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Abstract
Interaction quality is an important factor for service provision to achieve better user experience. Mobile Edge Computing 
(MEC) is a promising paradigm to improve interaction quality by supporting near data computing at the edges. However, 
the limited resources at the edge nodes make it hard to response various services simultaneously, while the service load 
changes over time. Hence, it is important and challengeable to utilize the limited edge resources to host various service and 
reduce service response time to improve interaction quality. In this paper, we investigate the service replacement problem 
to adjust the edge resource utilization dynamically and then reduce the service response time. We first propose a priority 
placement (2P) algorithm to place the services among the edges by taking account the service priority, which indicates 
the influence for response time reduction. Then, we propose a dual-label aware service replacement (D-LASR) algorithm 
to achieve dynamic service placement to fit the service load variation. The replacement strategy works based on the delay 
sensitivity label and the load gradient label, which represent the features how the service location and service load affect the 
service response time. We conduct extensive simulations and the experimental results show that the D-LASR algorithm can 
reduce the average service response time by 40–60%, which indicates that the D-LASR algorithm has better performance 
in improving interaction quality for service provision in MEC system.
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1  Introduction

As the Internet of Things (IoT) technology matures and 
develops steadily, the Internet of Everything is rising. In 
the near future, the number of IoT application devices will 
reach tens of billions (Yu et al. 2019). Furthermore, delay-
sensitive application devices that require real-time data pro-
cessing, e.g., augmented reality (AR) and aided driving, are 
on the rise. The traditional cloud has been unable to meet the 
low latency response requirements of IoT applications (Shi 
et al. 2016).

Mobile edge computing (MEC), which offloads the 
cloud resources to the edge of the network, has drawn 
more and more attention (Li and Wang 2018). The MEC 

system reduces the response latency by reducing the dis-
tance between the requester and the server. The edge server 
can achieve real-time analysis, computing and send data that 
needs to be processed centrally to the cloud server. Edge 
computing is not completely replacing the cloud computing 
paradigm (Reiter et al. 2017), which merely adds another 
layer of computing between the users and the cloud. The 
edge layer exists not only reduces the burden on the cloud 
server, but also improves the user service experience.

It is predicted that there will be 54 million driverless 
cars in the world by 2035 (Perera et al. 2017). Cameras 
on vehicles for aided driving can generate approximately 
1GB of data on road conditions per second (De Cristofaro 
and Soriente 2013), even the 5GB data will be produced by 
boeing 787 in a second (Taleb et al. 2017). For such data-
intensive applications, the service requests not only impose 
strict demands on latency, but also consume a large amount 
of resources. Although the MEC system has relieved the 
bandwidth pressure in network transmission and reduced 
the response delay time of services, the resources (comput-
ing and storage, etc) capacity of edge service are limited 
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compared with those of the cloud. The insufficient resources 
of edge nodes will cause numberous applications services to 
be unresponded, thus reducing the user experience, as shown 
in Fig. 1. In order to make full use of edge node resources, 
more and more researches focus on service placement prob-
lem, which makes a trade-off between the cloud and the edge 
nodes to achieve the goal of minimizing response time.

In addition, diverse services have different requirements 
for response time. In life, services such as intelligent navi-
gation and driverless cars have higher requirements for 
response time and need to provide accurate response results 
in a very short time. For intelligent navigation services, too 
long response time will reduce the quality of user experi-
ence. However, for driverless services, if the response time is 
too long, which will not only reduce the quality of user expe-
rience, but also cause personal safety issues for users. On the 
contrary, some services require relatively low response time, 
such as browsing the web and intelligent retrieval. For this 
type of service, when the edge node resources are limited, it 
can be placed in the cloud center to respond. Therefore, how 
to place services to ensure that highly sensitive services are 
placed on the local edge is also an urgent problem.

Due to the emergence of user mobility, the load of the 
service will be unevenly distributed over time. For example, 
the number of users in living and business regions is lower 
than that in office region on weekdays. Therefore, there are 
more requests for various kinds of services within the scope 
of the office region is more than those in the other regions. In 
other time periods, the distribution of users and the requests 
for services will adjust again. This example demonstrates 
that, in order to optimize the user experience of MEC, the 
resources required by the service for mobile users should be 
dynamically redistributed between edge nodes to adapt to 
changes in service load.

In this paper, we research a services replacement problem 
for interaction quality improvement in a heterogeneous MEC 

system, as shown in Fig. 2. In MEC system, the resources of 
cloud is sufficient to place all services, but the edge nodes 
has insufficient resources. The heterogeneity of MEC means 
that:

•	 the resource capacity of the edge nodes is difference;
•	 the services requirements in the system are discrepant;
•	 the network conditions are heterogeneous.

The MEC system is also interactive, which implies that:

•	 the requests can be responded on the cloud or the edge 
servers, e.g., the base station (BS) (Qiu 2019), etc.

•	 the edge nodes can communicate with each other, which 
will cause communication delay.

In this heterogeneous MEC interactive system, we studied 
the dynamic services replacement problem to improve the 
interaction quality. We divide the problem into two stages. 
First of all, we obtain the load of the service in the initial 
state through prediction, and study a static service place-
ment strategy. Based on the static placement strategy of the 
initial state, the dynamic replacement strategy is studied in 
the subsequent stage according to the double label of the 
service load variation and the service sensitivity attribute.

In the initial state, we measure the value of nodes to a ser-
vice placement problem based on the load distribution. The 
resources of nodes whose coverage contain many service 
requestes are limited, so that those nodes have higher value 
in improving the quality of service. When the request can-
not be responded to at the local node due to node resource 
constraints, the request will be scheduled to another node to 
response. In response to this situation, we combine the load 
distribution and the network condition to difined the node 
priority. In addition, it is also a problem to determine the 
order of services placement. Therefore, we set service priori-
ties on acccount of the heterogeneous attributes of services. 

Fig. 1   Overview of cloud-edge in IoT environment
Fig. 2   System model
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Then, we propose a priority placement (2P) algorithm to 
obtain a placement strategy with lower system latency.

In the subsequent state, we set the delay sensitivity label 
for the service according to the upper limit of the service 
response time. Then, we define a load gradient label for the 
service according to the variation of the load in the adjacent 
time period. Based on the dual label of delay sensitivity and 
load gradient, we determine the service resource redistri-
bution strategy. Through experiments, we get the mapping 
relationship between load and response time under different 
resource conditions, which determines the granularity of 
service resource reallocation. We finally propose a service 
replacement algorithm based on dual labels.

The main contributions are summarized as follows: 

1.	 We research the characteristics of the MEC model. And, 
in view of the heterogeneity and dynamics of system 
characteristics, we present the service replacement prob-
lem to improve the quality of service. We introduce the 
related work and prove the difficulty of this problem.

