The framework of FedGLCE

initialization phase. Additionally, if the computational power
of clients with large data volume is generally poor, FedSS
greatly increases the time cost in federated learning.

III. SYSTEM MODEL

Fig. 2 depicts the framework of Federated Learning Clients
Dynamic Grouping Method based on Local Computational
Efficiency (FedGLCE). The clients dynamic grouping process
of FedGLCE can be split down into four steps as follows,

(1) Calculate local computational efficiency: Input clients’
local data set {|di| |i = 1, ..., n} of length n, the number
of client groups m, and obtain clients’ local computation
efficiency set E = {ei|i = 1, ..., n}. Then, sort the set E
in descending order.

(2) Construct polynomial distribution set: A polynomial
distribution set {Dr

k}mk=1 of length m is built based on the
local computational efficiency set E, and the distribution
{Dr

k}mk=1 corresponds to the client group gk one by one.
(3) Group clients: The probability {qri,k}mk=1 of a client

being sampled in distribution {Dr
k}mk=1 is calculated sequen-

tially. If a client has the maximum sampling probability in
distribution {Dr

k}mk=1, i.e., ∀k ∈ [1, k′−1]∪[k′+1,m], qri,k′ >
qri,k, then client ci is allocated to group grk′ . The grouping
result is output after all clients have been assigned.

(4) Update local computational efficiency: A random client
from each group forms a subset Sr of clients participating
in training based on the client grouping. Following the local
training phase, the local computational efficiency of clients in
Sr is updated using the training time tri′ .

For computational cost considerations, steps (2)(3) are
performed every ru iteration rounds, dynamically updating the
grouping results on a regular basis. Steps (1)(4) are executed
in each iteration round until the final iteration round comes.

Further, we specify the working mechanism of FedGLCE
using the form of variables. Allow n to be the total number
of clients in federated learning and define the set of clients
as {ci|i = 1, ..., n}. ei represents the local computational
efficiency of client ci for a local dataset di with the number
of samples |di|. The client grouping problem is equivalent
to assigning n clients to m client groups {grk|k = 1, ...,m}
(m < n). In the r-th iteration round, m independent polyno-
mial distributions {Dr

k}mk=1 are utilized to map one by one

TABLE I
MAIN SYMBOLIC PARAMETERS OF THE CLIENT GROUPING

Symbol Definition
n Number of clients
m Number of client groups
di Local dataset of client ci
ωr
i Local model of client ci for the r-th iteration

ωr Global model for the r-th iteration
grk The k-th client group of the r-th iteration
qri,k Sampling probability of client ci in Dr

k

r Iterative round index
ci The i-th client
ei Local computational efficiency of client ci

t
rlatest
i Latest local training time for client ci
wi Aggregation weight of client ci
Dr

k The k-th polynomial distribution for the r-th iteration
Sr Subset of clients in the r-th iteration

to client groups {grk|k = 1, ...,m}, and each distribution in
{Dr

k}mk=1 offers various weights to n clients based on client’s
local computational efficiency ei. Then, the probability qri,k
of client ci being sampled in group grk is computed based
on the distribution {Dr

k}mk=1, where qri,k ∝ ei. Consider
client ci to be assigned to group grk′ when the probability
of ci being sampled in the k′-th group is the highest, i.e.,
∀k ∈ [1, k′ − 1] ∪ [k′ + 1,m], qri,k′ > qri,k. After the client
grouping process, each client group selects a client at random
to participate in the local training for the iteration round and
updates selected clients’ local computational efficiency. Since
the local computational efficiency changes over time, the set
of polynomial distributions {Dr

k}mk=1 utilized to map client
grouping results is also dynamic.

A list of main symbolic parameters of the client grouping
is offered in Table 1 for a better presentation in this paper.

IV. FEDERATED LEARNING CLIENTS DYNAMIC
GROUPING METHOD BASED ON LOCAL COMPUTATIONAL

EFFICIENCY

This section describes the functional modules of FedGLCE
in detail. The implementation of the algorithm and complexity
analysis are given accordingly.

