
Vol.:(0123456789)1 3

CCF Transactions on Pervasive Computing and Interaction (2021) 3:129–146
https://doi.org/10.1007/s42486-021-00066-2

REGULAR PAPER

Dual‑label aware service replacement for interaction quality
improvement in heterogeneous MEC system

Xin Li1  · Meiyan Teng1 · Jie Wu2 · Xiaolin Qin1

Received: 1 December 2020 / Accepted: 1 April 2021 / Published online: 1 June 2021
© China Computer Federation (CCF) 2021

Abstract
Interaction quality is an important factor for service provision to achieve better user experience. Mobile Edge Computing
(MEC) is a promising paradigm to improve interaction quality by supporting near data computing at the edges. However,
the limited resources at the edge nodes make it hard to response various services simultaneously, while the service load
changes over time. Hence, it is important and challengeable to utilize the limited edge resources to host various service and
reduce service response time to improve interaction quality. In this paper, we investigate the service replacement problem
to adjust the edge resource utilization dynamically and then reduce the service response time. We first propose a priority
placement (2P) algorithm to place the services among the edges by taking account the service priority, which indicates
the influence for response time reduction. Then, we propose a dual-label aware service replacement (D-LASR) algorithm
to achieve dynamic service placement to fit the service load variation. The replacement strategy works based on the delay
sensitivity label and the load gradient label, which represent the features how the service location and service load affect the
service response time. We conduct extensive simulations and the experimental results show that the D-LASR algorithm can
reduce the average service response time by 40–60%, which indicates that the D-LASR algorithm has better performance
in improving interaction quality for service provision in MEC system.

Keywords  Heterogeneity · MEC · Service replacement · Interaction quality

1  Introduction

As the Internet of Things (IoT) technology matures and
develops steadily, the Internet of Everything is rising. In
the near future, the number of IoT application devices will
reach tens of billions (Yu et al. 2019). Furthermore, delay-
sensitive application devices that require real-time data pro-
cessing, e.g., augmented reality (AR) and aided driving, are
on the rise. The traditional cloud has been unable to meet the
low latency response requirements of IoT applications (Shi
et al. 2016).

Mobile edge computing (MEC), which offloads the
cloud resources to the edge of the network, has drawn
more and more attention (Li and Wang 2018). The MEC

system reduces the response latency by reducing the dis-
tance between the requester and the server. The edge server
can achieve real-time analysis, computing and send data that
needs to be processed centrally to the cloud server. Edge
computing is not completely replacing the cloud computing
paradigm (Reiter et al. 2017), which merely adds another
layer of computing between the users and the cloud. The
edge layer exists not only reduces the burden on the cloud
server, but also improves the user service experience.

It is predicted that there will be 54 million driverless
cars in the world by 2035 (Perera et al. 2017). Cameras
on vehicles for aided driving can generate approximately
1GB of data on road conditions per second (De Cristofaro
and Soriente 2013), even the 5GB data will be produced by
boeing 787 in a second (Taleb et al. 2017). For such data-
intensive applications, the service requests not only impose
strict demands on latency, but also consume a large amount
of resources. Although the MEC system has relieved the
bandwidth pressure in network transmission and reduced
the response delay time of services, the resources (comput-
ing and storage, etc) capacity of edge service are limited

 *	 Xin Li
	 lics@nuaa.edu.cn

1	 CCST, Nanjing University of Aeronautics and Astronautics,
Nanjing, China

2	 Center forNetworked Computing, Temple University,
Philadelphia, USA

http://orcid.org/0000-0002-1450-9241
http://crossmark.crossref.org/dialog/?doi=10.1007/s42486-021-00066-2&domain=pdf

130	 X. Li et al.

1 3

compared with those of the cloud. The insufficient resources
of edge nodes will cause numberous applications services to
be unresponded, thus reducing the user experience, as shown
in Fig. 1. In order to make full use of edge node resources,
more and more researches focus on service placement prob-
lem, which makes a trade-off between the cloud and the edge
nodes to achieve the goal of minimizing response time.

In addition, diverse services have different requirements
for response time. In life, services such as intelligent navi-
gation and driverless cars have higher requirements for
response time and need to provide accurate response results
in a very short time. For intelligent navigation services, too
long response time will reduce the quality of user experi-
ence. However, for driverless services, if the response time is
too long, which will not only reduce the quality of user expe-
rience, but also cause personal safety issues for users. On the
contrary, some services require relatively low response time,
such as browsing the web and intelligent retrieval. For this
type of service, when the edge node resources are limited, it
can be placed in the cloud center to respond. Therefore, how
to place services to ensure that highly sensitive services are
placed on the local edge is also an urgent problem.

Due to the emergence of user mobility, the load of the
service will be unevenly distributed over time. For example,
the number of users in living and business regions is lower
than that in office region on weekdays. Therefore, there are
more requests for various kinds of services within the scope
of the office region is more than those in the other regions. In
other time periods, the distribution of users and the requests
for services will adjust again. This example demonstrates
that, in order to optimize the user experience of MEC, the
resources required by the service for mobile users should be
dynamically redistributed between edge nodes to adapt to
changes in service load.

In this paper, we research a services replacement problem
for interaction quality improvement in a heterogeneous MEC

system, as shown in Fig. 2. In MEC system, the resources of
cloud is sufficient to place all services, but the edge nodes
has insufficient resources. The heterogeneity of MEC means
that:

•	 the resource capacity of the edge nodes is difference;
•	 the services requirements in the system are discrepant;
•	 the network conditions are heterogeneous.

The MEC system is also interactive, which implies that:

•	 the requests can be responded on the cloud or the edge
servers, e.g., the base station (BS) (Qiu 2019), etc.

•	 the edge nodes can communicate with each other, which
will cause communication delay.

In this heterogeneous MEC interactive system, we studied
the dynamic services replacement problem to improve the
interaction quality. We divide the problem into two stages.
First of all, we obtain the load of the service in the initial
state through prediction, and study a static service place-
ment strategy. Based on the static placement strategy of the
initial state, the dynamic replacement strategy is studied in
the subsequent stage according to the double label of the
service load variation and the service sensitivity attribute.

In the initial state, we measure the value of nodes to a ser-
vice placement problem based on the load distribution. The
resources of nodes whose coverage contain many service
requestes are limited, so that those nodes have higher value
in improving the quality of service. When the request can-
not be responded to at the local node due to node resource
constraints, the request will be scheduled to another node to
response. In response to this situation, we combine the load
distribution and the network condition to difined the node
priority. In addition, it is also a problem to determine the
order of services placement. Therefore, we set service priori-
ties on acccount of the heterogeneous attributes of services.

Fig. 1   Overview of cloud-edge in IoT environment
Fig. 2   System model

131Dual‑label aware service replacement for interaction quality improvement in heterogeneous…

1 3

Then, we propose a priority placement (2P) algorithm to
obtain a placement strategy with lower system latency.

In the subsequent state, we set the delay sensitivity label
for the service according to the upper limit of the service
response time. Then, we define a load gradient label for the
service according to the variation of the load in the adjacent
time period. Based on the dual label of delay sensitivity and
load gradient, we determine the service resource redistri-
bution strategy. Through experiments, we get the mapping
relationship between load and response time under different
resource conditions, which determines the granularity of
service resource reallocation. We finally propose a service
replacement algorithm based on dual labels.

The main contributions are summarized as follows:

1.	 We research the characteristics of the MEC model. And,
in view of the heterogeneity and dynamics of system
characteristics, we present the service replacement prob-
lem to improve the quality of service. We introduce the
related work and prove the difficulty of this problem.