2.	 We propose a priority placement (2P) algorithm to 
achieve static services placement in the initial state. The 
core technology of 2P algorithm is to measure the con-
tribution of nodes and services in improving the quality 
of services based on the uneven load distribution, which 
determines the order of service placement.

3.	 We propose dual-label aware service replacement 
(D-LASR) algorithm to achieve dynamic service place-
ment in the subsequent state. Based on the delay sensi-
tivity label and the load gradient label, we classify ser-
vices and implements different replacement strategies 
according to the category. We construct the mapping 
relationship between the load and the response time that 
determined the redistribution granularity.

4.	 We perform performance evaluations via simulation 
experiment. And we prove that the proposed algorithm 
has greater performance in proving the quality of ser-
vices.

The remainder of this article is organized as follows. Sec-
tion 2 overviews the related work on service replacement. 
Then, we introduce the system model and expound the ser-
vice replacement problem in Sect. 3, and propose our service 
replacement strategy in Sect. 4. Next, we evaluate the per-
formance of our algorithm in Sect. 5. Finally, we conclude 
the remarks in Sect. 6.

2 � Related work

In recent years, the service replacement problem has 
attracted a lot of researches. More and more reseach results 
have emerged. In those researches, the most simplest method 

is that the services are placed on the local server, and the 
literature (Ha et al. 2015) demonstrates the effectiveness 
of this method. On the one hand, if the node resources are 
abundant, this method will minimize the response delay. On 
the other hand, if the resources are insufficient, most services 
will not be responsed on edge servers. In a comprehensive 
perspective, this method is not optimal.

The random rouding method is adopt in literature (Pou-
larakis et al. 2019) to solve studies service placement prob-
lem under the scenario of overlapping node coverage. The 
authors in Wang et al. (2017) and Wang et al. (2018) neglect 
the limitations of the node resouce (computing resource, 
storage resource, and transmission bandwidth). Therefore, 
this strategy cannot achieve the best service response qual-
ity under the condition that the resource constraints. In our 
research, the coverage area of edge nodes is nonoverlapping 
and the resource of those is limited.

In MEC system, the node resources are not only limited, 
but also heterogeneous. But in literature (Xu et al. 2018), the 
authors prorose a service placement method through weigh-
ing the delay and cost under considering node isomorphism. 
The authors of paper (He et al. 2018) adopt greedy strategy 
and improve the system performance under the isomorphic 
environment. We research a MEC system including the dif-
ference of service requirements and the heterogeneity of 
node performance.

Literature (Pasteris et al. 2019) defines the reward based 
on the service quality, and divides node resources to select 
the service with the largest deployment reward. One disad-
vantage of this strategy is that multiple replicas of the same 
service are placed on the same node. And frequent place-
ment operations consume a lot of power. The method of 
paper (Farhadi et al. 2019) is the linear programming, which 
jointly consider placement strategy and scheduling policy. 
But this research do not consider the condition of uneven 
service load distribution, which will cause a great impact 
on the service quality.

Due to the emergence of user mobility, service placement 
needs to be dynamically adjusted. For example, paper  (Li 
et al. 2014) studied a migration decision according to the 
shortest path principle in Vehicle Ad-Hoc Networks. Simi-
larly, the authors (Ksentini et al. 2014) use Markov Decision 
Processes to denote service migration problem and approxi-
mate the optimal solution based on Follow-Me Cloud and 
Mobile Micro-Clouds respectively. However, this study is 
merely limited on the single service and single user.

At present, most of the current work uses heuristic meth-
ods, such as the genetic algorithm (Islam et al. 2016), greedy 
method (Zhang et al. 2015), the regularization and round-
ing method (Lingjun et al. 2018). The work in Zhang et al. 
(2015) exploits the regularization technique to transform 
the optimization problem into a sequence of regularized 
sub-problems, then adopts the greedy strategy for request 
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redirection. And the authors in Hu et al. (2017) aim to bal-
ance the network delay and service load, solving the ser-
vices placement problem in MEC.They formulated the 
service allocation problem and farther proposed a dynamic 
service allocation algorithm based on Pareto-based optimal 
k-Medoids to find an approximate optimal service allocation 
policy. Those works did not allocate resources according to 
different categories of service delay sensitivity attributes.

In our paper, we divide the service replacement problem 
into two stages. We reference previous work (Teng 2020) 
and define the priority of nodes and services based on the 
heterogeneous characteristics of nodes and services, then 
we propose a priority placement (2P) algorithm in the initial 
state. We also propose dual-label aware service replacement 
(D-LASR) algorithm to achieve dynamic service replace-
ment in the subsequent states according to load variation 
and service sensitivity.

3 � Problem statement

We concentrate on studying service dynamic replacement 
problem in a heterogeneous MEC architecture that is shown 
in Fig. 2. This system contains multiple edge server (node) 
and a centralized cloud. The cloud has sufficient storage 
resources to place abundant services and adequate comput-
ing resources that results in faster computing speed. How-
ever, the comumunication delay is too long due to the data 
source being farther from the cloud center and the network 
bandwidth limitation Therefore, the data-intensive and delay 
insensitive services are suitable to be placed on cloud. Fur-
thermore, the edge nodes are close to data source. Therefore, 
if the services are responsed on edge nodes, it will produce 
lower delay time. However, the resources of edge nodes are 
limited. It is befitting to place delay sensitive services with 
low resource requirements on edge nodes.

The MEC system we studied is a heterogeneous inter-
active system. Services can communicate with each other 
between nodes or with remote clouds, but the network band-
width conditions between nodes and the nodes resources are 
different. In this paper, the node set is signed by N(n ∈ N) , 
and the cloud is represented by cloud. The resource capacity 
of node is represented by the vector RN , the distance between 
nodes is indicated by matrix DN×N , and the bandwidth condi-
tion is expressed by matrix WN×N . The matrices D and W are 
both symmetric. Each node n ∈ N has a unique performance, 
as shown

•	 Rn means the resource capacity of node n;
•	 Dnm expresses the distance between the node n and the 

node m;
•	 Wnm represents the bandwidth condition between node n 

and node m;

•	 Wcn
 represents the bandwidth condition between node n 

and cloud.

In addition, each service also has its own unique charac-
teristics. The service set is S(s ∈ S ), and the data volume 
of the service is the vector das . Each service has different 
response time requirements. Services with high latency sen-
sitivity need to be responded in a short time. Otherwise, 
the quality of service will be reduced. On the contrary, the 
long response time of the service with low delay sensitivity 
has less impact on its quality. In this paper, the vector sens 
represents the delay sensitivity of the service, and the vector 
uls represents the upper limit of the service response time. 
Moreover, the Cartesian product of service set and node set 
in the system is M = N × S(< n, s >∈ M, n ∈ N, s ∈ S).