A. Compute Local Computational Efficiency

The local computational efficiency ei of client ci is calcu-
lated using the local training time ti and the training sample
size of local data |di| as,

ei =
|di|
ti

. (1)

Considering the dynamic nature of mobile edge environ-
ment, the computational resources available to clients fluctuate
at different iteration rounds. Assuming a constant amount of
local data |di|, the local computational efficiency of client ci
in the r-th iteration round is denoted as ei =

|di|
t
rlatest
i

, where
rlatest is the most recent iteration round, rlatest < r. Since all
clients are not trained locally during the initialization phase,

the local data quantity |di| of client ci is employed to initialize
the local computational efficiency ei as,

ei =

 |di| , ci(rlatest = 0)

|di| /trlatest
i , cirlatest(rlatest ̸= 0)

, i ∈ {1, ..., n}.

(2)
In the general case, since the initialized local computational

efficiency of a client is substantially higher than its true local
computational efficiency, that is |di| ≫ ei = |di| /trlatest

i .
Therefore, at the beginning of the iteration, distributions of
clients who have not yet completed the federated training are
more dispersed among groups than those who have. In other
words, clients that fail to complete the training are more likely
to be selected, thus achieving a fast access to the real local
computational efficiency.

B. Construct Polynomial Distribution Set

FedGLCE randomly picks one client from each group to
participate in the local training and updates that client’s local
computational efficiency based on the client grouping. As
a result, the client grouping procedure not only influences
the client participation in federated learning, but it may
also induce client drift [20] [21] due to the participation of
some clients, resulting in the non-convergence of the global
model. To avoid this issue, this section constructs a reasonable
polynomial distribution set {Dr

k}mk=1 so that the grouping
results have a guarantee of the global model convergence.

Assumption 1 (Unbiasedness). If the expected value of
the local model aggregation of clients selected for training is
identical to the global model aggregation when all clients are
included, we define this client selection is unbiased as,

Sr [ωr] = Sr
[
∑
i′∈Sr

wi′ω
r
i′] :=

n∑
i=1

wiω
r
i′ , (3)

where Sr is the subset of clients involved in training for
iteration round r, wi′ is the aggregation weight of client ci′
with respect to Sr, and ωr

i′ is the local model parameter of
ci′ .

Based on the above assumption, a polynomial distribution
set {Dr

k}mk=1 of length m is constructed in iteration round r.
The sampling probability qri,k of clients in each distribution is
computed so as to divide n clients into m groups. According
to this construction, qri,k needs to satisfy the following,

∀k ∈ {1, ...,m},
n∑

i=1

qri,k = 1, qri,k ≥ 0. (4)

Equation (4) ensures the feasibility of dividing clients
into m groups. When sampling clients using a polynomial
distribution Dr

k, the expected value of the global model is,

Dr
k
[
∑
i′∈Dr

k

wi′ω
r
i′] :=

n∑
i=1

qri,kω
r
i′ . (5)

Since the expected value possesses a linear property, the
next iteration round’s expected value of global model is the

Dk-1 Dk Dk+1… …

Fig. 3. The construction of polynomial distribution set

average results derived from Equation (5) over the set of
polynomial distributions {Dr

k}mk=1. That is,

Sr [ωr] =

m∑
k=1

1

m

n∑
i=1

qri,kω
r
i′ . (6)

Extending the unbiasedness assumption of Equation (3) to
m independent polynomial distributions {Dr

k}mk=1 yields the
property as,

∀i ∈ {1, ..., n},
m∑

k=1

qri,k = mwi. (7)

As illustrated in Fig. 3, if the value of the polynomial
distribution Dr

k is M , i.e. |Dr
k| = M , then the distribution

set has Mm elements. The local computational efficiency
set E = {ei|i = 1, ..., n} is arranged in descending order,
and the priority of assigning the client’s local computation
efficiency is offered to the polynomial distribution that has not
yet reached M . To put it another way, after a client completes
the efficiency assignment, the number of elements in all but
at most one distribution should be 0 or M .

The total efficiency value assigned to each client on
{Dr

k}mk=1 is ei
′ = mei. ei

′ = Mαi + βi means that client
ci has a sampling probability of 1 on all αi distributions, and
the remaining efficiency value βi is assigned to (m−

∑
αi)

distributions, i.e., Mm =
∑
i

e
′

i = M(
∑
i

αi) +
∑
i

βi. From

|Dr
k| = M , we can obtain that the construction satisfies

Equation (4) and clients can be divided into m groups.
Because of ei

′ = mei, the proportion of each client on
all distributions in {Dr

k}mk=1 can be expressed as m ei
E =

m
|di|/t

rlatest
i

|di|/
n∑

i=1
t
rlatest
i

∼ mwi, satisfying Equation (7).

