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Abstract—The increasing popularity of social networks has inspired recent research to explore social graphs for marketing and
data mining. As social networks often contain sensitive information about individuals, preserving privacy when publishing social
graphs becomes an important issue. In this paper, we consider the identity disclosure problem in releasing weighted social
graphs. We identify weighted 1*-neighborhood attacks, which assume that an attacker has knowledge about not only a target’s
one-hop neighbors and connections between them (1-neighborhood graph), but also related node degrees and edge weights.
With this information, an attacker may re-identify a target with high confidence, even if any node’s 1-neighborhood graph is
isomorphic with k − 1 other nodes’ graphs. To counter this attack while preserving high utility of the published graph, we define
a key privacy property, probabilistic indistinguishability, and propose a heuristic indistinguishable group anonymization (HIGA)
scheme to anonymize a weighted social graph with such a property. Extensive experiments on both real and synthetic data sets
illustrate the effectiveness and efficiency of the proposed scheme.

Index Terms—weighted social networks, weighted 1*-neighborhood attack, probabilistic indistinguishability, privacy.
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1 INTRODUCTION

The increasing popularity of social networks has s-
timulated recent research to explore social graph data
to understand its structure, advertising and market-
ing, and data mining. Social networks model social
relationships with a graph structure using nodes and
edges, where nodes model individual social actors
in a network and edges model relationships between
social actors. Therefore, publishing the original social
network data directly may compromise individuals’
privacy, resulting in unacceptable consequences.

A naı̈ve anonymization approach to preserving in-
dividuals’ privacy simply involves removing nodes’
identities before publishing. However, recent studies

• Qin Liu is with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, Hunan Province, P. R.
China, 410082. E-mail: gracelq628@hnu.edu.cn

• Guojun Wang is with the School of Computer Science and Educational
Software, Guangzhou University, Guangzhou, Guangdong Province,
P. R. China, 510006. E-mail: csgjwang@gmail.com (corresponding
author)

• Feng Li is with the Department of Computer and Information
Technology, Indiana University-Purdue University Indianapolis,
Indianapolis, IN 46202-5160, USA. E-mail: fengli@iupui.edu

• Shuhui Yang is with the the Department of Math, Computer Science,
and Statistics, Purdue University Calumet, Hammond, IN 46323,
USA. E-mail: yang246@purdue.edu

• Jie Wu is with the Department of Computer and Information
Sciences, Temple University, Philadelphia, PA 19122, USA. E-mail:
jiewu@temple.edu

Fig. 1. Weighted 1*-neighborhood attacks.

have shown that an attacker that has background
knowledge about a target’s degree [1], neighbors [2],
or subgraphs [3] can still re-identify the target with
high confidence. For example, Zhou et. al. [2] de-
fined a 1-neighborhood graph as an individual’s one-
hop neighbors and the connections between them,
and also identified 1-neighborhood attacks, which allow
an attacker with knowledge of an individual’s unique
1-neighborhood graph to re-identify the target from
a naı̈vely anonymized social network. To resist re-
identification attacks, the mechanism of k-anonymity
was adopted by ensuring that each node is indistin-
guishable from at least k − 1 others. For example,
in a k-neighbor-anonymous social network [2], each
node’s 1-neighborhood graph is isomorphic to at least
k − 1 other nodes’ graphs.

However, existing research is mainly concerned wi-
th anonymizing unweighted graphs. In practice, many
social networks are intrinsically weighted, where the
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edges have different strengths denoting the affinity
between nodes. From both theoretical and practical
viewpoints, weighted graphs provide more unique
structural information than unweighted graphs, there-
by increasing the risk of identity disclosure.

In this paper, we concentrate on publishing weight-
ed social networks in a privacy preserving way. We
first identify a weighted 1*-neighborhood attack. In addi-
tion to the target’s 1-neighborhood graph, we assume
that an attacker has knowledge about the degree of
each one-hop neighbor and the weight on each edge
of the 1-neighborhood graph. We call this kind of
information the weighted 1*-neighborhood graph, which
provides richer background knowledge about the tar-
get. Thus, a k-neighbor-anonymous social network
still suffers from weighted 1*-neighborhood attacks.