In our paper, the services response time Tt⟨M,N⟩ includes 
calculation time CtM and transmission delay It⟨M,N⟩ , as shown 
in Eq. 1 The calculation time CtM is depends on the ser-
vice type and the capacity of service load, which will be 
described in Sect. 3.1 The relationship among the transmis-
sion delay ItM , the amount of service data das , the node dis-
tance D and the bandwidth condition W is defined as shown 
in Eq. 2 Since the matrices D and W are both symmetric, for 
the same service s, there is It<<s,n>,m> = It<<s,m>,n>.

In a heterogeneous MEC environment, the load of services 
will change over time. Based on this feature, we study ser-
vice dynamic replacement strategies. Firstly, we construct a 
time-slotted model (as shown in Fig. 3). The time model can 
be regarded as a simple sampling version of the traditional 
time model, and sampling is performed in the same time 
interval. The load distribution matrix in the time slot t is 
defined as Lt(M) . In a time slot, the load of the service fluctu-
ates slightly, so we set the load Lt(M) as the maximum value 
of the load in this slot, which remains fixed during same slot. 
However, the fluctuation range of the load from one slot to 

(1)Tt⟨M,N⟩ =CtM + It⟨M,N⟩

(2)It⟨<s,n>,m⟩ =

�
Dnm

Wnm

× das, n ≠ m

0, n = m

Fig. 3   Time slot
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the next is uncertain. We use �Lt(M) = Lt(M) − L(t−1)(M) 
to represent the load variation at time slot t. In the case of 
certain resource conditions, the increase in service load will 
reduce the response time of the service. In order to avoid 
a decrease in the quality of services in the system due to 
increased load, we need to dynamically adjust the amount 
of resources obtained by the service. Next, we get the map-
ping relationship between response time and load through 
experimental tests.

3.1 � Service load profile

We place services on a real cluster server and use JMeter 
to simulate different numbers of requests to access the ser-
vices at the same time. The experiment obtains the map-
ping relationship between service request response time 
and load under different resource conditions, as shown in 
Fig. 4. Figure 4a, b respectively count the load-time map-
ping of different types of services. We can receive from the 
figure that under the same resource conditions, as the load 
increases, the response time of service requests will also 
increase. When the load of the service is constant, the more 
resources allocated to the service, the lower the response 
time of the request. But when the amount of resources is 
infinite, it does not mean that the response time of the ser-
vice request can be infinitely small. Because each service 
will have a response time lower limit dls , when the resource 

is saturated, the response time of the request tends to be 
stable and remains unchanged. In addition, from Fig. 4a, b, 
we also obtain that the load-time mapping is a monotoni-
cally increasing function. Therefore, suppose the mapping 
relationship between load and response time is:

In addition, in Fig. 4c, we compare the load-time mapping 
of different service types under the same resource condi-
tions. From the Fig. 4c, we get that the load-time mapping 
is related to the service type. From the above experimental 
data, we can conclude that the calculation time of the service 
CtM is determined by the load L, service type and resource 
�M . Therefore, we can abstract the mapping relationship 
among the four variables as follows:

where, the parameter ksens is determined by the service 
type. In addition, the service type is related to the service 
delay sensitivity sens and the variation of load. Next, we will 
define the double label of the service from the two factors of 
delay sensitivity and load variation.

(3)� → g(L)

(4)CtM → f
(
sens, g(L),𝜋

)
=

ksens ⋅ g( L)

𝜋M
,
(
CtM > dls

)

Fig. 4   The load-time mapping

(a) The Load-Time Mapping of service s1 (b) The Load-Time Mapping of service s2

(c) Set resource = 2
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3.2 � Service dual‑label feature

The first label is delay sensitivity. According to the upper 
limit of service response time uls , we divide the system’s 
services into two categories: high delay sensitivity and low 
delay sensitivity. Set a threshold value Vs for the response 
time of the service in the system, which is set to the maxi-
mum value of the transmission delay between the nodes 
and the cloud in the system, as in Eq. If the upper limit of 
the response time of the service is lower than the thresh-
old value, add a high-sensitive label to the service and set 
sens = 0 . If the upper limit of the service response time is 
not lower than the threshold value, add a low-sensitivity 
label to the service and set sens = 1 . The symbol is defined 
as shown in Eq. 6.

In Fig. 4c, suppose service s1 represents a low-sensitive ser-
vice, and the upper limit of response time is uls1 . Service s2 
represents a high-sensitive service, and the upper limit of 
response time is uls2 , then uls1 > uls2 . In the case of limited 
resources and similar loads on s1 and s2 , the high-sensitive 
service s2 is allocated priority.

The second layer of label is the load gradient. We divide 
all services in the system into three categories: recycle, 
maintenance, and allocation based on the variation of the 
total load. The variation of the total load is measured by load 
change rate �s , which is defined as follows:

The value of load gradient loas is −1, 0, 1 , corresponding to 
three types of labels: recycle, maintenance, and allocation. 
This article defines the load gradient �s by setting a thresh-
old, as follows:

The service delay sensitivity label sens and the load gra-
dient label loas jointly determine the resource replacement 
method. Then the resource replacement granularity is jointly 
determined by the load amount L and the response time 
upper limit dls.

(5)Vs =max
n∈N

It⟨<s,n>,cloud⟩

(6)s sen =

{
0, uls < Vs

1, uls ≥ Vs

(7)�s =

∑�N�
n=0

�Lt(s, n)∑�N�
n=0

Lt(s, n)

(8)loas =

⎧⎪⎨⎪⎩

−1, 𝜎s < −k

0, �𝜎s� ≤ k

1, 𝜎s > k

3.3 � Problem formulation

As shown in Fig. 3, we define the state of the entire system 
at the beginning of each time slot as �(t) =

(
Lt, Xt,�t, Yt

)
 . 