Substituting Equation (7) into Equation (5), we can get the
following equation,

Sr [ωr] =

m∑
k=1

1

m

n∑
i=1

qri,kω
r
i′ =

n∑
i=1

wiω
r
i′ . (8)

It is observed that Equation (8) yields the same expected
value of the global model as Equation (3), satisfying the
unbiasedness assumption. As a result, after grouping clients
according to the above construction, the global model has a
guarantee of convergence in federated learning.

Algorithm 1 Client Grouping
Input: n: number of clients, m: number of client groups,
r: current iteration round, ru: iteration round scheduled for
updating client grouping results, {ei|i = 1, ..., n}: client local
computational efficiency set
Output: {qrui,k|i = 1, ..., n; k = 1, ...,m}:
probability that a client belongs to each client
group

1: if r%ru == 0 then
2: define k = 1
3: define count = 0

4: define M =
n∑

i=1

ei

5: for i = 1 to n do
6: count = count+mei
7: count = Mαi + βi

8: if αi > k then
9: (qrui,k)

′ = M − βi−1

10: ∀l ≥ k + 1s.t.(αi − 1)− l ≥ 0, (qrui,k)
′ = M

11: end if
12: (qrui,αi

)′ = βi

13: k = αi

14: end for
15: return {qrui,k =

(qrui,k)
′

M |i = 1, ..., n; k = 1, ...,m}
16: end if

C. Algorithm Design and Complexity Analysis

Two algorithms are utilized by FedGLCE, including Client
Grouping algorithm and Local Computational Efficiency Up-
date algorithm. We give the detailed design process and
complexity analysis of these two algorithms.

The client grouping takes the current iteration round r and
clients’ local computational efficiency {ei|i = 1, ..., n} as
inputs. Then build a set of polynomial distributions for each
client group, and output the probability {qri,k|i = 1, ..., n; k =
1, ...,m} that a client belongs to each polynomial distribution
(client group). Algorithm 1 gives the detailed steps.

Because each step in the building of the polynomial distri-
bution set {Dr

k}mk=1 necessitates an action on the client local
computational efficiency or polynomial distribution, of which
the complexity is O(n+m). Since grouping makes sense only
when the number of client groups m is fewer than the number
of clients n, the overall complexity of the Client Grouping
algorithm is O(n+m) = O(n).

The Local Computational Efficiency Update algorithm is
employed to update the local computational efficiency of
selected clients in federated training. Specifically, during the
initialization phase, the local computational efficiency of all
clients is unknown, and Algorithm 2 initializes their local
computational efficiency using clients’ local data quantity. At
the end of the local training phase, the local computational
efficiency of clients participating training is updated. In sum-
mary, Algorithm 2 receives as input the number of client local
data and the subset of clients participating in training for that
iteration round, and outputs the current descending sequence

Algorithm 2 Local Computational Efficiency Update
Input: r: current iteration round, {|di| |i = 1, ..., n}: number
of local data on each client, Sr: subset of clients involved in
training in iteration round r
Output: {ei|i = 1, ..., n}: Local computational efficiency set
of each client

1: define E = {ei = 0|i = 1, ..., n}
2: if r == 1 then
3: for i = 1 to n do
4: ei = di
5: end for
6: else
7: Sr = ClientGrouping(E)
8: {tri′ |ci′ ∈ Sr} = Train()
9: for ci′ in Sr do

10: ei′ = |di′ | /tri′
11: end for
12: Descend(E)
13: end if
14: return E = {ei|i = 1, ..., n}

TABLE II
KEY PERFORMANCE PARAMETERS IN FEDERATED LEARNING

Parameter Server
CPU AMD Ryzen5-3600@1.8GHz 12 cores
GPU NVIDIA GeForce RTX 2060 CUDA 1920 cores
RAM 16GB

Client
Type computational Resources RAM Number

Raspberry Pi 3B+ Cortex-A53@1.4GHz CPU×1 1GB 5
Nvidia Jetson Nano Maxwell CUDA 128 cores GPU×1 4GB 10