2.	 We propose a priority placement (2P) algorithm to
achieve static services placement in the initial state. The
core technology of 2P algorithm is to measure the con-
tribution of nodes and services in improving the quality
of services based on the uneven load distribution, which
determines the order of service placement.

3.	 We propose dual-label aware service replacement
(D-LASR) algorithm to achieve dynamic service place-
ment in the subsequent state. Based on the delay sensi-
tivity label and the load gradient label, we classify ser-
vices and implements different replacement strategies
according to the category. We construct the mapping
relationship between the load and the response time that
determined the redistribution granularity.

4.	 We perform performance evaluations via simulation
experiment. And we prove that the proposed algorithm
has greater performance in proving the quality of ser-
vices.

The remainder of this article is organized as follows. Sec-
tion 2 overviews the related work on service replacement.
Then, we introduce the system model and expound the ser-
vice replacement problem in Sect. 3, and propose our service
replacement strategy in Sect. 4. Next, we evaluate the per-
formance of our algorithm in Sect. 5. Finally, we conclude
the remarks in Sect. 6.

2 � Related work

In recent years, the service replacement problem has
attracted a lot of researches. More and more reseach results
have emerged. In those researches, the most simplest method

is that the services are placed on the local server, and the
literature (Ha et al. 2015) demonstrates the effectiveness
of this method. On the one hand, if the node resources are
abundant, this method will minimize the response delay. On
the other hand, if the resources are insufficient, most services
will not be responsed on edge servers. In a comprehensive
perspective, this method is not optimal.

The random rouding method is adopt in literature (Pou-
larakis et al. 2019) to solve studies service placement prob-
lem under the scenario of overlapping node coverage. The
authors in Wang et al. (2017) and Wang et al. (2018) neglect
the limitations of the node resouce (computing resource,
storage resource, and transmission bandwidth). Therefore,
this strategy cannot achieve the best service response qual-
ity under the condition that the resource constraints. In our
research, the coverage area of edge nodes is nonoverlapping
and the resource of those is limited.

In MEC system, the node resources are not only limited,
but also heterogeneous. But in literature (Xu et al. 2018), the
authors prorose a service placement method through weigh-
ing the delay and cost under considering node isomorphism.
The authors of paper (He et al. 2018) adopt greedy strategy
and improve the system performance under the isomorphic
environment. We research a MEC system including the dif-
ference of service requirements and the heterogeneity of
node performance.

Literature (Pasteris et al. 2019) defines the reward based
on the service quality, and divides node resources to select
the service with the largest deployment reward. One disad-
vantage of this strategy is that multiple replicas of the same
service are placed on the same node. And frequent place-
ment operations consume a lot of power. The method of
paper (Farhadi et al. 2019) is the linear programming, which
jointly consider placement strategy and scheduling policy.
But this research do not consider the condition of uneven
service load distribution, which will cause a great impact
on the service quality.

Due to the emergence of user mobility, service placement
needs to be dynamically adjusted. For example, paper (Li
et al. 2014) studied a migration decision according to the
shortest path principle in Vehicle Ad-Hoc Networks. Simi-
larly, the authors (Ksentini et al. 2014) use Markov Decision
Processes to denote service migration problem and approxi-
mate the optimal solution based on Follow-Me Cloud and
Mobile Micro-Clouds respectively. However, this study is
merely limited on the single service and single user.

At present, most of the current work uses heuristic meth-
ods, such as the genetic algorithm (Islam et al. 2016), greedy
method (Zhang et al. 2015), the regularization and round-
ing method (Lingjun et al. 2018). The work in Zhang et al.
(2015) exploits the regularization technique to transform
the optimization problem into a sequence of regularized
sub-problems, then adopts the greedy strategy for request

132	 X. Li et al.

1 3

redirection. And the authors in Hu et al. (2017) aim to bal-
ance the network delay and service load, solving the ser-
vices placement problem in MEC.They formulated the
service allocation problem and farther proposed a dynamic
service allocation algorithm based on Pareto-based optimal
k-Medoids to find an approximate optimal service allocation
policy. Those works did not allocate resources according to
different categories of service delay sensitivity attributes.

In our paper, we divide the service replacement problem
into two stages. We reference previous work (Teng 2020)
and define the priority of nodes and services based on the
heterogeneous characteristics of nodes and services, then
we propose a priority placement (2P) algorithm in the initial
state. We also propose dual-label aware service replacement
(D-LASR) algorithm to achieve dynamic service replace-
ment in the subsequent states according to load variation
and service sensitivity.

3 � Problem statement

We concentrate on studying service dynamic replacement
problem in a heterogeneous MEC architecture that is shown
in Fig. 2. This system contains multiple edge server (node)
and a centralized cloud. The cloud has sufficient storage
resources to place abundant services and adequate comput-
ing resources that results in faster computing speed. How-
ever, the comumunication delay is too long due to the data
source being farther from the cloud center and the network
bandwidth limitation Therefore, the data-intensive and delay
insensitive services are suitable to be placed on cloud. Fur-
thermore, the edge nodes are close to data source. Therefore,
if the services are responsed on edge nodes, it will produce
lower delay time. However, the resources of edge nodes are
limited. It is befitting to place delay sensitive services with
low resource requirements on edge nodes.

The MEC system we studied is a heterogeneous inter-
active system. Services can communicate with each other
between nodes or with remote clouds, but the network band-
width conditions between nodes and the nodes resources are
different. In this paper, the node set is signed by N(n ∈ N) ,
and the cloud is represented by cloud. The resource capacity
of node is represented by the vector RN , the distance between
nodes is indicated by matrix DN×N , and the bandwidth condi-
tion is expressed by matrix WN×N . The matrices D and W are
both symmetric. Each node n ∈ N has a unique performance,
as shown

•	 Rn means the resource capacity of node n;
•	 Dnm expresses the distance between the node n and the

node m;
•	 Wnm represents the bandwidth condition between node n

and node m;

•	 Wcn
 represents the bandwidth condition between node n

and cloud.

In addition, each service also has its own unique charac-
teristics. The service set is S(s ∈ S ), and the data volume
of the service is the vector das . Each service has different
response time requirements. Services with high latency sen-
sitivity need to be responded in a short time. Otherwise,
the quality of service will be reduced. On the contrary, the
long response time of the service with low delay sensitivity
has less impact on its quality. In this paper, the vector sens
represents the delay sensitivity of the service, and the vector
uls represents the upper limit of the service response time.
Moreover, the Cartesian product of service set and node set
in the system is M = N × S(< n, s >∈ M, n ∈ N, s ∈ S).

In our paper, the services response time Tt⟨M,N⟩ includes
calculation time CtM and transmission delay It⟨M,N⟩ , as shown
in Eq. 1 The calculation time CtM is depends on the ser-
vice type and the capacity of service load, which will be
described in Sect. 3.1 The relationship among the transmis-
sion delay ItM , the amount of service data das , the node dis-
tance D and the bandwidth condition W is defined as shown
in Eq. 2 Since the matrices D and W are both symmetric, for
the same service s, there is It<<s,n>,m> = It<<s,m>,n>.

In a heterogeneous MEC environment, the load of services
will change over time. Based on this feature, we study ser-
vice dynamic replacement strategies. Firstly, we construct a
time-slotted model (as shown in Fig. 3). The time model can
be regarded as a simple sampling version of the traditional
time model, and sampling is performed in the same time
interval. The load distribution matrix in the time slot t is
defined as Lt(M) . In a time slot, the load of the service fluctu-
ates slightly, so we set the load Lt(M) as the maximum value
of the load in this slot, which remains fixed during same slot.
However, the fluctuation range of the load from one slot to

(1)Tt⟨M,N⟩ =CtM + It⟨M,N⟩

(2)It⟨<s,n>,m⟩ =

�
Dnm

Wnm

× das, n ≠ m

0, n = m

Fig. 3   Time slot

133Dual‑label aware service replacement for interaction quality improvement in heterogeneous…

1 3

the next is uncertain. We use �Lt(M) = Lt(M) − L(t−1)(M)
to represent the load variation at time slot t. In the case of
certain resource conditions, the increase in service load will
reduce the response time of the service. In order to avoid
a decrease in the quality of services in the system due to
increased load, we need to dynamically adjust the amount
of resources obtained by the service. Next, we get the map-
ping relationship between response time and load through
experimental tests.