To illustrate this, let us consider a subgraph extract-
ed from a weighted social network, actor, as shown
in Fig. 1-(a), where a node denotes an actor, an edge
that links two actors denotes previous cooperation
between the two in a movie, and the weight on
the edge denotes the amount of cooperation between
the two actors. Fig. 1-(c) is a naı̈vely anonymized
social network, where node identity is replaced by
a random number. If the attacker knows that Bob
has co-stared with Alice, Clark, Donland, and Harry
and that there have been cooperations between Alice
and Clark as well as between Donland and Harry,
then Bob’s 1-neighborhood graph is exposed. The
attacker can re-identify Bob from Fig. 1-(c), where
only v2’ neighborhood matches Bob’s information. By
adding an edge between nodes v5 and v6 with the
weight of value 1, we have a 2-neighbor-anonymous
social network, as shown in Fig. 1-(d), where nodes
{v2, v1}, {v4, v8}, and {v3, v5, v6, v7} have isomorphic
1-neighborhood graphs. If an attacker knows only
Bob’s 1-neighborhood graph, he cannot distinguish
Bob from nodes {v2, v1}. However, if the attacker
knows that Bob has co-stared with Donland four times
and that Donland has cooperated with three actors,
Bob’s weighted 1*-neighborhood graph (Fig. 1-(b)) is
partially exposed, and Bob can be re-identified from
Fig. 1-(d) with probability 1.

To resist the weighted 1*-neighborhood attack, we
can simply remove all weight information and add
more edges to make neighbors’ degrees isomorphic.
However, the utility of the social network will be
largely reduced. For example, the trivial solution dis-
ables aggregate queries on the social network, such as
the average number of cooperations between actors.
To permit useful analysis on the social networks while
preserving the privacy of the social actors involved,
we define a key privacy property, probabilistic in-
distinguishability, for a weighted social network. To
generate an anonymized social network with such
a property, we propose a heuristic indistinguishable
group anonymization (HIGA) scheme.

Our basic idea consists of four main steps: 1)

Node Grouping groups nodes whose weighted 1*-
neighborhood graphs satisfy certain metrics together
and provides a combination and splitting mechanis-
m so that each group has an appropriate size; 2)
Approximate Matching Test determines whether the
weighted 1*-neighborhood graphs of any pair of
nodes in a group are approximately matching or
not, by random-walk-based structural similarity mea-
surement and weight compatibility measurement; 3)
Group Anonymization utilizes the Graph Approach and
Weight Generalization algorithms so that a group of
nodes’ weighted 1*-neighborhood graphs have similar
structures and compatible weights; 4) Randomization
randomly modifies the graph structure with a cer-
tain probability to ensure that each weighted 1*-
neighborhood graph has a certain probability of being
different from the original one. Steps 1 through 3
enable all nodes in the network to be classified into
multiple groups, where a group of nodes’ graphs are
exactly similar. After Step 4, the nodes in a group still
have similar graphs, which have a high probability of
deviating from the original structure. In each group
from the current weighted 1*-neighborhood graphs
of any pair of nodes, the attacker cannot decide
whether or not the nodes have the same graphs that
they had in the original graph, achieving probabilistic
indistinguishability. Our contributions are threefold:

1) We identify a novel weighted 1*-neighborhood
attack for publishing privacy preserving weight-
ed social graphs with high utility.

2) We define the probabilistic indistinguishability
property for a weighted social network, and
we propose a heuristic indistinguishable group
anonymization scheme (HIGA) to generate so-
cial networks with this privacy property.

3) We conduct experiments on both synthetic and
real data sets to verify the effectiveness of the
proposed scheme.