0.8 CPU Docker Ryzen5-3600@1.8GHz CPU×0.8 3GB 15
1.6 CPU Docker Ryzen5-3600@1.8GHz CPU×1.6 3GB 15
2.4 CPU Docker Ryzen5-3600@1.8GHz CPU×2.4 3GB 10
3.2 CPU Docker Ryzen5-3600@1.8GHz CPU×3.2 3GB 10
4.0 CPU Docker Ryzen5-3600@1.8GHz CPU×4.0 3GB 10
4.8 CPU Docker Ryzen5-3600@1.8GHz CPU×4.8 3GB 10
5.6 CPU Docker Ryzen5-3600@1.8GHz CPU×5.6 3GB 10

Nvidia Jetson TX2 Pascal CUDA 256 cores GPU×1 8GB 5

of client local computation efficiency, thus providing input to
Algorithm 1. The detailed steps are shown in Algorithm 2.

For Algorithm 2, the startup phase requires traversal of
the client set {ci|i = 1, ..., n}, with complexity O(n). In
the training phase, after client grouping is completed, one
client from each group is selected to participate in the iterative
round of local training, i.e. |Sr| = m, with complexity O(m).
Besides, because the complexity of the descending order for
the local computational efficiency E = {ei|i = 1, ..., n}
is O(n log(n)), the overall complexity of Algorithm 2 is
O(n log(n)).

Fig. 4. The generation of MNIST-Fed dataset

V. EXPERIMENTS
A. Experiment Settings

1) Federated learning environment: In this paper, a feder-
ated learning framework with one central server and n = 100
clients is created to simulate the real mobile edge environment.
We also adopt docker containers to virtualize server resources
and increase the sorts of clients. Specifically, the central server
in this federated learning framework is a workstation with
GPU, and clients consist of 5 Raspberry Pi 3B+, 10 Nvidia
Jetson Nano, 5 Nvidia Jetson TX2, as well as 80 docker
containers with computational power ranging from 0.8 to 5.6
core CPUs. The exact parameters are listed in Table 2.

The clients and server are both on the same LAN and
communicate each other via the PySyft’s WebSocket pro-
tocol. Since this paper is concerned with the difference in
computational power of clients, to shield the influence of
communication conditions, clients are trained in a serial
manner to complete the federated learning.

2) Federated datasets and models: The MNIST-Fed and
CIFAR-10-Fed datasets are created using a set of 100 clients
and the MNIST and CIFAR-10 public datasets. In MNIST-
Fed, as shown in Fig. 4, 100 clients are sorted into 10 groups
(matching to the 10 categories), and each group is given the
same data category, with 500 training examples and 100 test
samples for each client. The dirichlet distribution Dir(α) is
employed to generate a cross-category CIFAR-10-Fed dataset
for 100 clients, where α ∈ [0,+∞) reflects the degree of
heterogeneity of CIFAR-10-Fed. As α has a larger value, it
indicates a more consistent data distribution among clients and
α = 0 indicates that a client is assigned to only one category
of data. Fig. 5 and Fig. 6 show data distributions with different
α in CIFAR-10-Fed dataset. The 10, 30, 30, 20, and 10 clients
in federated learning, respectively, hold 100, 250, 500, 750,
and 1000 training samples and 20, 50, 100, 150, and 200 test
samples.

The CNN model is chosen as the experimental model
for the MNIST-Fed dataset. Two convolutional layers, two

Fig. 5. The percentage of local data belonging to categories for 100 clients
in CIFAR-10-Fed dataset

Fig. 6. The distribution of samples in each category in CIFAR-10-Fed dataset

maximum pooling layers, and two fully connected layers make
up the model. Another CNN model, which consists of three
convolutional layers with Dropout, two maximum pooling
layers, and two fully connected layers, is also utilized as the
experimental model for the CIFAR-10-Fed dataset.

3) Baselines and parameter settings: FedAvg [7] and
FedDrop [14] are chosen as the experimental baselines. In
addition, FedGLCE is compared against FedSS [9], a client
grouping method based on the number of local data, and TiFL
[19], a client grouping method based on the local training time.

Set the iteration round R = 200, batch size batch size =
20, learning rate lr = 0.1, and number of clients n = 100
in the MNIST-Fed dataset experiments. In the CIFAR-10-Fed
dataset experiments, change R = 300 and lr = 0.05, while
other parameters remain the same.