3.1 � Service load profile

We place services on a real cluster server and use JMeter
to simulate different numbers of requests to access the ser-
vices at the same time. The experiment obtains the map-
ping relationship between service request response time
and load under different resource conditions, as shown in
Fig. 4. Figure 4a, b respectively count the load-time map-
ping of different types of services. We can receive from the
figure that under the same resource conditions, as the load
increases, the response time of service requests will also
increase. When the load of the service is constant, the more
resources allocated to the service, the lower the response
time of the request. But when the amount of resources is
infinite, it does not mean that the response time of the ser-
vice request can be infinitely small. Because each service
will have a response time lower limit dls , when the resource

is saturated, the response time of the request tends to be
stable and remains unchanged. In addition, from Fig. 4a, b,
we also obtain that the load-time mapping is a monotoni-
cally increasing function. Therefore, suppose the mapping
relationship between load and response time is:

In addition, in Fig. 4c, we compare the load-time mapping
of different service types under the same resource condi-
tions. From the Fig. 4c, we get that the load-time mapping
is related to the service type. From the above experimental
data, we can conclude that the calculation time of the service
CtM is determined by the load L, service type and resource
�M . Therefore, we can abstract the mapping relationship
among the four variables as follows:

where, the parameter ksens is determined by the service
type. In addition, the service type is related to the service
delay sensitivity sens and the variation of load. Next, we will
define the double label of the service from the two factors of
delay sensitivity and load variation.

(3)� → g(L)

(4)CtM → f
(
sens, g(L),𝜋

)
=

ksens ⋅ g(L)

𝜋M
,
(
CtM > dls

)

Fig. 4   The load-time mapping

(a) The Load-Time Mapping of service s1 (b) The Load-Time Mapping of service s2

(c) Set resource = 2

134	 X. Li et al.

1 3

3.2 � Service dual‑label feature

The first label is delay sensitivity. According to the upper
limit of service response time uls , we divide the system’s
services into two categories: high delay sensitivity and low
delay sensitivity. Set a threshold value Vs for the response
time of the service in the system, which is set to the maxi-
mum value of the transmission delay between the nodes
and the cloud in the system, as in Eq. If the upper limit of
the response time of the service is lower than the thresh-
old value, add a high-sensitive label to the service and set
sens = 0 . If the upper limit of the service response time is
not lower than the threshold value, add a low-sensitivity
label to the service and set sens = 1 . The symbol is defined
as shown in Eq. 6.

In Fig. 4c, suppose service s1 represents a low-sensitive ser-
vice, and the upper limit of response time is uls1 . Service s2
represents a high-sensitive service, and the upper limit of
response time is uls2 , then uls1 > uls2 . In the case of limited
resources and similar loads on s1 and s2 , the high-sensitive
service s2 is allocated priority.

The second layer of label is the load gradient. We divide
all services in the system into three categories: recycle,
maintenance, and allocation based on the variation of the
total load. The variation of the total load is measured by load
change rate �s , which is defined as follows:

The value of load gradient loas is −1, 0, 1 , corresponding to
three types of labels: recycle, maintenance, and allocation.
This article defines the load gradient �s by setting a thresh-
old, as follows:

The service delay sensitivity label sens and the load gra-
dient label loas jointly determine the resource replacement
method. Then the resource replacement granularity is jointly
determined by the load amount L and the response time
upper limit dls.

(5)Vs =max
n∈N

It⟨<s,n>,cloud⟩

(6)s sen =

{
0, uls < Vs

1, uls ≥ Vs

(7)�s =

∑�N�
n=0

�Lt(s, n)∑�N�
n=0

Lt(s, n)

(8)loas =

⎧⎪⎨⎪⎩

−1, 𝜎s < −k

0, �𝜎s� ≤ k

1, 𝜎s > k

3.3 � Problem formulation

As shown in Fig. 3, we define the state of the entire system
at the beginning of each time slot as �(t) =

(
Lt, Xt,�t, Yt

)
 .

The state �(t) is named the initial state of the time slot t.
Considering that the resource redistribution strategy �t in the
time slot t is determined based on the initial state �(t) , node
characteristics N, and service characteristics S. This paper
uses a�(�(t),N, S) to represent the reallocation of system
resources when the system is in state �(t) . At the beginning
of each time slot, the MEC controller counts the change in
service load from Lt to L′

t
 , �Lt = Lt − L

�
t
 . When the load

changes, the system’s series of resource redistribution strate-
gies are completed in the L′

t
 state. We assume that the time

lost by the load change is negligible compared to the time
lost by the resource redistribution (Fig. 3). Resource real-
location operation a� causes the system state to change from
�(t) to a new state � �(t) =

(
L
�
t
, X

�
t
,��

t
, Y

�
t

)
 . The initial state of

the next time slot t + 1 is �(t + 1) = � �(t).
The matrix Xt represents the service placement strat-

egy in the time slot t, the matrix �t indicates the amount
of resources allocated by the service, and the matrix
Yt expresses the response time of the service. Where,
xt(s, n) = 1 means that in the time slot t, the service s is
placed at node n, the allocated resource is �t(s, n) , and the
response time is yt(s, n) . On the contrary, xt(s, n) = 0 means
that the service s is not placed at node n, and the allocated
resource amount is set to �t(s, n) = 0 . However, the request
cannot be responded to locally, and the request needs to be
dispatched to other nodes or remote clouds, the correspond-
ing response time is yt(s, n) . We stipulate that if the service
s is placed at the local node n, it will be responded locally,
and the response time is based on the load-time mapping to
calculated. Otherwise, a remote response is required, and
the request is dispatched to the corresponding response node
m(xt(s,m) = 1) . Therefore, the request response time yt(s, n)
for service s at node n can be expressed as

where, if E is true, �(E) = 1 ; otherwise, �(E) = 0 . Ct<s,n>
means the average calculation time of service s at node n.

The variable It⟨<s,n>,m⟩ expresses the transmission delay
that the request for service s is dispatched from node n to
node m. In time slot t, the total response time �a�t

(Yt) of all
services in the entire system is defined as follows:

Starting from the initial state �(0) = �0 , according to the
resource allocation strategy � and the request scheduling

(9)
yt(s, n) = 𝛩

�
xt(s, n) == 1

�
Ct<s,n>+

𝛩
�
xt(s, n) == 0

��
Ct<s,m> + It⟨<s,n>,m⟩

�

(10)�a�t

(
Yt
)
=

|N|∑
n=0

|S|∑
s=0

yt(s, n)

135Dual‑label aware service replacement for interaction quality improvement in heterogeneous…

1 3

response time Y jointly determine the sum of the long-term
average response time of the request, which is expressed as
follows:

In this article, our research aim is to design a resource real-
location strategy that meets the limited resource constraints
and minimizes the total long-term response time of requests
from the initial state.

where the constraint (10.1) means that the sum of resources
occupied by all services that placed on one edge node should
not exceed its capacity.

Based on the above problem statement, the service
replacement problem is actually a limited resources allo-
cation problem. We estimate that the service replacement
problem is an NP-hard problem (Li et al. 2018). Next, we
will prove the hardness of this problem.

Theorem 1  The service replacement problem in a heteroge-
neous MEC system is NP-hard.