2 PRELIMINARIES
2.1 Definitions and Notations
In this paper, a social network is modeled as an
undirected and weighted graph G = (V , E ,W), where
V is a set of nodes, E is a set of edges, and W is a
set of weights on the edges. The node identities are
anonymized with random numbers. The cardinalities
of V and E , ||V|| and ||E||, denote the number of
nodes and edges in G, respectively. We assume that
||V|| = n and ||E|| = m. The nodes of the graph,
V = {v1, v2, . . . , vn}, denote meaningful entities from
the real world such as individuals, organizations,
communities and so on. ei,j ∈ E is an edge between
nodes vi, vj ∈ V , denoting the relationship between
a pair of nodes, such as friendship, partnership, co-
authorship, and so on. Each edge ei,j is associated
with a weight wi,j ∈ W which denotes the affinity
between nodes vi and vj such as the communication
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frequency between individuals, the similarity between
two communities, and so on.

We assume that the attacker has certain background
knowledge about the target and that he tries to re-
identify the target by analyzing the published social
network. To protect the social actors in the network
from the re-identification attacks, the social network
graph G will be anonymized to G′ = (V ′, E ′,W ′) bef-
ore publishing. As in [2], we assume ||V|| = ||V ′|| to
preserve the global structure of the social network. As
in previous work [4], we assume that edge addition
and edge deletion are allowed for generating G′.

2.2 Background Knowledge
We assume that an attacker may have background
knowledge about the weighed 1*-neighborhood graphs of
some targets. Following the work in [2], we provide
the following definitions:
1-Neighborhood Graph. G(v) = (V (v), E(v)), where
V (v) = v ∪ {u|ev,u ∈ E}, and E(v) = {ew,u|w, u ∈
V (v) ∧ ew,u ∈ E}.
Weighted 1*-Neighborhood Graph. G∗(v) = (G(v),
D(v),W (v)), where G(v) is node v’s 1-neighborhood
graph, D(v) = [dv1, . . . , dv||V (v)||] is the degree sequence
with dvi denoting the degree of the i-th node in V (v), and
W (v) = [w1, . . . , w||E(v)||] is the weight sequence with wj

denoting the weight on the j-th edge in E(v).

We focus on the weighted 1*-neighborhood attack
since it tends to be much more difficult for an attacker
to collect information beyond a one-hop neighbor-
hood [2]. The reason is that the diameter of social
networks is small due to the small-world character-
istic. Therefore, the attacker has to collect information
about many nodes to initiate d-neighborhood attacks,
for d > 1. It is worth noticing that socialbots [5] can
be used as a tool to harvest private user data. The
countermeasures proposed in [5] can be employed
to alleviate this situation. Furthermore, the detailed
neighborhood information about a target’s directed
neighbors is more difficult to collect than their degree
information. For example, it may be easy to know that
Bob has a very close friend Alice, who has 100 friends,
but it is hard to know detailed information, e.g., ID,
or age, regarding these 100 friends.

2.3 Random-Walk-Based Similarity Measurement
Inspired by the work in [6], we use random walk (R-
W) [7] as a tool for structural similarity measurement.
The basic idea is to perform RW on two graphs to
obtain the steady state distribution (topological signature)
for each graph. Then, we calculate the distance be-
tween topological signatures and determine that two
graphs are approximately matching when the distance
is smaller than a threshold value.

Specifically, consider graph G = (V, E), where V =
{v1, . . . , vn}. A RW on G allows the probability pv(t)
of v, located at time t, to be computed with Eq. 1:

pv(t) =
∑

u∈V
p(v|u, j) · (1− df) · pu(t− 1)

+
∑

u∈N(v)
p(v|u, l) · df · pu(t− 1)

(1)

where N(v) denotes the one-hop neighbors of node
v ∈ V , df is the damping factor which defines
the probability of directly jumping or traverse, and
p(v|u, j) and p(v|u, l) are the probabilities of moving
from u to v by performing jumping or by traversing
the edge eu,v , respectively, under the requirements of
∀u ∈ V ,

∑
v∈V p(v|u, j) = 1 and

∑
v∈N(u) p(v|u, l) = 1.