The state �(t) is named the initial state of the time slot t. 
Considering that the resource redistribution strategy �t in the 
time slot t is determined based on the initial state �(t) , node 
characteristics N, and service characteristics S. This paper 
uses a�(�(t),N, S) to represent the reallocation of system 
resources when the system is in state �(t) . At the beginning 
of each time slot, the MEC controller counts the change in 
service load from Lt to L′

t
 , �Lt = Lt − L

�
t
 . When the load 

changes, the system’s series of resource redistribution strate-
gies are completed in the L′

t
 state. We assume that the time 

lost by the load change is negligible compared to the time 
lost by the resource redistribution (Fig. 3). Resource real-
location operation a� causes the system state to change from 
�(t) to a new state � �(t) =

(
L
�
t
, X

�
t
,��

t
, Y

�
t

)
 . The initial state of 

the next time slot t + 1 is �(t + 1) = � �(t).
The matrix Xt represents the service placement strat-

egy in the time slot t, the matrix �t indicates the amount 
of resources allocated by the service, and the matrix 
Yt expresses the response time of the service. Where, 
xt(s, n) = 1 means that in the time slot t, the service s is 
placed at node n, the allocated resource is �t(s, n) , and the 
response time is yt(s, n) . On the contrary, xt(s, n) = 0 means 
that the service s is not placed at node n, and the allocated 
resource amount is set to �t(s, n) = 0 . However, the request 
cannot be responded to locally, and the request needs to be 
dispatched to other nodes or remote clouds, the correspond-
ing response time is yt(s, n) . We stipulate that if the service 
s is placed at the local node n, it will be responded locally, 
and the response time is based on the load-time mapping to 
calculated. Otherwise, a remote response is required, and 
the request is dispatched to the corresponding response node 
m(xt(s,m) = 1) . Therefore, the request response time yt(s, n) 
for service s at node n can be expressed as

where, if E is true, �(E) = 1 ; otherwise, �(E) = 0 . Ct<s,n> 
means the average calculation time of service s at node n.

The variable It⟨<s,n>,m⟩ expresses the transmission delay 
that the request for service s is dispatched from node n to 
node m. In time slot t, the total response time �a�t

(Yt) of all 
services in the entire system is defined as follows:

Starting from the initial state �(0) = �0 , according to the 
resource allocation strategy � and the request scheduling 

(9)
yt(s, n) = 𝛩

�
xt(s, n) == 1

�
Ct<s,n>+

𝛩
�
xt(s, n) == 0

��
Ct<s,m> + It⟨<s,n>,m⟩

�

(10)�a�t

(
Yt
)
=

|N|∑
n=0

|S|∑
s=0

yt(s, n)
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response time Y jointly determine the sum of the long-term 
average response time of the request, which is expressed as 
follows:

In this article, our research aim is to design a resource real-
location strategy that meets the limited resource constraints 
and minimizes the total long-term response time of requests 
from the initial state.

where the constraint (10.1) means that the sum of resources 
occupied by all services that placed on one edge node should 
not exceed its capacity.

Based on the above problem statement, the service 
replacement problem is actually a limited resources allo-
cation problem. We estimate that the service replacement 
problem is an NP-hard problem (Li et al. 2018). Next, we 
will prove the hardness of this problem.

Theorem 1  The service replacement problem in a heteroge-
neous MEC system is NP-hard.

Proof  This theory will be proved by a instance, and its spe-
cial scene is set up by following assumptions: (1) We set the 
service replacement operation to be completed in a time slot, 
(2) The system architecture is composed with one cloud and 
one edge node, and (3) one node is not allowed to place mul-
tiple replicates. Based on the above assumptions, the most 
ideal solution is to place services on edge nodes to mini-
mize response time. But, the lackness of edge node resource 
results that we ought to select some services to place on 
the edge node, while other services are placed on cloud. 
The objective is to minimize the service response time. This 
problem is similar to the typical knapsack problem.

The typical knapsack problem can be formalized as fol-
lows. The items set is represent by E =

{
ei, 0 ≤ i ≤ n

}
 , 

and the weight and the value of item ei is shown as wi 
and vi , respectively. The knapsack problem is to select a 
subset Es such that the total weight does not exceed the 
capacity W of knapsack and the total value is maximized. 
Afterwards, in the system we assumed, the services set 
is S =

{
sl, 0 ≤ l ≤ n

}
 . For each service sl ∈ S , we set the 

resource required by sl be rl , and the response delay of sl be 
yl . The object is to select a subset Ss of services such that 

(11)��

(
�0
)
= lim

T→∞

{
T∑
t=0

�a�t

(
Yt
)||�(0) = �0

}

(12)�
∗
�

(
�0
)
=min

�
��

(
�0
)
, ∀�0

(10.1)
|S|∑
s=0

rat(s, n) ≤ Rn, ∀t,∀n ∈ N

the total resource occupied by services does not exceed the 
edge node resource capacity R and the response delay is 
minimized.

We assume that there exist a strategy selecting a subset 
Es such that 

∑
ei∈Es

wi ≤ W  , and 
∑

ei∈Es
vi is maximized. 

Then, we can choose a service sl ∈ S with rl = wi and 1
yl
= vi 

corresponding to a item ei ∈ Es . So we obtain a subset Ss 
with the shortest total response delay time. In addition, if we 
select a subset Ss of S to minimize the total response time, 
we can get the subset Es to maximize the value. Because the 
knapsack problem is NP-hard, we infer that the services 
placement problem in a time slot is NP-hard. It further 
proves that the services dynamic replacement problem in 
MEC system is also an NP-hard problem. 	�  ◻

4 � Service replacement strategy

In the initial state of time slot t = 0 , because the load of the 
service in the system is unknown, it is impossible to calcu-
late the service distribution based on the mapping relation-
ship CtM → f

(
sens, g(L),�

)
 and service characteristics. We 

use the prediction method to obtain the load L0 in the time 
slot t = 0 , the resource required by each service s is recorded 
as rs , and the calculation delay of the service at each node.

In the time slot t = 0 , we define the priority of nodes 
and services according to the predicted load L0 and the total 
response time matrix Tt⟨M,N⟩ . The detailed steps are in the 
Sect. 4.1. In the time slot t > 0 , the load will continue to 
change over time, and resources will be dynamically real-
located for the service according to the service attributes 
and the gradient of load change, as shown in the Sect. 4.2.

4.1 � Initial static placement

In order to roughly shorten the service response time, we 
formulate the node priority and service priority based on 
the load distribution and network condition. Afterwards, the 
initial service static placement strategy is determined under 
the defined of priority combined with greedy method. So 
we called our method priority placement (2P) algorithm. 
In 2P algorithm, we select the nodes in order of priority 
from high to low to make placement strategy firstly. Next, we 
select services with high-priority from the candidate service 
set of node to place in turn. The priority will be adjusted 
dynamically with the placed status changes in the procedure 
of initial pacement, make a dynamic priority definition. In 
the 2P algorithm, the definition of node priority and service 
priority is a key step. Next, we will explain them in detail.
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4.1.1 � Initial placement algorithm

The aim of research is to minimize the service response 
delay time, Fig. 5 describes the calculation process of the 
total delay time of system. Firstly, we define the input vari-
ables and set the performance parameter of nodes and ser-
vices as well as the upper limit value of copies � . In initial 
status, the service load distribution and the network candi-
tion are predicted through artificial intelligence technology. 
So, we use the symbol L0 to represent the load distribution in 
time slot t = 0 , and the symbol Tt<M,N> to express the system 
response time matrix. Then, we calculate the node priority 
through the three-step method, including geting the average 
delay time, geting the ideal node set and geting the service 
candidate set, which is introduced in detail in Sect. 4.1.2. 
Next, we get the initial placement strategy X0 and variables 
of allocated resources �0 , which is introducted in detail in 
Algorithm 1.