B. Analysis of Hyperparameter Selection for FedGLCE

FedGLCE’s hyperparameter ru indicates that the result of
client grouping is updated after each ru iteration rounds, and
m indicates that clients are separated into m client groups. ru
impacts the process times of client grouping, thus affecting
the degree to which the grouping results reflect clients’ real
computational capacity. Because one client from each group
must be chosen for local training after grouping, m influences
the number of clients who participate in local training in
iterative rounds. As a result, we must select suitable ru and
m for following experiments. The experimental outcomes are
presented in Tables 3 to 6.

TABLE III
EXPERIMENTAL RESULTS OF FEDGLCE IN DIFFERENT GROUP UPDATE

PERIODS (MNIST-FED, 5 GROUPS)

Group update
period ru

Variance of
participation

Variance of
local accuracy

Accuracy of
global test

5 19.54 262,48 81.82%
10 17.92 61.41 86.99%
20 16.54 37.47 91.14%
50 11.76 80.41 90.74%

The following analysis can be made by comparing the
experimental data in Tables 3 to 6,

• Under different data heterogeneity conditions, the period
ru of FedGLCE for updating groups has varying degrees
of influence on the performance indexes. Specifically, a
larger ru should be taken under high data heterogeneity
conditions while a smaller ru should be taken under low
data heterogeneity conditions.

• Different ru values of FedGLCE have a greater impact
on the variance of participation and local accuracy,
indicating that ru does affect FedGLCE in balancing the
differences of client participation and local performance
of the global model. However, ru has little impact on
global test accuracy.

• The variance of participation, the variance of local ac-
curacy, and the accuracy of global test are all affected
by the number of groups m used in FedGLCE. In
particular, when it comes to the variance of participation,
m fundamentally fails to affect the number of clients
who attend local training. In terms of local accuracy
variance, the global model with groups m = 10 has the
largest value among clients, and the grouping results are
closest to the true distribution of client computational
capacity. When the data heterogeneity is high, the setting
of m = 5 and m = 10 can effectively improve the
global test accuracy. However, the global test accuracy
is not statistically different from the above setting when
the data heterogeneity is low. This is mostly due to
FedGLCE’s ability to select a larger number of clients
for training, reducing the detrimental impact of high data
heterogeneity on global test accuracy.

Through the above experiments and analysis of hyperpa-
rameter selection, considering the existence of data hetero-
geneity in mobile edge environment, ru is determined as
20 and m is determined as 10, i.e., the client grouping is
re-performed every 20 iteration rounds, and 100 clients are
divided into 10 groups. This setup id applied in the following
comparison experiments.

C. Client Participation

Table 7 shows results of client participation variance on the
MNIST-Fed dataset and CIFAR-10-Fed datasets (α = 10,α =
0.1,α = 0.01) with varying degrees of data heterogeneity
under the above hyperparameter settings for five approaches,
i.e. FedAvg, FedDrop, TiFL, FedSS, and FedGLCE.

TABLE IV
EXPERIMENTAL RESULTS OF FEDGLCE IN DIFFERENT GROUP UPDATE

PERIODS (MNIST-FED, 10 GROUPS)

Group update
period ru

Variance of
participation

Variance of
local accuracy

Accuracy of
global test

5 60.00 24.81 94.93%
10 58.40 24.93 95.08%
20 53.94 19.71 94.51%
50 43.42 16.36 95.46%

As shown in Table 7, the variance of client participation for
FedGLCE surpasses FedAvg, FedDrop, and FedSS by roughly
16.1%, 74.3%, and 31.2%, respectively, for the MNIST-
Fed dataset experiments, but is poorer than TiFL. Because
FedSS based on the sample number is incapable of effectively
grouping clients, the client selection strategy devolves from
random selection within each group to random selection across
all clients, with a selection effect comparable to FedAvg.
FedGLCE proposed in this paper utilizes the number of data
and local computational efficiency, which is related to training
time, for client grouping, therefore, the client participation
variance is better than FedSS, but is worse than TiFL because
FedGLCE adopts the local data quantity to initialize the local
computational efficiency.