In an unlabeled graph, we select the node for
a jump over all n nodes in the graph, and for a
traversing over all one-hop neighbors, with a uniform
probability distribution. Therefore, p(v|u, j) = 1/n
and p(v|u, l) = 1/||N(u)||. In a labeled graph, we
define the tendency of following an edge and jumping
from node u to node v as functions fl and fj of
two nodes labeled Lu and Lv , respectively. The above
tendency functions can be normalized with Eq. 2:

p(v|u, l) = fl(Lv, Lu)∑
ω∈N(u)

fl(Lω, Lu)
; p(v|u, j) = fj(Lv, Lu)∑

ω∈V
fj(Lω, Lu)

(2)
The probability distribution on all nodes in G, de-

noted as a vector p(t) = [pv1(t), . . . , pvn(t)], can be
described in matrix form as:

p(t) = (Σ ·Dj)
′p(t− 1) + (∆ ·Dl)

′p(t− 1) (3)

where Σ,∆ are n×n matrices collecting the probabili-
ties p(u|v, j) and p(u|v, l), respectively, and Dj ,Dl are
n×n diagonal matrices, with diagonal values (1−df)
and df , respectively. The entry (u, v) of matrix ∆ is not
null only when the corresponding entry of the graph
adjacency matrix A is equal to 1, i.e., if the nodes u
and v are linked by an edge eu,v .

By defining the transition matrix as T = (Σ ·Dj +
∆·Dl)′, Eq. 3 can be written as Eq. 4. The signature of
the graph is obtained by considering the steady state
distribution p⋆ of the Markov chain defined in Eq. 4.

p(t) = T · p(t− 1) (4)

3 PROBLEM FORMULATION

To preserve identity privacy, previous research ad-
vocated k-anonymity, where any node is isomorphic
with at least k − 1 others. In many cases, isomor-
phism is a strong condition that is not necessary for
anonymizing the graph. In this paper, we define the
concept of probabilistic indistinguishability, which can
preserve privacy with a lower information loss.

Let G∗(u) and G′∗(u) denote the weighted 1*-
neighborhood graph of node u in the original social
network G and in the anonymized social network G′,
respectively. Probabilistic indistinguishability can be
defined in a hierarchical way as follows:
Node Indistinguishability. Nodes u and v are indis-
tinguishable if an observer cannot decide whether or not
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G∗(u) ̸= G∗(v) in the original graph G, by comparing
G′∗(u) and G′∗(v) in an anonymized graph G′.

Here, “cannot decide” means that the observer’s
confidence level will be below a pre-determined
threshold. In our scheme, we achieve node indistin-
guishability by introducing randomness into the pub-
lished graph. If there is no limit on the randomness,
node indistinguishability is easily achieved. However,
we hope to preserve the usability and utility of the
published graph and hence, we need to minimize
the information loss. Thus, we need to have a more
sophisticated design.
Group Indistinguishability. For a group of nodes, g =
{v|v ∈ V ′} and ||g|| ≥ k, if for each pair of nodes
{⟨u, v⟩|u, v ∈ g} u and v are indistinguishable in the
published graph G′; group g is an indistinguishable group.
Probabilistic Indistinguishability. A published social
network G′ achieves probabilistic indistinguishability if all
nodes {v|v ∈ V ′} can be classified into M ≥ 1 groups,
where each group has the property of group indistin-
guishability.

The information loss is a critical measure in quan-
tifying the utility and usability of an anonymized
graph, which will be discussed in Section 7.2. Let
CG→G′ denote the information loss incurred in our
HIGA scheme. We formally define the probabilistic
indistinguishability problem as follows:
The probabilistic indistinguishability problem. Giv-
en a network graph G = (V, E ,W) and a positive integer k,
derive an anonymized graph G′ = (V ′, E ′,W ′) to be pub-
lished, such that (1) ||V|| = ||V ′||; (2) G′ is probabilistically
indistinguishable with respect to G; (3) the anonymization
from G to G′ has minimal information loss CG→G′ .