Finally, we count the response time of all services in sys-
tem at initial time slot t = 0 , based on the initial placement 
strategy X0 . In time slot t = 0 , the number of service replicas 
Ps is calculated according to the Eq. 13. The equation Ps = 0 
means there has none replica of service s in system, and all 
request about service s should be scheduled to the cloud. For 
each node n ∈ N  , we set y0(s, n) = Tt<<s,n>,cloud> . But, the 
equation Ps ≠ 0 indicates that the system has one replicas 
of service s at least. In this case, the service request will be 
responsed on edge node whose response time is minimum. 
So, the response time y0(s, n) will be caculated by Eq. 14. 
Finally, output the placement scheme X0 , variables of allo-
cated resources �0 and response time Y0.

(13)Ps =

|N|∑
n=0

x0(s, n)

(14)y0(s, n) =

{
Tt<<s,n>,cloud>, Ps = 0

minm∈N{Tt<<s,n>,m>}, Ps ≠ 0

4.1.2 � Define node priority

The number of services request distribute unevenly, which 
means that the service load distribution is imbalance. The 
resources of nodes whose coverage area includes a larger 
number of load are limited, and have greater contribu-
tion in improving the quality of services (QoS). The aim 
of our paper is to improve QoS through minimizing the 
total response time of all services, as expressed in Eq. 12. 
Therefore, our paper define node priority after three steps 
of calculation.

The first step, we suppose a situation that all requests for 
services s are responsed on one node m. Based on the input 
variables L0 and Tt<M,N> , we caculate the average response 
time when all requests of service s are scheduled to the same 
node m, which is formulated as follow Eq. 15. The average 
response time of other services can be counted in the same 
way. We take advantage of averageDelay(Tt, L0) function to 
calculate Eq. 15 and gain the matrix Q, which is a key vari-
able in the 2P algorithm.

The second step is to caculate the ideal node set. 
Because the heterogeneity of system results in the 
Qs

m
≠ Qs

n
(s ∈ S,m ∈ N, n ∈ N) , the response time of request 

scheduling to different nodes is not equal. According to the 
order of matrix Q, the ideal node set is defined as follows:

where NCs,1 = np1 indicates that the first ideal node of ser-
vice s is np1 , NCs,2 = np2 indicates that the second ideal node 
of service s is np2 , … , and NCs,i = npi indicates that the ith 
ideal node of service s is npi.

Get the ideal node set in Fig. 5 by calculatng a two-dimen-
sional matrix NCS×|N| . In terms of the variables NCs,i ∈ NC , 
where s ∈ S, i ≤ |N| , we infer the meaning of row vector and 
column vector of two-dimensional matrix NC:

•	 row vector NCs,|N| indicates the ideal node sequence of 
service s;

•	 column vector NCS,i express the ith ideal node of all ser-
vices.

(15)Qs
m
=

∑�N�
n=0

Tt⟨⟨s,n⟩,m⟩ ⋅ L0(s, n)∑�N�
n=0

L0(s, n)
, s ∈ S,m ∈ N, n ∈ N

(16)
NCs =

{
np1 , np2 ⋯ npi ⋯

||Qs
np1

≤ Qs
np2

≤ ⋯

≤Qs
npi

≤ ⋯ , npi ∈ N
}

Fig. 5   Initial services placement process
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The third step, based on the matrix NC, we get the initial 
service candidates set SC of each node, through initService-
CandidateSet() function. As follows:

Initially, based on the vector NCn , the service candidate vec-
tor of node n includes services whose ideal node is n, which 
is marked as SCn . With the placement process, the reduction 
of node resource leads that the vector SCn will be dynami-
cally adjusted. The node whose service candidate vector SCn 
has more services creates higher value on improving QoS. 
Therefore, the node priority we defined is the modulo |SCn|.

4.1.3 � Priority placement (2P) algorithm

The Algorithm 1 describes the service placement process 
in detail, which maps to the function servicePlacement() of 
Algorithm 1. The placement strategy of node e is to choose 
services s with higher priority from service candidate vec-
tor SCe . After the service s is placed on node e, we add this 
service to the vector SCe′ of its sub-ideal node e′.

The algorithm loops through lines 1–21 until the services 
candidate vector of all nodes is null. In a loop, we firstly 
choose a node with the highest priority in turn, which is 

(17)SCn =
{
sp1 , sp2 ⋯ spi ⋯

||NCspi
,1 = n, spi ∈ S

}

expressed as e. Then, we sort the services within a collection 
SCe by service priority � . The definition of service priority 
comprehensively considers three factors, the service loads, 
the number of replicas, the average response time and the 
response time gap with the sub-ideal node, as shown in the 
Eq. 18.

In Eq. 18, the total load of the service s is caculated through ∑�N�
n=0

L0(s, n) . The symbol Ps is the number of replicas of 
service s. Suppose that the ith ideal node of service s is node 
e, NC(s,i) = e , and the next ideal node is e′ , NC(s,i+1) = e� . 
So, the average response time indicated as symbol Qs

e
 when 

all requests of services s are scheduled on node e. And the 
response time gapcaculate through �Qs = Qs

e�
− Qs

e
 . The 

symbol k1 and k2 is parameter values. From the Eq. 18, we 
get a conclusion that the greater the time gap and the service 
loads are, the higher the priority is. And if the average delay 
time and the number of replicas are greater, the service pri-
ority will be lower.

Next, in lines 5–18, the algorithm select service based 
on the service priority to execute the placement process. 
If the resource requested by the service s is lower than 

(18)�s,e =
�Qs + k1 ⋅

∑�N�
n=0

L0(s, n)

Qs
e
+ k2 ⋅ Ps

, s�S, e�N, n�N
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the remaining resources of the node e, the service will be 
placed and make x0(s, e) = 1 , �0(s, e) = rs . Otherwise, we 
set x0(s, e) = 0 and �0(s, e) = 0 . In the next step, we judge 
whether to continue to place service s depends on the upper 
limit of service replicas � . In lines 14-18, the service whose 
quantity in system is not more than the upper limit � will 
be appended to the service candidate collection SCe′ of the 
next ideal node e′ . It is obtained by function findNextNode().