Table 7 also shows the experimental performance of the
aforementioned five approaches on the CIFAR-10-Fed dataset
with varying degrees of data heterogeneity in columns 4-
6. FedGLCE offers the best variance of client participation
among five methods under three data heterogeneity settings.
When α = 10, in addition to the increase in dataset com-
plexity, the number of client local data differs, and thus all
results show a significant rise in client participation variance.
TiFL, which only considers training time for grouping, cannot
distinguish between clients with different data amounts and
thus has poor experimental results. Whereas FedSS, which is
based on sample number for grouping, has better experimental
results but is slightly inferior to FedGLCE because the local
training time is not considered and the grouping results are
static. Furthermore, FedDrop performs the poorest in terms
of client participation variance, reflecting huge disparities in
the number of local training by clients. The variance of client
participation for the same approach in α = 0.1 and α = 0.01
settings is not large, owing to the fact that increasing data
heterogeneity has little effect on the results of client grouping
based on system heterogeneity.

D. Local Test Accuracy

The local test accuracy variance of FedGLCE exceeds
FedAvg, FedDrop, and FedSS by roughly 17.9%, 15.5%, and
3.4%, respectively, for the MNIST-Fed dataset evaluation, as
shown in Table 8, but is poorer than TiFL. The experimental
results are generally consistent with the variation of client
participation, indicating that increasing the variance of client
participation is helpful for obtaining a global model with
more balanced local test accuracy. Because the MNIST dataset

TABLE V
EXPERIMENTAL RESULTS OF FEDGLCE IN DIFFERENT GROUP UPDATE PERIODS (CIFAR-10-FED, 5 GROUPS)

CIFAR-10-Fed(α = 10) CIFAR-10-Fed(α = 0.1) CIFAR-10-Fed(α = 0.01)
Group update

period ru
Var

(par)
Var

(local)
Acc

(global)
Var

(par)
Var

(local)
Acc

(global)
Var

(par)
Var

(local)
Acc

(global)
5 249.92 35.80 71.40% 264.68 109.23 62.77% 267.72 526.39 48.56%
10 262.56 38.94 70.79% 259.04 144.64 62.19% 250.56 406.60 49.75%
20 265.04 38.59 69.84% 255.08 125.86 63.47% 269.62 405.93 50.87%
50 270.86 44.25 69.83% 237.14 96.54 63.36% 241.34 387.73 50.38%

TABLE VI
EXPERIMENTAL RESULTS OF FEDGLCE IN DIFFERENT GROUP UPDATE PERIODS (CIFAR-10-FED, 10 GROUPS)

CIFAR-10-Fed(α = 10) CIFAR-10-Fed(α = 0.1) CIFAR-10-Fed(α = 0.01)
Group update

period ru
Var

(par)
Var

(local)
Acc

(global)
Var

(par)
Var

(local)
Acc

(global)
Var

(par)
Var

(local)
Acc

(global)
5 1096.90 29.94 71.12% 1172.14 137.26 64.38% 1196.06 385.10 53.05%

10 1126.62 36.00 70.54% 1133.98 103.86 65.32% 1168.56 321.12 53.04%
20 1134.32 35.29 71.02% 1022.92 94.08 65.44% 1116.88 373.48 53.72%
50 1165.22 41.05 70.94% 1115.62 113.21 65.10% 1094.64 353.47 53.77%

TABLE VII
EXPERIMENTAL RESULTS OF CLIENT PARTICIPATION DIFFERENCES FOR

CLIENT GROUPING APPROACHES

Dataset
CIFAR-10-Fed

Comparison
approaches

Evaluation
metrics MNIST-Fed

Dir(10) Dir(0.1) Dir(0.01)
FedAvg 64.30 1323.4 1326.86 1322.5
FedDrop 210.02 1887.22 1900.14 1818.46

TiFL 17.02 1537.14 1527.5 1547.14
FedSS 78.36 1258.06 1259.86 1252.56

FedGLCE

V ar(Fre)

53.94 1134.52 1022.92 1094.64

is simple, the local test accuracy variance of the above
approaches cannot differ much.