Proof  This theory will be proved by a instance, and its spe-
cial scene is set up by following assumptions: (1) We set the
service replacement operation to be completed in a time slot,
(2) The system architecture is composed with one cloud and
one edge node, and (3) one node is not allowed to place mul-
tiple replicates. Based on the above assumptions, the most
ideal solution is to place services on edge nodes to mini-
mize response time. But, the lackness of edge node resource
results that we ought to select some services to place on
the edge node, while other services are placed on cloud.
The objective is to minimize the service response time. This
problem is similar to the typical knapsack problem.

The typical knapsack problem can be formalized as fol-
lows. The items set is represent by E =

{
ei, 0 ≤ i ≤ n

}
 ,

and the weight and the value of item ei is shown as wi
and vi , respectively. The knapsack problem is to select a
subset Es such that the total weight does not exceed the
capacity W of knapsack and the total value is maximized.
Afterwards, in the system we assumed, the services set
is S =

{
sl, 0 ≤ l ≤ n

}
 . For each service sl ∈ S , we set the

resource required by sl be rl , and the response delay of sl be
yl . The object is to select a subset Ss of services such that

(11)��

(
�0
)
= lim

T→∞

{
T∑
t=0

�a�t

(
Yt
)||�(0) = �0

}

(12)�
∗
�

(
�0
)
=min

�
��

(
�0
)
, ∀�0

(10.1)
|S|∑
s=0

rat(s, n) ≤ Rn, ∀t,∀n ∈ N

the total resource occupied by services does not exceed the
edge node resource capacity R and the response delay is
minimized.

We assume that there exist a strategy selecting a subset
Es such that

∑
ei∈Es

wi ≤ W  , and
∑

ei∈Es
vi is maximized.

Then, we can choose a service sl ∈ S with rl = wi and 1
yl
= vi

corresponding to a item ei ∈ Es . So we obtain a subset Ss
with the shortest total response delay time. In addition, if we
select a subset Ss of S to minimize the total response time,
we can get the subset Es to maximize the value. Because the
knapsack problem is NP-hard, we infer that the services
placement problem in a time slot is NP-hard. It further
proves that the services dynamic replacement problem in
MEC system is also an NP-hard problem. 	� ◻

4 � Service replacement strategy

In the initial state of time slot t = 0 , because the load of the
service in the system is unknown, it is impossible to calcu-
late the service distribution based on the mapping relation-
ship CtM → f

(
sens, g(L),�

)
 and service characteristics. We

use the prediction method to obtain the load L0 in the time
slot t = 0 , the resource required by each service s is recorded
as rs , and the calculation delay of the service at each node.

In the time slot t = 0 , we define the priority of nodes
and services according to the predicted load L0 and the total
response time matrix Tt⟨M,N⟩ . The detailed steps are in the
Sect. 4.1. In the time slot t > 0 , the load will continue to
change over time, and resources will be dynamically real-
located for the service according to the service attributes
and the gradient of load change, as shown in the Sect. 4.2.

4.1 � Initial static placement

In order to roughly shorten the service response time, we
formulate the node priority and service priority based on
the load distribution and network condition. Afterwards, the
initial service static placement strategy is determined under
the defined of priority combined with greedy method. So
we called our method priority placement (2P) algorithm.
In 2P algorithm, we select the nodes in order of priority
from high to low to make placement strategy firstly. Next, we
select services with high-priority from the candidate service
set of node to place in turn. The priority will be adjusted
dynamically with the placed status changes in the procedure
of initial pacement, make a dynamic priority definition. In
the 2P algorithm, the definition of node priority and service
priority is a key step. Next, we will explain them in detail.

136	 X. Li et al.

1 3

4.1.1 � Initial placement algorithm

The aim of research is to minimize the service response
delay time, Fig. 5 describes the calculation process of the
total delay time of system. Firstly, we define the input vari-
ables and set the performance parameter of nodes and ser-
vices as well as the upper limit value of copies � . In initial
status, the service load distribution and the network candi-
tion are predicted through artificial intelligence technology.
So, we use the symbol L0 to represent the load distribution in
time slot t = 0 , and the symbol Tt<M,N> to express the system
response time matrix. Then, we calculate the node priority
through the three-step method, including geting the average
delay time, geting the ideal node set and geting the service
candidate set, which is introduced in detail in Sect. 4.1.2.
Next, we get the initial placement strategy X0 and variables
of allocated resources �0 , which is introducted in detail in
Algorithm 1.

Finally, we count the response time of all services in sys-
tem at initial time slot t = 0 , based on the initial placement
strategy X0 . In time slot t = 0 , the number of service replicas
Ps is calculated according to the Eq. 13. The equation Ps = 0
means there has none replica of service s in system, and all
request about service s should be scheduled to the cloud. For
each node n ∈ N  , we set y0(s, n) = Tt<<s,n>,cloud> . But, the
equation Ps ≠ 0 indicates that the system has one replicas
of service s at least. In this case, the service request will be
responsed on edge node whose response time is minimum.
So, the response time y0(s, n) will be caculated by Eq. 14.
Finally, output the placement scheme X0 , variables of allo-
cated resources �0 and response time Y0.

(13)Ps =

|N|∑
n=0

x0(s, n)

(14)y0(s, n) =

{
Tt<<s,n>,cloud>, Ps = 0

minm∈N{Tt<<s,n>,m>}, Ps ≠ 0

4.1.2 � Define node priority

The number of services request distribute unevenly, which
means that the service load distribution is imbalance. The
resources of nodes whose coverage area includes a larger
number of load are limited, and have greater contribu-
tion in improving the quality of services (QoS). The aim
of our paper is to improve QoS through minimizing the
total response time of all services, as expressed in Eq. 12.
Therefore, our paper define node priority after three steps
of calculation.

The first step, we suppose a situation that all requests for
services s are responsed on one node m. Based on the input
variables L0 and Tt<M,N> , we caculate the average response
time when all requests of service s are scheduled to the same
node m, which is formulated as follow Eq. 15. The average
response time of other services can be counted in the same
way. We take advantage of averageDelay(Tt, L0) function to
calculate Eq. 15 and gain the matrix Q, which is a key vari-
able in the 2P algorithm.

The second step is to caculate the ideal node set.
Because the heterogeneity of system results in the
Qs

m
≠ Qs

n
(s ∈ S,m ∈ N, n ∈ N) , the response time of request

scheduling to different nodes is not equal. According to the
order of matrix Q, the ideal node set is defined as follows:

where NCs,1 = np1 indicates that the first ideal node of ser-
vice s is np1 , NCs,2 = np2 indicates that the second ideal node
of service s is np2 , … , and NCs,i = npi indicates that the ith
ideal node of service s is npi.

Get the ideal node set in Fig. 5 by calculatng a two-dimen-
sional matrix NCS×|N| . In terms of the variables NCs,i ∈ NC ,
where s ∈ S, i ≤ |N| , we infer the meaning of row vector and
column vector of two-dimensional matrix NC:

•	 row vector NCs,|N| indicates the ideal node sequence of
service s;

•	 column vector NCS,i express the ith ideal node of all ser-
vices.

(15)Qs
m
=

∑�N�
n=0

Tt⟨⟨s,n⟩,m⟩ ⋅ L0(s, n)∑�N�
n=0

L0(s, n)
, s ∈ S,m ∈ N, n ∈ N

(16)
NCs =

{
np1 , np2 ⋯ npi ⋯

||Qs
np1

≤ Qs
np2

≤ ⋯

≤Qs
npi

≤ ⋯ , npi ∈ N
}

Fig. 5   Initial services placement process

137Dual‑label aware service replacement for interaction quality improvement in heterogeneous…

1 3

The third step, based on the matrix NC, we get the initial
service candidates set SC of each node, through initService-
CandidateSet() function. As follows:

Initially, based on the vector NCn , the service candidate vec-
tor of node n includes services whose ideal node is n, which
is marked as SCn . With the placement process, the reduction
of node resource leads that the vector SCn will be dynami-
cally adjusted. The node whose service candidate vector SCn
has more services creates higher value on improving QoS.
Therefore, the node priority we defined is the modulo |SCn|.