The problem of generating a k-neighbor-anonym-
ous graph is NP-hard [2]. The proof lies in reducing
the k-Dimensional Perfect Matching problem [8]. The
unweighted graph is a special case of the weighted gr-
aph. Therefore, the problem of generating a weighted
social network with the above properties is NP-hard.

4 NODE GROUPING
4.1 Group Formation
For a given weighted graph G = (V, E ,W), we
group nodes {v} ∈ V by using the following metrics:
||V (v)||, ||E(v)||, local clustering coefficient, in-degree
sequence, out-degree sequence, and weight volume.
Here, ||V (v)|| and ||E(v)|| denote the numbers of n-
odes and edges in G∗(v), respectively. The definitions
for the other metrics are provided as follows:
Local clustering coefficient. Cv = λG(v)/τG(v), where
λG(v) and τG(v) are the numbers of triangles and triples
in G∗(v), respectively. Thus, Cv is the proportion of edges
between the nodes within v’s direct neighbourhood divided
by the number of edges that may exist between them.
In-degree sequence. Iv = {E+

u }u∈V (v), where E+
u is the

in-degree of node u ∈ V (v) denoting the number of edges
connected between u and the nodes in G∗(v).

TABLE 1
Effectiveness of metrics for grouping

Nodes Edges Percentage Nodes Edges Percentage
5,000 9,988 75% 5,000 24,970 54%
10,000 19,993 79% 10,000 121,251 58%

Out-degree sequence. Ov = {E−
u }u∈V (v), where E−

u is
the out-degree of node u ∈ V (v) denoting the number of
edges connected between u and the nodes outside G∗(v).
Weight volume. WVv =

∑
w∈W (v) w, where WVv is the

sum of the weights on the edges in G∗(v).
We group nodes together if ||V (v)||, ||E(v)||, Cv ,

Iv , and Ov are equal and the differences of their
weight volumes are within a pre-defined scope in
their weighted 1*-neighborhood graphs. To test the
effectiveness of the above metrics, we use Barabási-
Albert (B-A) algorithm [9] to generate synthetic da-
ta sets. Then, we use the above metrics to classify
nodes into groups and calculate the percentage of
graphs that are isomorphic in a group. In Table 1,
for a social network with 5, 000 nodes and 9, 988
edges, the percentage of isomorphic weighted 1*-
neighborhood graphs is about 75%. As the scale of the
social networks increases to 10, 000 nodes and 19, 993
edges, this percentage increases to 79%. Therefore,
these metrics are helpful for grouping.

4.2 Group Reshaping
Although the Group Formulation process groups the
nodes with similar weighted 1*-neighborhood graphs
together, not all groups have a size greater than or
equal to k. In reality, during the empirical study,
we find that the group size also follows the power-
law distribution: most groups contain only one or
two members, and a small number of the groups
have thousands of members. Therefore, we provide a
Group Reshaping mechanism so that each group has
an appropriate size, e.g., [k, 2k).

The Group Reshaping mechanism can be classified
in two main steps: Group Combination and Group
Splitting. Group Combination first sorts groups in
descending order of the maximal node degree of the
group members. The sorted groups are denoted as
g11 , g

1
2 , . . . , g

1
M1

. For each group g1i of a size smaller
than k, we incorporate the members in g1i into g1i+1

directly. Therefore, after the Group Combination step,
all groups will have a size larger than k.

Suppose that there are M2 groups after combina-
tion, denoted as g21 , . . . , g

2
M2

. Then, we perform the
Group Splitting step to enable each group to have
[k, 2k) members as follows: For each group g2i of size
larger than 2k, we choose c = ⌈||g2i ||/k⌉ nodes in g2i as
the group seeds, denoted as s1, . . . , sc. The candidate
member set, CMS, consists of all the members in g2i
except for the c seeds. For each seed sj , we construct
a former member set from CMS, denoted as FMSj ,
recording sj ’s group members before combination.
Then, we classify nodes in CMS that are far from the
seed in one group, so that the modification of a node’s
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Algorithm 1 Structure Similarity Measurement
Input: G∗(u), G∗(v), DF = [df1, . . . , dfN ]
OutPut: cost(G̃(u)∗, G̃(v)∗)