Table 8 also shows the experimental performance of the
above five approaches on the CIFAR-10-Fed dataset with
varying degrees of data heterogeneity in columns 4-6. In the
high data heterogeneity situation, FedGLCE has the best local
test accuracy variance for the three data heterogeneity settings
(α = 0.1, α = 0.01). TiFL, which simply considers training
time for grouping, has the worst experimental performance
for α = 10. With increased data heterogeneity in α = 0.1
and α = 0.01, there is a significant increase in the local test
accuracy variance of the same approach, despite the trend in
the variance of client participation, which is primarily due
to differences in learning performance among clients with
different data distributions. Under high data heterogeneity,
FedGLCE can better discriminate between clients and hence
provide a more uniform local test accuracy distribution. Fur-
thermore, the local test accuracy variance of FedDrop is much
larger than that of FedGLCE under high data heterogeneity,
confirming our research motivation of this work, which is to
balance the local performance variance of the global model
among clients by ensuring client participation in a mobile edge
environment.

TABLE VIII
EXPERIMENTAL RESULTS OF LOCAL TEST ACCURACY DIFFERENCES FOR

CLIENT GROUPING APPROACHES

Dataset
CIFAR-10-Fed

Comparison
approaches

Evaluation
metrics MNIST-Fed

Dir(10) Dir(0.1) Dir(0.01)
FedAvg 24.02 34.29 116.28 406.91
FedDrop 23.33 37.74 97.80 549.22

TiFL 15.77 38.79 132.16 408.10
FedSS 20.40 37.56 95.10 520.88

FedGLCE

V ar(Acc)

19.71 35.29 94.08 373.48

E. Total Hours of Federated Training

As can be seen in Fig. 7, the overall distribution of the total
training time for five approaches remains constant for different
datasets as well as data heterogeneity settings. FedAvg, which
randomly selects clients for training, has a more balanced
total training time among five approaches, whereas FedDrop,
which directly discards some clients, achieves the shortest
training time in all settings. FedGLCE, which considers local
computational efficiency, has the shortest total training time
of the three grouping methods. Because FedGLCE takes into
account a variety of computationally efficient clients, while
both FedSS and TiFL obtain a subset of participating clients
with a high proportion of slow clients.

F. Simulation Summary

The above experimental results show that FedGLCE can
balance the participation of clients in the local federated train-
ing through the dynamic client grouping approach based on
local computing efficiency under the premise of ensuring the
local test accuracy. Besides, performance biases of the global
model on clients are improved. Furthermore, FedGLCE also
reduces the total training time of clients in federated learning
compared with state-of-the-art client grouping approaches.

Fig. 7. Experimental results of total federated learning training hours for
different client grouping approaches

VI. CONCLUSIONS

With the storage and computing power of mobile edge
devices grows, it becomes possible to train mobile edge
devices using federated learning. To reduce the computational
and communication overhead incurred in federated training,
client grouping approaches have proven to be an effective
way. However, the global model trained by extant methods
show performance biases among clients, mainly because com-
putationally weak clients are often not selected for training.
To ensure that clients are not discarded while balancing the
participation of clients in local training, this paper proposes a
Federated Learning Clients Dynamic Grouping Method based
on Local Computational Efficiency (FedGLCE). The latest
local training time of clients is used for the periodic updating
process of client grouping. The experimental results show that
FedGLCE outperforms FedAvg, FedDrop, TiFL and FedSS
by about 1.30 times, 1.86 times, 1.49 times and 1.23 times in
client participation variance, and surpasses FedAvg, FedDrop,
TiFL and FedSS by about 1.24 times, 1.04 times, 1.40 times
and 1.01 times in local test accuracy variance, respectively,
balancing the performance bias of the global model among
clients.

VII. ACKNOWLEDGEMENT

This work is supported by The National Natural Science
Foundation of China (No. 61902110, 61832005), Postgrad-
uate Research & Practice Innovation Program of Jiangsu
Province (No. KYCX22 0610), Key Research and Develop-
ment Project of Jiangsu Province (No. BE2020729), Science
Technology Achievement Transformation of Jiangsu Province
(No. BA2021002), Key Technology Project of China Huaneng
Group (No.HNKJ19-H12, HNKJ20-H64).

REFERENCES

[1] G. R. Sreekanth, S. Ahmed, M. Sarac, I. Strumberger, N. Bacanin, and
M. Zivkovic, ”Mobile fog computing by using SDN/NFV on 5G edge
nodes,” Computer Systems: Science & Engineering, vol. 41, no. 2, pp.
751-765, Feb. 2022.

[2] X. Chu, H. Jiang, B. Li, D. Wang, and W. Wang, ”Editorial: Advances in
mobile, edge and cloud computing,” Mobile Networks and Applications,
vol. 27, no. 1, pp. 219-221, Jan. 2022.