4.1.3 � Priority placement (2P) algorithm

The Algorithm 1 describes the service placement process
in detail, which maps to the function servicePlacement() of
Algorithm 1. The placement strategy of node e is to choose
services s with higher priority from service candidate vec-
tor SCe . After the service s is placed on node e, we add this
service to the vector SCe′ of its sub-ideal node e′.

The algorithm loops through lines 1–21 until the services
candidate vector of all nodes is null. In a loop, we firstly
choose a node with the highest priority in turn, which is

(17)SCn =
{
sp1 , sp2 ⋯ spi ⋯

||NCspi
,1 = n, spi ∈ S

}

expressed as e. Then, we sort the services within a collection
SCe by service priority � . The definition of service priority
comprehensively considers three factors, the service loads,
the number of replicas, the average response time and the
response time gap with the sub-ideal node, as shown in the
Eq. 18.

In Eq. 18, the total load of the service s is caculated through ∑�N�
n=0

L0(s, n) . The symbol Ps is the number of replicas of
service s. Suppose that the ith ideal node of service s is node
e, NC(s,i) = e , and the next ideal node is e′ , NC(s,i+1) = e� .
So, the average response time indicated as symbol Qs

e
 when

all requests of services s are scheduled on node e. And the
response time gapcaculate through �Qs = Qs

e�
− Qs

e
 . The

symbol k1 and k2 is parameter values. From the Eq. 18, we
get a conclusion that the greater the time gap and the service
loads are, the higher the priority is. And if the average delay
time and the number of replicas are greater, the service pri-
ority will be lower.

Next, in lines 5–18, the algorithm select service based
on the service priority to execute the placement process.
If the resource requested by the service s is lower than

(18)�s,e =
�Qs + k1 ⋅

∑�N�
n=0

L0(s, n)

Qs
e
+ k2 ⋅ Ps

, s�S, e�N, n�N

138	 X. Li et al.

1 3

the remaining resources of the node e, the service will be
placed and make x0(s, e) = 1 , �0(s, e) = rs . Otherwise, we
set x0(s, e) = 0 and �0(s, e) = 0 . In the next step, we judge
whether to continue to place service s depends on the upper
limit of service replicas � . In lines 14-18, the service whose
quantity in system is not more than the upper limit � will
be appended to the service candidate collection SCe′ of the
next ideal node e′ . It is obtained by function findNextNode().

When the service is added to the service candidate collec-
tion of node e′ , the node priority |SCe′ | and the service prior-
ity �s,e′ will change based on the Eqs. 17 and 18 respectively.
At the end of the node e placement process, we clean up all
services in the collection SCe through the function clear().
And continue the placement process of next node in loops
1–21 until all nodes in system have none priority.

4.2 � Dynamic service replacement

Under the constraints of the limited resources of the edge
node, in order to allow more services to meet the upper
limit of response time requirements, enhance the quality
of service, so that achieve the purpose of minimizing sys-
tem response time, we only place one low-sensitive service
replica in the entire edge node system. All requests for the
service within the scope of each node are dispatched to the
same node to respond. Since the high-sensitive services need
to be responded as quickly as possible, we try to place this

type of service locally to avoid the degradation of service
quality due to transmission delays. Next, we will introduce
in detail how to use the dual-label aware service replacement
algorithm based on service attributes and load gradient.

4.2.1 � Dual‑label aware service replacement (D‑LASR)
algorithm

Algorithm 2 describes the replacement strategy of resources
in the continuous time slot, which is named dual-label aware
service replacement algorithm (D-LASR). Initially, line 1
initializes the resource amount of the service at each node
to zero (�t(M) = 0) . Line 2 divides the service set S into a
highly sensitive service set SH and a low sensitive service
set SL according to the delay sensitivity label sens of the
service. Based on the load gradient label loas , line 3 divides
the services in the SH and the SL into the high-sensitive
recycle set SHr, the high-sensitive maintenance set SHm,
the high-sensitive allocation set SHa, the low-sensitive recy-
cle set SLr, the low-sensitive maintenance set SLm and the
high-sensitive allocation set SLa. When reallocating node
resources in each time slot, all resources of high-sensitive
services that was allocation in the initial state must be recy-
cle, such as lines 5–11. The purpose of this step is to avoid
too many resources occupied by the service with too low
load, and the service with overload cannot obtain enough
resources, which will cause a waste of resources.

139Dual‑label aware service replacement for interaction quality improvement in heterogeneous…

1 3

Next, lines 12–17 began to execute resource reallocation
operations on services with various tags in turn. During this
operation, the dual-label determines the sequence of
resource reallocation operations. In this strategy, we give
priority to allocating resources for the services in the low-
sensitivity recycling collection, as shown in line 12. At first,
the purpose of allocating services in the SLr set is to allow
low-sensitivity services to release excessive resources and
provide sufficient resources for subsequent services. In
Algorithm 3, a detailed algorithm that reallocate low-sensi-
tive service (RaLSS) is introduced. Following, lines 13–15
sequentially implement resource allocation for high-sensi-
tive services. From the optimization goal, we stipulate that
the pr ior i ty order of resource al locat ion is
SHr > SHm > Sha . In Algorithm 4, a detailed algorithm that
reallocate high-sensitive service (RaHSS) is introduced.
After that, lines 16–17 execute the RaLSS algorithm detailed
in Algorithm 3 on the SLm and SLa sets in turn. Finally, line
18 uses the getTotalResponseTime() function to calculate the
average response time �a�t

 of all requests in the t time slot,
and line 20 calculates the average response time �a�t

 in all
time slots in the continuous time T, which is used as an
important indicator to measure the performance of our
algorithm.

4.2.2 � Reallocate low‑sensitive services (RaLSS) algorithm

Algorithm 3 (RaLSS) realizes resource reallocation for low-
sensitive services. In this algorithm, we use SLx to replace
the three types of service sets SLm, SLr, and SLa. Due to
the long response time required by low-sensitive services,
there is only one replica of this kind of service in the system,
and most of these service requests cannot be responded to
locally. We need to schedule the request to the same node
to respond. Although transmission delays occur during this
process, for low-sensitive services, the final response time
can meet the upper limit of service response time. In RaLSS
algorithm, we first sort the services in SLx by priority in
line 1. We use the total load to measure the priority of the
service, such as the Eq. 19, the higher the total load, the
higher the priority.