When the service is added to the service candidate collec-
tion of node e′ , the node priority |SCe′ | and the service prior-
ity �s,e′ will change based on the Eqs. 17 and 18 respectively. 
At the end of the node e placement process, we clean up all 
services in the collection SCe through the function clear(). 
And continue the placement process of next node in loops 
1–21 until all nodes in system have none priority.

4.2 � Dynamic service replacement

Under the constraints of the limited resources of the edge 
node, in order to allow more services to meet the upper 
limit of response time requirements, enhance the quality 
of service, so that achieve the purpose of minimizing sys-
tem response time, we only place one low-sensitive service 
replica in the entire edge node system. All requests for the 
service within the scope of each node are dispatched to the 
same node to respond. Since the high-sensitive services need 
to be responded as quickly as possible, we try to place this 

type of service locally to avoid the degradation of service 
quality due to transmission delays. Next, we will introduce 
in detail how to use the dual-label aware service replacement 
algorithm based on service attributes and load gradient.

4.2.1 � Dual‑label aware service replacement (D‑LASR) 
algorithm

Algorithm 2 describes the replacement strategy of resources 
in the continuous time slot, which is named dual-label aware 
service replacement algorithm (D-LASR). Initially, line 1 
initializes the resource amount of the service at each node 
to zero (�t(M) = 0) . Line 2 divides the service set S into a 
highly sensitive service set SH and a low sensitive service 
set SL according to the delay sensitivity label sens of the 
service. Based on the load gradient label loas , line 3 divides 
the services in the SH and the SL into the high-sensitive 
recycle set SHr, the high-sensitive maintenance set SHm, 
the high-sensitive allocation set SHa, the low-sensitive recy-
cle set SLr, the low-sensitive maintenance set SLm and the 
high-sensitive allocation set SLa. When reallocating node 
resources in each time slot, all resources of high-sensitive 
services that was allocation in the initial state must be recy-
cle, such as lines 5–11. The purpose of this step is to avoid 
too many resources occupied by the service with too low 
load, and the service with overload cannot obtain enough 
resources, which will cause a waste of resources.
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Next, lines 12–17 began to execute resource reallocation 
operations on services with various tags in turn. During this 
operation, the dual-label determines the sequence of 
resource reallocation operations. In this strategy, we give 
priority to allocating resources for the services in the low-
sensitivity recycling collection, as shown in line 12. At first, 
the purpose of allocating services in the SLr set is to allow 
low-sensitivity services to release excessive resources and 
provide sufficient resources for subsequent services. In 
Algorithm 3, a detailed algorithm that reallocate low-sensi-
tive service (RaLSS) is introduced. Following, lines 13–15 
sequentially implement resource allocation for high-sensi-
tive services. From the optimization goal, we stipulate that 
the pr ior i ty  order  of  resource al locat ion is 
SHr > SHm > Sha . In Algorithm 4, a detailed algorithm that 
reallocate high-sensitive service (RaHSS) is introduced. 
After that, lines 16–17 execute the RaLSS algorithm detailed 
in Algorithm 3 on the SLm and SLa sets in turn. Finally, line 
18 uses the getTotalResponseTime() function to calculate the 
average response time �a�t

 of all requests in the t time slot, 
and line 20 calculates the average response time �a�t

 in all 
time slots in the continuous time T, which is used as an 
important indicator to measure the performance of our 
algorithm.

4.2.2 � Reallocate low‑sensitive services (RaLSS) algorithm

Algorithm 3 (RaLSS) realizes resource reallocation for low-
sensitive services. In this algorithm, we use SLx to replace 
the three types of service sets SLm, SLr, and SLa. Due to 
the long response time required by low-sensitive services, 
there is only one replica of this kind of service in the system, 
and most of these service requests cannot be responded to 
locally. We need to schedule the request to the same node 
to respond. Although transmission delays occur during this 
process, for low-sensitive services, the final response time 
can meet the upper limit of service response time. In RaLSS 
algorithm, we first sort the services in SLx by priority in 
line 1. We use the total load to measure the priority of the 
service, such as the Eq. 19, the higher the total load, the 
higher the priority.

(19)SPs =

|N|∑
n=0

Lt(s, n)

Next, lines 2–23 make resource reallocation decisions for the 
services in SLx in turn. The algorithm counts the total load 
sumLoad of the service si at line 3, and obtains the maxi-
mum value of the transmission delay commTime between 
each node in the system in line 4. Based on the sum vari-
able of the load sumLoad, the difference between the upper 
limit of service response time siul and the maximum trans-
mission delay commTime, and the mapping relationship 
CtM → f

(
sens, g(L),�

)
 between the calculated delay and 

service characteristics in the system, the getMinResource() 
function calculates the amount of resources on the line 5 
of Algorithm 3. In line 6 of the algorithm, the findProper-
Node() function selects an optimal node from the system to 
place the service according to the amount of resources, load, 
and resource allocation at the previous moment �(t − 1) . In 
the function findProperNode(), we first find the node where 
the service si is placed from the matrix Xt−1 . If it exists, 
select the node with the highest priority and the remain-
ing resources Rn ≥ resource . Otherwise, we select the node 
with the highest priority that satisfies Rn ≥ resource from the 
node set N in this system. We set that the higher the load rate 
and the more the remaining resources, the higher the priority 
the node has. The definition is as follows:

If a node n can be sought through findProperNode(), which 
can reallocate resources to the service si , execute lines 
7–18, otherwise, execute line 19–22. If the node n allocates 
resource for the service si , it needs to update the related 
variables. For example, the amount of resources allocated 
to service si by node n is set to �t(si, n) = resource , deploy-
ment variable is defined by xt(si, n) = 1 , and the remaining 
resources is set to Rn = Rn − (�t(si, n) − �t−1(si, n)) , such as 
lines 8-10 in the algorithm. The variables �t and xt of other 
nodes are set to zero, such as lines 14-17. The response time 
yt(si,m) of the request for service si within the scope of each 
node is equal to the sum of the calculation delay time and 
the transmission delay It<<si,m>,n> , which is calculated by 
getResponseTime() function. If the findProperNode() func-
tion does not find an appropriate node to allocate resources 
to the service si , all requests will be dispatched to the cloud.