[3] K. Wei, J. Li, M. Ding, C. Ma, H. Yang, F. Farokhi, S. Jin, T. Quek,
and H. Poor, ” Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454-3469, Apr. 2020.

[4] A. Nayyar, B. Nguyen, and N. Nguyen, ”The Internet of drone things
(IoDT): Future envision of smart drones,” in First international con-
ference on sustainable technologies for computational intelligence, pp.
563-580, Nov. 2019.

[5] C. Hu, R. Lu, and D. Wang, ”FEVA: A federated video analytics
architecture for networked smart cameras,” IEEE Network, vol. 35, no.
6, pp. 163-170, Jun. 2021.

[6] T. Koutny, and M. Ubl, ”Parallel software architecture for the next
generation of glucose monitoring,” Procedia Computer Science, vol.
141, pp. 279-286, 2018.

[7] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas,
”Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, pp. 1273-1282, Apr. 2017.

[8] T. Huang, W. Lin, W. Wu, L. He, K. Li, and A. Zomaya, ”An Efficiency-
boosting client selection scheme for federated learning with fairness
guarantee,” IEEE Transactions on Parallel and Distributed Systems, vol.
32, no. 7, pp. 1552-1564, Jul. 2021.

[9] Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi, ”Clustered sampling:
Low-variance and improved representativity for clients selection in
federated learning,” in International Conference on Machine Learning,
pp. 3407-3416, Jul. 2021.

[10] J. Hong, Z. Zhu, S. Yu, Z. Wang, H. Dodge, and J. Zhou, ”Fed-
erated adversarial debiasing for fair and transferable representations,”
in Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery Data Mining, pp. 617-627, Aug. 2021.

[11] J. Lu, H. Liu, Z. Zhang, J. Wang, S. K. Goudos, and S. Wan, ”Toward
fairness-aware time-sensitive asynchronous federated learning for criti-
cal energy infrastructure,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 5, pp. 3462-3472, May. 2022.

[12] S. Horvath, S. Laskaridis, M. Almeida, I. Leontiadis, S. Venieris, and
N. Lane, “Fjord: Fair and accurate federated learning under heteoge-
neous targets with ordered dropout,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[13] T. Li, A. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
”Federated optimization in heterogeneous networks,” in Proceedings of
Machine Learning and Systems, pp. 429-450, Mar. 2020.

[14] K. Bonawitz, H. Eichner, and W. Grieskamp, ”Towards federated
learning at scale: System design,” in Proceedings of Machine Learning
and Systems, pp. 374-388, Apr. 2019.

[15] S. Baghersalimi, T. Teijeiro, D. Atienza, and A. Aminifar, ”Personalized
real-time federated learning for epileptic seizure detection,” IEEE Jour-
nal of Biomedical and Health Informatics, vol. 26, no. 2, pp. 898-909,
Feb. 2022.

[16] Y. Zhou, Y. Fu, Z. Luo, M. Hu, D. Wu, Q. Z. Sheng, and S. Yu, ”The role
of communication time in the convergence of federated edge learning,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 3, pp. 3241-
3254, Mar. 2022.

[17] C. Nadiger, A. Kumar, and S. Abdelhak, ”Federated reinforcement
learning for fast personalization,” in IEEE Second International Con-
ference on Artificial Intelligence and Knowledge Engineering (AIKE),
pp. 123-127, Jun. 2019.

[18] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, ”Robust federated
learning in a heterogeneous environment,” CoRR, vol. abs/1906.06629,
2019.

[19] Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y.
Zhou, H. Ludwig, F. Yan, and Y. Cheng, ”Tifl: A Tier-based Federated
Learning System,” in Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing, pp. 125-136,
Jun. 2020.

[20] X. Xu, S. Duan, J. Zhang, J. Zhang, Y. Luo, and D. Zhang, ”Opti-
mizing Federated Learning on Device Heterogeneity with A Sampling
Strategy,” in 29th IEEE/ACM International Symposium on Quality of
Service, pp. 1-10, Jun. 2021.

[21] S. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. Suresh,
”SCAFFOLD:Stochastic Controlled Averaging for Federated Learning,”
in ICML, pp. 5132-5143, Jul. 2020.