(19)SPs =

|N|∑
n=0

Lt(s, n)

Next, lines 2–23 make resource reallocation decisions for the
services in SLx in turn. The algorithm counts the total load
sumLoad of the service si at line 3, and obtains the maxi-
mum value of the transmission delay commTime between
each node in the system in line 4. Based on the sum vari-
able of the load sumLoad, the difference between the upper
limit of service response time siul and the maximum trans-
mission delay commTime, and the mapping relationship
CtM → f

(
sens, g(L),�

)
 between the calculated delay and

service characteristics in the system, the getMinResource()
function calculates the amount of resources on the line 5
of Algorithm 3. In line 6 of the algorithm, the findProper-
Node() function selects an optimal node from the system to
place the service according to the amount of resources, load,
and resource allocation at the previous moment �(t − 1) . In
the function findProperNode(), we first find the node where
the service si is placed from the matrix Xt−1 . If it exists,
select the node with the highest priority and the remain-
ing resources Rn ≥ resource . Otherwise, we select the node
with the highest priority that satisfies Rn ≥ resource from the
node set N in this system. We set that the higher the load rate
and the more the remaining resources, the higher the priority
the node has. The definition is as follows:

If a node n can be sought through findProperNode(), which
can reallocate resources to the service si , execute lines
7–18, otherwise, execute line 19–22. If the node n allocates
resource for the service si , it needs to update the related
variables. For example, the amount of resources allocated
to service si by node n is set to �t(si, n) = resource , deploy-
ment variable is defined by xt(si, n) = 1 , and the remaining
resources is set to Rn = Rn − (�t(si, n) − �t−1(si, n)) , such as
lines 8-10 in the algorithm. The variables �t and xt of other
nodes are set to zero, such as lines 14-17. The response time
yt(si,m) of the request for service si within the scope of each
node is equal to the sum of the calculation delay time and
the transmission delay It<<si,m>,n> , which is calculated by
getResponseTime() function. If the findProperNode() func-
tion does not find an appropriate node to allocate resources
to the service si , all requests will be dispatched to the cloud.

(20)NPn =
Lt(M)

∑�N�
n=0

Lt(s, n)
× Rn

140	 X. Li et al.

1 3

4.2.3 � Reallocate high‑sensitive services (RaHSS) algorithm

For high-sensitive services, we place the service on a local
server as much as possible to avoid transmission delay lead-
ing to a decline in service efficiency. Algorithm 4 (RaHSS)
describes the complete strategy of resource allocation for
high-sensitive services. Similarly, we use SHx instead of
SHr, SHm, and SHa. First, we sort the services in the SHx
set according to the priority of Eq. 19. Next, lines 2–20
sequentially redistributes resources within each node of
each service in the SHx set. In the replacement process, if
there is no request for service si in the range of node n, we
will not do anythingthe. The three variables �t(si, n) , xt(si, n)

and yt(si, n) defaults to zero. Otherwise, we use the getMin-
Resource() function to calculate the amount of resource
required by the service, and use the getResponseTime()
function to find the local response time in the state of serv-
ing this resource amount. Next, Algorithm 4 determines
whether the remaining resource amount Rn of the local node
n meets the resource required by the service. If it is satis-
fied, set the resource allocation amount �t(si, n) = resource ,
placement variable xt(si, n) = 1 and response time variable
yt(si, n) = time , and then update the remaining resource
amount Rn of node n. If the remaining amount of the node
does not satisfy the amount of resource required by the ser-
vice, the requests are dispatched to the cloud.

141Dual‑label aware service replacement for interaction quality improvement in heterogeneous…

1 3

5 � Evaluation

In this section, we evaluation D-LASR algorithm. We take
the greedy algorithm as the baseline and conduct compara-
tive experiments for three significant factors.

The first factor is the sensitivity of the service, so we con-
structed a comparison algorithm, namely the single-feature
service reallocation algorithm, referred to as S-FSR. In the
S-FSR algorithm, the services are classed into recycle set,
maintenance set and allocation set. The detailed strategy of
the S-FSR algorithm is to make redeployment decision for
the services in the recycle set, maintenance set and alloca-
tion set in sequence. This algorithm stipulates that there is
only one service replica in the system. Therefore, the S-FSR
algorithm selects the optimal node to place for each service
according to the node priority defined by Formula 20. Then
it calculated the appropriate amount of resources for real-
location through the delay function CtM.

The second factor is whether to recycle useless resources,
so we create a second comparison algorithm called the no-
recycle service reallocation algorithm or N-RSR for short.
The N-RSR algorithm reallocation strategy is to determine
whether the amount of resources allocated at the previous

time slot meets the amount of resources required at this time
slot. If not, the service needs to be reallocation according to
the delay function CtM.

In the third resource allocation algorithm, the amount of
resources required by the service is constant and does not
vary with changes in load, and each reallocation changes the
node where the services are placed. We call this algorithm a
constant service replacement algorithm, referred to as CSR.
Next, we have carried out a detailed simulation experiment
and compared the experimental results.

5.1 � Simulation settings

There is only one cloud and N edge nodes in the simulation
system, and the resource capacity of the nodes is hetero-
geneous. The resource of nodes Rn is set to be within the
rage of [50, 350]. We set the transmission delay between
nodes is It<s,n>,m ∈ [150, 250](n ≠ m) , which is a symmet-
ric matrix. The resources in the cloud are infinite, and the
transmission delay between the node and the cloud is set to
It<s,n>,m ∈ [200, 400] . We set up 100 services (s = 100) in the
system, including two types of services, one is high latency
sensitivity and the other is low latency sensitivity. For highly

142	 X. Li et al.

1 3

sensitive types, the upper limit of service response time is
set to uls ∈ [500, 600] , lower limit of response time is set to
dls ∈ [100, 110] . For lowly sensitive types, the upper limit
of service response time is set to uls ∈ [1000, 1100] , lower
limit of response time is set to dls ∈ [200, 210].

This simulation experiment tests the reallocation of
resources in 20 time slots. In each time slot, the load Lt(M)
is randomly generated in [0, 50], which obeys Gaussian
distribution. The calculation time Ctt(M) is related to the
service delay sensitivity, allocated resources and the amount
of load, as shown in Eq. 4. For highly sensitive services, the
parameter ksens = 1 in the formula, but for low sensitive
services, the parameter ksens = 40 . In our experiment, the
mapping relationship between load and response time is set
as g(Lt(M)) = Lt(M)3∕2.

The time slot t = 0 is the initial state, and the service
placement strategy in this time slot is obtained according
to the 2P algorithm. In the initial state, because the service
load is unknown, it is impossible to calculate the amount
of resource that the service needed and the corresponding
calculation delay according to the mapping relationship

CtM → f
(
sens, g(L),�

)
 . In consequence, we set the resource

demand of highly sensitive services rs ∈ [40, 50] , and the
resource demand of low sensitive services as rs ∈ [10, 20]
by predicting the load distribution. In addition, the delay
caused by computing is set to Ct0(M) ∈ [100, 200] at the
time slot t = 0.

In order to better compare the performance of the D-LASR
algorithm with the other three comparison algorithms, we
conducted three series of comparison experiments. In addi-
tion to comparing response time variables �  , we also com-
pared the quality of service QoS and resource utilization �t.

In this article, the quality of service is measured by com-
paring the service response time yt(s, n) with the service
response upper limit uls . If yt(s, n) ≤ uls , the quality of ser-
vice is high, and set QoS = 1 . Otherwise, set QoS = 0 . The
definition is as follows

In addition, resource utilization is defined as follows

(21)QoS =

{
1, yt(s, n) ≤ uls
0, yt(s, n) > uls

Fig. 6   The response time

(a) The response time per time slot (b) The ratio of the response time

Fig. 7   The quality of services
(QoS)

(a) The QoS per time slot (b) The ratio of the QoS

143Dual‑label aware service replacement for interaction quality improvement in heterogeneous…

1 3

From the definition, we can see that if the remaining
resources of the algorithm are the same, the lower the
response time, the higher the resource utilization. Similarly,
if the response time is equal, the more remaining resources,
the higher the resource utilization. The k in the formula is a
parameter, we set k = 2000 in our test.