(20)NPn =
Lt(M)

∑�N�
n=0

Lt(s, n)
× Rn
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4.2.3 � Reallocate high‑sensitive services (RaHSS) algorithm

For high-sensitive services, we place the service on a local 
server as much as possible to avoid transmission delay lead-
ing to a decline in service efficiency. Algorithm 4 (RaHSS) 
describes the complete strategy of resource allocation for 
high-sensitive services. Similarly, we use SHx instead of 
SHr, SHm, and SHa. First, we sort the services in the SHx 
set according to the priority of Eq. 19. Next, lines 2–20 
sequentially redistributes resources within each node of 
each service in the SHx set. In the replacement process, if 
there is no request for service si in the range of node n, we 
will not do anythingthe. The three variables �t(si, n) , xt(si, n) 

and yt(si, n) defaults to zero. Otherwise, we use the getMin-
Resource() function to calculate the amount of resource 
required by the service, and use the getResponseTime() 
function to find the local response time in the state of serv-
ing this resource amount. Next, Algorithm 4 determines 
whether the remaining resource amount Rn of the local node 
n meets the resource required by the service. If it is satis-
fied, set the resource allocation amount �t(si, n) = resource , 
placement variable xt(si, n) = 1 and response time variable 
yt(si, n) = time , and then update the remaining resource 
amount Rn of node n. If the remaining amount of the node 
does not satisfy the amount of resource required by the ser-
vice, the requests are dispatched to the cloud.
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5 � Evaluation

In this section, we evaluation D-LASR algorithm. We take 
the greedy algorithm as the baseline and conduct compara-
tive experiments for three significant factors.

The first factor is the sensitivity of the service, so we con-
structed a comparison algorithm, namely the single-feature 
service reallocation algorithm, referred to as S-FSR. In the 
S-FSR algorithm, the services are classed into recycle set, 
maintenance set and allocation set. The detailed strategy of 
the S-FSR algorithm is to make redeployment decision for 
the services in the recycle set, maintenance set and alloca-
tion set in sequence. This algorithm stipulates that there is 
only one service replica in the system. Therefore, the S-FSR 
algorithm selects the optimal node to place for each service 
according to the node priority defined by Formula  20. Then 
it calculated the appropriate amount of resources for real-
location through the delay function CtM.

The second factor is whether to recycle useless resources, 
so we create a second comparison algorithm called the no-
recycle service reallocation algorithm or N-RSR for short. 
The N-RSR algorithm reallocation strategy is to determine 
whether the amount of resources allocated at the previous 

time slot meets the amount of resources required at this time 
slot. If not, the service needs to be reallocation according to 
the delay function CtM.

In the third resource allocation algorithm, the amount of 
resources required by the service is constant and does not 
vary with changes in load, and each reallocation changes the 
node where the services are placed. We call this algorithm a 
constant service replacement algorithm, referred to as CSR. 
Next, we have carried out a detailed simulation experiment 
and compared the experimental results.

5.1 � Simulation settings

There is only one cloud and N edge nodes in the simulation 
system, and the resource capacity of the nodes is hetero-
geneous. The resource of nodes Rn is set to be within the 
rage of [50, 350]. We set the transmission delay between 
nodes is It<s,n>,m ∈ [150, 250](n ≠ m) , which is a symmet-
ric matrix. The resources in the cloud are infinite, and the 
transmission delay between the node and the cloud is set to 
It<s,n>,m ∈ [200, 400] . We set up 100 services (s = 100) in the 
system, including two types of services, one is high latency 
sensitivity and the other is low latency sensitivity. For highly 
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sensitive types, the upper limit of service response time is 
set to uls ∈ [500, 600] , lower limit of response time is set to 
dls ∈ [100, 110] . For lowly sensitive types, the upper limit 
of service response time is set to uls ∈ [1000, 1100] , lower 
limit of response time is set to dls ∈ [200, 210].

This simulation experiment tests the reallocation of 
resources in 20 time slots. In each time slot, the load Lt(M) 
is randomly generated in [0, 50], which obeys Gaussian 
distribution. The calculation time Ctt(M) is related to the 
service delay sensitivity, allocated resources and the amount 
of load, as shown in Eq. 4. For highly sensitive services, the 
parameter ksens = 1 in the formula, but for low sensitive 
services, the parameter ksens = 40 . In our experiment, the 
mapping relationship between load and response time is set 
as g(Lt(M)) = Lt(M)3∕2.

The time slot t = 0 is the initial state, and the service 
placement strategy in this time slot is obtained according 
to the 2P algorithm. In the initial state, because the service 
load is unknown, it is impossible to calculate the amount 
of resource that the service needed and the corresponding 
calculation delay according to the mapping relationship 

CtM → f
(
sens, g(L),�

)
 . In consequence, we set the resource 

demand of highly sensitive services rs ∈ [40, 50] , and the 
resource demand of low sensitive services as rs ∈ [10, 20] 
by predicting the load distribution. In addition, the delay 
caused by computing is set to Ct0(M) ∈ [100, 200] at the 
time slot t = 0.

In order to better compare the performance of the D-LASR 
algorithm with the other three comparison algorithms, we 
conducted three series of comparison experiments. In addi-
tion to comparing response time variables �  , we also com-
pared the quality of service QoS and resource utilization �t.

In this article, the quality of service is measured by com-
paring the service response time yt(s, n) with the service 
response upper limit uls . If yt(s, n) ≤ uls , the quality of ser-
vice is high, and set QoS = 1 . Otherwise, set QoS = 0 . The 
definition is as follows

In addition, resource utilization is defined as follows

(21)QoS =

{
1, yt(s, n) ≤ uls
0, yt(s, n) > uls

Fig. 6   The response time

(a) The response time per time slot (b) The ratio of the response time

Fig. 7   The quality of services 
(QoS)

(a) The QoS per time slot (b) The ratio of the QoS
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From the definition, we can see that if the remaining 
resources of the algorithm are the same, the lower the 
response time, the higher the resource utilization. Similarly, 
if the response time is equal, the more remaining resources, 
the higher the resource utilization. The k in the formula is a 
parameter, we set k = 2000 in our test.

At the same time, we calculate the ratio of the D-LASR 
algorithm and the three comparison algorithms in terms 
of response time, service quality, and resource utilization. 
Assuming that the performance of the D-LASR algorithm 
is P0 , while the other three comparison algorithms are Pi , 
the ratio is

5.2 � Results comparing

In Fig. 6, we count the average response time of each algo-
rithm and the response time ratio between the D-LASR algo-
rithm and the comparison algorithms in the time slot 1–19. 
According to Fig. 6a, we find that the average response time 
of services in the D-LASR algorithm is the lowest, fluctuat-
ing approximately between 1000 and 1500 ms. The response 
time of services in the S-FSR algorithm is the highest. This 
is because services are not placed according to delay sen-
sitivity in the S-FSR algorithm. And fewer service replicas 
in this system cause that most requests to be dispatched to 
other nodes to respond, as well as, a large amount of trans-
mission delay results in the increase of the total response 
time in system. In the S-FSR algorithm, the response time at 

(22)�t =

∑�N�
n=0

Rn + k

�a�t

(23)� =
P0

Pi

the time slot t = 1 is smaller than that in the time slot t > 1 . 
This is mainly because the remaining resource fragments of 
nodes in the system are less at the initial stage of resource 
reallocation, and most services can meet the demand, so the 
response time of the service is low. However, as time goes 
by, resource fragmentation in the system increases, causing 
many services to fail to respond at the edge, so the response 
time becomes longer and gradually stabilizes.

The response time of the N-RSR algorithm gradually 
increases in the time slot t < 4 , but the response time tends to 
be stable in the time slot t > 4 . The main reason for this phe-
nomenon is that the N-RSR algorithm causes a lot of waste 
of useless resources, but the system resources are limited. As 
time goes by, more and more services will allocate resources 
that cannot reach the required amount of resources. When 
all resources in the system are occupied and none resources 
are allocated to the service, the response time of the system 
tends to be stable. Because the resource demanded by the 
service is stable in the CSR algorithm, the response time of 
this system is also constant. From the Fig. 6a, we discover 
that the average response time fluctuates around 2500 ms, 
which is higher than that of the D-LASR algorithm.

In Fig. 6b, we get the response time ratio between the 
D-LASR algorithm and the three comparing algorithms in 
the different time slots. The response time ratio is lower than 
zero, indicating that the response time of our algorithm is 
low and the performance is superior. From the Fig. 6b, we 
can find that the response time of the D-LASR algorithm 
is almost 1/2 of the comparison algorithm, and basically 
remains unchanged. In addition, since the response time 
ratio between the D-LASR algorithm and the CSR algorithm 
is the highest, however the response time ratio between the 
D-LASR algorithm and the S-FSR algorithm is the lowest, 
we can also get a conclusion that the CSR performance is the 

Fig. 8   The resource value

(a) The resource value per time slot (b) The ratio of the resource value
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best and the S-FSR algorithm has the worst performance in 
these three comparison algorithms.

In Fig. 7, we receive a curve graph of the quality of 
services (QoS) over time and a bar graph of the QoS ratio 
between the D-LASR algorithm and the comparing algo-
rithms. According to Fig. 7a, we conclude that the QoS in the 
D-LASR algorithm is the highest, but in the S-FSR algorithm 
it is the worst and almost approaching zero. Corresponding 
to Fig. 6a, the QoS of the S-FSR algorithm is relatively high 
at the time slot t = 1 . In the later stage, the nodes within the 
S-FSR algorithm generate a lot of resource fragmentation 
and the same service will be responded to on the same node, 
the remaining resources of the node cannot meet the service 
demand in this system. The above phenomenon causes that 
the actual response time of services exceed the upper limit, 
reducing the quality of service in the system. Similarly, the 
QoS in the N-RSR algorithm gradually decreases within the 
range of time slot t < 4 , and tends to stabilize within the 
range of t > 4 . The reasons for this trend are the same as in 
Fig. 6a. In addition, the QoS in the CSR algorithm is also 
changeless, and the conclusion of the experiment is consist-
ent with that of the previous experiment.

Figure 7b shows the QoS ratio of D-LASR algorithm 
to N-RSR algorithm and CSR algorithm. The QoS ratio 
is greater than 1, indicating that the performance of the 
D-LASR algorithm is better than the N-RSR algorithm and 
the CSR algorithm. From Fig. 7a, we find that QoS of the 
S-FSR algorithm is approximately zero. Therefore, the 
QoS ratio between the D-LASR algorithm and the S-FSR 
algorithm is so large that we did not count it in the test of 
Fig. 7b. According to Fig. 7b, at the time slot t = 2 , the QoS 
of the N-RSR algorithm is about five times as big as the 
N-RSR algorithm is. In the t > 2 stage, the QoS ratio fluc-
tuates between 10 and 20 times. On the contrary, the QoS 
ratio between the N-RSR algorithm and the CSR algorithm 
is relatively stable and has been maintained at about four 
times. Based on the above conclusions, it can be concluded 
that the performance of the CSR algorithm is better than the 
N-RSR algorithm, which is consistent with the conclusion 
obtained in Fig. 6b.

In Fig. 8, we calculate the resource utilization rate of each 
algorithm over time according to the Eq. 22 and compare the 
performance of the D-LASR algorithm with the comparison 
algorithms in terms of resource utilization. It is found from 
Fig. 8a that the resource utilization rate of the D-LASR algo-
rithm is the highest, and it remains around 1.5. The resource 
utilization rate of the CSR algorithm is lower than that of 
the D-LASR algorithm, and is about 0.9. In the time slot 
t > 2 , the resource utilization of the S-FSR algorithm and 
the N-RSR algorithm are approximately equal. Although 
we find that the response time of the N-RSR algorithm is 
lower than that of the S-FSR algorithm from Fig. 6a, the 
resources of the N-RSR algorithm are more wasteful than 

the S-FSR algorithm. Therefore, according to the definition 
of resource utilization (Eq. 22), the similarity of resource 
utilization between S-FSR algorithm and N-RSR algorithm 
is reasonable.

Figure 8b shows the ratio of D-LASR algorithm and 
comparison algorithm in terms of resource utilization. The 
resource utilization ratio greater than 1 indicates that our 
algorithm has a higher resource utilization than the compari-
son algorithm. From this figure, we can see that the resource 
utilization of the D-LASR algorithm is approximately twice 
that of the S-FSR algorithm and the N-RSR algorithm. It can 
also show that the performance of the S-FSR algorithm and 
the N-RSR algorithm are similar in terms of resource utili-
zation. In addition, the resource utilization of the D-LASR 
algorithm is about 1.6 times that of the CSR algorithm, 
which shows that the performance of CSR is better than that 
of the other two comparison algorithms in terms of resource 
utilization. Those conclusions are consistent with the previ-
ous two test conclusions.

6 � Conclusion

In this paper, we investigate the service replacement problem 
in a heterogeneous MEC interactive system by dividing the 
problem into two states. In the initial state, we set priorities 
for the nodes and services, which can be adjusted dynami-
cally according to the placed state. To model the priority, 
we analyzed several factors such as service load distribution 
or delay time, obtained the initial service placement strat-
egy in order of priority. In the sequence states, we propose 
dual-label aware service replacement (D-LASR) algorithm 
to achieve dynamic service replacement that varies with ser-
vice load. The delay sensitivity label and the load gradient 
label determine the replacement strategy, and the mapping 
relationship between the load and the response time deter-
mine the replacement granularity. We conduct extensive 
simulations, and the results show that our algorithm has sig-
nificant performance improvement on response delay reduc-
tion, the quality of service (QoS) and the resource value.
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