At the same time, we calculate the ratio of the D-LASR
algorithm and the three comparison algorithms in terms
of response time, service quality, and resource utilization.
Assuming that the performance of the D-LASR algorithm
is P0 , while the other three comparison algorithms are Pi ,
the ratio is

5.2 � Results comparing

In Fig. 6, we count the average response time of each algo-
rithm and the response time ratio between the D-LASR algo-
rithm and the comparison algorithms in the time slot 1–19.
According to Fig. 6a, we find that the average response time
of services in the D-LASR algorithm is the lowest, fluctuat-
ing approximately between 1000 and 1500 ms. The response
time of services in the S-FSR algorithm is the highest. This
is because services are not placed according to delay sen-
sitivity in the S-FSR algorithm. And fewer service replicas
in this system cause that most requests to be dispatched to
other nodes to respond, as well as, a large amount of trans-
mission delay results in the increase of the total response
time in system. In the S-FSR algorithm, the response time at

(22)�t =

∑�N�
n=0

Rn + k

�a�t

(23)� =
P0

Pi

the time slot t = 1 is smaller than that in the time slot t > 1 .
This is mainly because the remaining resource fragments of
nodes in the system are less at the initial stage of resource
reallocation, and most services can meet the demand, so the
response time of the service is low. However, as time goes
by, resource fragmentation in the system increases, causing
many services to fail to respond at the edge, so the response
time becomes longer and gradually stabilizes.

The response time of the N-RSR algorithm gradually
increases in the time slot t < 4 , but the response time tends to
be stable in the time slot t > 4 . The main reason for this phe-
nomenon is that the N-RSR algorithm causes a lot of waste
of useless resources, but the system resources are limited. As
time goes by, more and more services will allocate resources
that cannot reach the required amount of resources. When
all resources in the system are occupied and none resources
are allocated to the service, the response time of the system
tends to be stable. Because the resource demanded by the
service is stable in the CSR algorithm, the response time of
this system is also constant. From the Fig. 6a, we discover
that the average response time fluctuates around 2500 ms,
which is higher than that of the D-LASR algorithm.

In Fig. 6b, we get the response time ratio between the
D-LASR algorithm and the three comparing algorithms in
the different time slots. The response time ratio is lower than
zero, indicating that the response time of our algorithm is
low and the performance is superior. From the Fig. 6b, we
can find that the response time of the D-LASR algorithm
is almost 1/2 of the comparison algorithm, and basically
remains unchanged. In addition, since the response time
ratio between the D-LASR algorithm and the CSR algorithm
is the highest, however the response time ratio between the
D-LASR algorithm and the S-FSR algorithm is the lowest,
we can also get a conclusion that the CSR performance is the

Fig. 8   The resource value

(a) The resource value per time slot (b) The ratio of the resource value

144	 X. Li et al.

1 3

best and the S-FSR algorithm has the worst performance in
these three comparison algorithms.

In Fig. 7, we receive a curve graph of the quality of
services (QoS) over time and a bar graph of the QoS ratio
between the D-LASR algorithm and the comparing algo-
rithms. According to Fig. 7a, we conclude that the QoS in the
D-LASR algorithm is the highest, but in the S-FSR algorithm
it is the worst and almost approaching zero. Corresponding
to Fig. 6a, the QoS of the S-FSR algorithm is relatively high
at the time slot t = 1 . In the later stage, the nodes within the
S-FSR algorithm generate a lot of resource fragmentation
and the same service will be responded to on the same node,
the remaining resources of the node cannot meet the service
demand in this system. The above phenomenon causes that
the actual response time of services exceed the upper limit,
reducing the quality of service in the system. Similarly, the
QoS in the N-RSR algorithm gradually decreases within the
range of time slot t < 4 , and tends to stabilize within the
range of t > 4 . The reasons for this trend are the same as in
Fig. 6a. In addition, the QoS in the CSR algorithm is also
changeless, and the conclusion of the experiment is consist-
ent with that of the previous experiment.

Figure 7b shows the QoS ratio of D-LASR algorithm
to N-RSR algorithm and CSR algorithm. The QoS ratio
is greater than 1, indicating that the performance of the
D-LASR algorithm is better than the N-RSR algorithm and
the CSR algorithm. From Fig. 7a, we find that QoS of the
S-FSR algorithm is approximately zero. Therefore, the
QoS ratio between the D-LASR algorithm and the S-FSR
algorithm is so large that we did not count it in the test of
Fig. 7b. According to Fig. 7b, at the time slot t = 2 , the QoS
of the N-RSR algorithm is about five times as big as the
N-RSR algorithm is. In the t > 2 stage, the QoS ratio fluc-
tuates between 10 and 20 times. On the contrary, the QoS
ratio between the N-RSR algorithm and the CSR algorithm
is relatively stable and has been maintained at about four
times. Based on the above conclusions, it can be concluded
that the performance of the CSR algorithm is better than the
N-RSR algorithm, which is consistent with the conclusion
obtained in Fig. 6b.

In Fig. 8, we calculate the resource utilization rate of each
algorithm over time according to the Eq. 22 and compare the
performance of the D-LASR algorithm with the comparison
algorithms in terms of resource utilization. It is found from
Fig. 8a that the resource utilization rate of the D-LASR algo-
rithm is the highest, and it remains around 1.5. The resource
utilization rate of the CSR algorithm is lower than that of
the D-LASR algorithm, and is about 0.9. In the time slot
t > 2 , the resource utilization of the S-FSR algorithm and
the N-RSR algorithm are approximately equal. Although
we find that the response time of the N-RSR algorithm is
lower than that of the S-FSR algorithm from Fig. 6a, the
resources of the N-RSR algorithm are more wasteful than

the S-FSR algorithm. Therefore, according to the definition
of resource utilization (Eq. 22), the similarity of resource
utilization between S-FSR algorithm and N-RSR algorithm
is reasonable.

Figure 8b shows the ratio of D-LASR algorithm and
comparison algorithm in terms of resource utilization. The
resource utilization ratio greater than 1 indicates that our
algorithm has a higher resource utilization than the compari-
son algorithm. From this figure, we can see that the resource
utilization of the D-LASR algorithm is approximately twice
that of the S-FSR algorithm and the N-RSR algorithm. It can
also show that the performance of the S-FSR algorithm and
the N-RSR algorithm are similar in terms of resource utili-
zation. In addition, the resource utilization of the D-LASR
algorithm is about 1.6 times that of the CSR algorithm,
which shows that the performance of CSR is better than that
of the other two comparison algorithms in terms of resource
utilization. Those conclusions are consistent with the previ-
ous two test conclusions.

6 � Conclusion

In this paper, we investigate the service replacement problem
in a heterogeneous MEC interactive system by dividing the
problem into two states. In the initial state, we set priorities
for the nodes and services, which can be adjusted dynami-
cally according to the placed state. To model the priority,
we analyzed several factors such as service load distribution
or delay time, obtained the initial service placement strat-
egy in order of priority. In the sequence states, we propose
dual-label aware service replacement (D-LASR) algorithm
to achieve dynamic service replacement that varies with ser-
vice load. The delay sensitivity label and the load gradient
label determine the replacement strategy, and the mapping
relationship between the load and the response time deter-
mine the replacement granularity. We conduct extensive
simulations, and the results show that our algorithm has sig-
nificant performance improvement on response delay reduc-
tion, the quality of service (QoS) and the resource value.

Acknowledgements  This work is supported in part by the National Key
R&D Program of China under Grant 2019YFB2102002, in part by the
National Natural Science Foundation of China under Grant 61802182,
and in part by the Collaborative Innovation Center of Novel Software
Technology and Industrialization.

References

De Cristofaro, E., Soriente, C.: Participatory privacy: enabling privacy
in participatory sensing. IEEE Netw. 27(1), 32–36 (2013)

Farhadi, V., Mehmeti, F., He, T., Porta, T.L., Khamfroush, H., Wang,
S., Chan, K.S.: Service placement and request scheduling for
data-intensive applications in edge clouds. In: IEEE INFOCOM

145Dual‑label aware service replacement for interaction quality improvement in heterogeneous…

1 3

2019—IEEE Conference on Computer Communications, pp.
1279–1287 (2019)

Ha, K., Abe, Y., Chen, Z., Hu, W., Amos, B., Pillai, P., Satyanarayanan,
M.: Adaptive VM handoff across cloudlets. Technical Report
CMU-CS-15-113 (2015)

He, T., Khamfroush, H., Wang, S., La Porta, T., Stein, S.: It’s hard
to share: Joint service placement and request scheduling in edge
clouds with sharable and non-sharable resources. In: 2018 IEEE
38th International Conference on Distributed Computing Systems
(ICDCS), pp. 365–375 (2018)

Hu, B., Chen, J., Li, F.: A dynamic service allocation algorithm in
mobile edge computing. In: 2017 International Conference on
Information and Communication Technology Convergence
(ICTC), pp. 104–109 (2017)

Islam, M., Razzaque, A., Islam, J.: A genetic algorithm for virtual
machine migration in heterogeneous mobile cloud computing.
In: 2016 International Conference on Networking Systems and
Security (NSysS), IEEE, pp. 1–6 (2016)

Ksentini, A., Taleb, T., Chen, M.: A markov decision process-based
service migration procedure for follow me cloud. In: 2014 IEEE
International Conference on Communications (ICC), pp. 1350–
1354 (2014)

Li, Y., Wang, S.: An energy-aware edge server placement algorithm in
mobile edge computing. In: 2018 IEEE International Conference
on Edge Computing (EDGE), pp. 66–73 (2018)

Li, X., Wu, J., Tang, S., Lu, S.: Let’s stay together: towards traffic
aware virtual machine placement in data centers. In: IEEE INFO-
COM 2014—IEEE Conference on Computer Communications,
pp. 1842–1850 (2014)

Li, X., Lian, Z., Qin, X., Abawajyz, J.: Delay-aware resource alloca-
tion for data analysis in cloud-edge system, pp. 816–823 (2018)

Lingjun, P., Lei Jiao, X., Chen, L.W., Xie, Q., Jingdong, X.: Online
resource allocation, content placement and request routing for
cost-efficient edge caching in cloud radio access networks. IEEE
J. Select. Areas Commun. 36(8), 1751–1767 (2018)

Pasteris, S., Wang, S., Herbster, M., He, T.: Service placement with
provable guarantees in heterogeneous edge computing systems.
In: IEEE INFOCOM 2019—IEEE Conference on Computer Com-
munications, pp. 514–522 (2019)

Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, ., Vasilakos, A.V.:
Fog computing for sustainable smart cities: a survey. ACM Com-
put. Surv., 50(3), (2017)

Poularakis, K., Llorca, J., Tulino, A. M., Taylor, I., Tassiulas L.: Joint
service placement and request routing in multi-cell mobile edge
computing networks. In: IEEE INFOCOM 2019 - IEEE Confer-
ence on Computer Communications, pp. 10–18 (2019)

Qiu, J., Li, X., Qin, X., Wang, H., Cheng, Yo.: Utility-aware edge
server deployment in mobile edge computing. Presented at the
(2019)

Reiter, A., Prünster, B., Zefferer, T.: Hybrid mobile edge computing:
Unleashing the full potential of edge computing in mobile device
use cases. In: 2017 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp. 935–944
(2017)

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and
challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., Flinck, H.: Mobile edge
computing potential in making cities smarter. IEEE Commun.
Mag. 55(3), 38–43 (2017)

Teng, M., Li, X., Qin, X., Wu, J.: Priority based service placement
strategy in heterogeneous mobile edge computing. Presented at
the (2020)

Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-compo-
nent applications in edge computing environments. IEEE Access
5, 2514–2533 (2017)

Wang, L., Jiao, L., He, T., Li, J., Mühlhäuser, M.: Service entity place-
ment for social virtual reality applications in edge computing. In:
IEEE INFOCOM 2018—IEEE Conference on Computer Com-
munications, pp. 468–476 (2018)

Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading
for mobile edge computing in dense networks. In: IEEE INFO-
COM 2018—IEEE Conference on Computer Communications,
pp. 207–215 (2018)

Yu, R., Kilari, V.T., Xue, G., Yang, D.: Load balancing for interdepend-
ent iot microservices. In: IEEE INFOCOM 2019—IEEE Confer-
ence on Computer Communications, pp. 298–306 (2019)

Zhang, X., Wu, C., Li, Z., Lau, F.C.M.: Online cost minimization for
operating geo-distributed cloud cdns. In: 2015 IEEE 23rd Inter-
national Symposium on Quality of Service (IWQoS), IEEE, pp.
21–30 (2015)

Xin Li  received the B.S. and Ph.D
degrees from Nanjing University
in 2008 and 2014, respectively.
Currently, he is an associate pro-
fessor in the College of Com-
puter Science and Technology,
Nanjing University of Aeronaut-
ics and Astronautics. His
research interests include distrib-
uted computing, cloud comput-
ing and data management. He is
a member of CCF.

Meiyan Teng  received the B.S.
degree from Nanjing University
of Information Science & Tech-
nology in 2018, and the M.S.
degree from Nanjing University
of Aeronautics and Astronautics
(NUAA) in 2021. Currently, she
is a Ph.D. candidate at the Col-
lege of Computer Science and
Technology, NUAA. Her
research interests include edge
c o m p u t i n g a n d e d g e
intelligence.

Jie Wu  is the director of the
Center for Networked Comput-
ing and Laura H. Carnell profes-
sor at Temple University. He also
serves as the director of Interna-
tional Affairs at College of Sci-
ence and Technology. He served
as chair of Department of Com-
puter and Information Sciences
from the summer of 2009 to the
summer of 2016 and associate
vice provost for International
Affairs from the fall of 2015 to
the summer of 2017. Prior to
joining Temple University, he
was a program director at the

146	 X. Li et al.

1 3

National Science Foundation and was a distinguished professor at
Florida Atlantic University. His current research interests include
mobile computing and wireless networks, routing protocols, cloud and
green computing, network trust and security, and social network appli-
cations. Dr. Wu regularly publishes in scholarly journals, conference
proceedings, and books. He serves on several editorial boards, includ-
ing IEEE Transactions on Mobile Computing, IEEE Transactions on
Service Computing, Journal of Parallel and Distributed Computing,
and Journal of Computer Science and Technology. Dr. Wu was general
co-chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013,
ACM MobiHoc 2014, ICPP 2016, and IEEE CNS 2016, as well as
program cochair for IEEE INFOCOM 2011 and CCF CNCC 2013. He
was an IEEE Computer Society Distinguished Visitor, ACM Distin-
guished Speaker, and chair for the IEEE Technical Committee on Dis-
tributed Processing (TCDP). Dr. Wu is a fellow of the AAAS and a
fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

Xiaolin Qin  is a professor in the
College of Computer Science
and Technology, Nanjing Uni-
versity of Aeronautics and Astro-
nautics. His research interests
include data management and
knowledge discovery.

	Dual-label aware service replacement for interaction quality improvement in heterogeneous MEC system
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	3.1 Service load profile
	3.2 Service dual-label feature
	3.3 Problem formulation

	4 Service replacement strategy
	4.1 Initial static placement
	4.1.1 Initial placement algorithm
	4.1.2 Define node priority
	4.1.3 Priority placement (2P) algorithm

	4.2 Dynamic service replacement
	4.2.1 Dual-label aware service replacement (D-LASR) algorithm
	4.2.2 Reallocate low-sensitive services (RaLSS) algorithm
	4.2.3 Reallocate high-sensitive services (RaHSS) algorithm

	5 Evaluation
	5.1 Simulation settings
	5.2 Results comparing

	6 Conclusion
	Acknowledgements
	References