1: Construct structure graphs G̃(u)∗ and G̃(v)∗

2: for each node ω ∈ V (u) and µ ∈ V (v) do
3: Calculate Eq. 4 for the steady states of ω,

p⋆
ω = [p⋆

ω(df1), . . . ,p
⋆
ω(dfN )], in G̃(u)∗, and µ,

p⋆
µ = [p⋆

µ(df1), . . . ,p
⋆
µ(dfN )], in G̃(v)∗, under

different damping factors, respectively
4: Construct bipartite graph GB

5: Find the optimal matching of GB

6: Calculate the cost of optimal matching with Eq. 6

weighted 1*-neighborhood graph has less impact on
other nodes’ graphs in a group, thereby reducing the
information loss during anonymization.

Specifically, for seed sj , we preferentially choose
group members from FMSj , then from CMS, since
the nodes in FMSj are most similar to sj . In each
selection, we first calculate the penalty for selecting
node v as follows: 1) PT = 0 if v is not the neighbor
of existing group members; 2) PT = 1 if v is not
the neighbor of the seed; 3) PT = INF if v is the
neighbor of the seed. Then, we choose the node with
the minimal penalty as the group member, and we
remove it from CMS and from related FMSs. The
main idea is based on the classical heuristic clustering
algorithm, K-means [10]. This process will be run
for multiple rounds and in each round, the sum of
the penalties will be recorded. At the end of this
algorithm, the optimal result, g1, . . . , gM , will be the
output.

5 APPROXIMATE MATCHING TEST
5.1 Structure Similarity Measurement
Alg. 1 determines whether the structures of two n-
odes’ weighted 1*-neighborhood graphs are similar
or not. Let G∗(u) = (G(u), D(u),W (u)) and G∗(v) =
(G(v), D(v),W (v)) be the weighted 1-*neighborhood
graphs of nodes u and v in graph G, respectively.
The first step is to construct the structure graphs for
nodes u and v. Specifically, for node u, the structure
graph G̃(u)∗ is first initialized with its 1-neighborhood
graphs G(u). Then, for each of u’s one-hop neighbors,
ω, we add ouω dummy nodes to G̃(u)∗ and add edges
between ω with all the dummy nodes, where ouω is
the out-degree of ω. For example, for a given weighted
1*-neighborhood graph as shown in Fig. 1-(b), the
structure graph is shown in Fig. 2-(a).

We label non-dummy nodes and dummy nodes
with L̃ and L, respectively. Then, we provide the ten-
dency functions {fl(Lu, Lv)} and {fj(Lu, Lv)}, where
Lu, Lv ∈ {L̃, L}. The probabilities of following an
edge or jumping from node u with Lu to node v
with Lv can be calculated with Eq. 2. For each non-
dummy node ω ∈ G̃(u)∗, we obtain its topological

Fig. 2. Sample structure graph. The solid lines connect
the target and its neighbors. DF = [0.7, 0.8, 0.9].

signature with the RW tool. To enrich the topological
signatures, we can compute the steady states with
different damping factors. Suppose that we choose N
distinct damping factors DF = [df1, . . . , dfN ]; node
ω’s topological signature can be defined as p⋆

ω =
[p⋆

ω(df1), . . . ,p
⋆
ω(dfN )]. Given two graphs’ topological

signatures p⋆(G̃(u)∗) and p⋆(G̃(v)∗), we determine
the structural similarity of G̃(u)∗ and G̃(v)∗ by per-
forming bipartite graph matching as follows.

We first add virtual nodes to the structure graph with
a smaller node cardinality so that two graphs have
equal numbers of nodes. Then, we create a bipartite
graph GB = (VB , EB) by setting VB = V (u) ∪ V (v)
and EB = V (u)×V (v). A cost(ω, µ) is associated with
the edge eω,µ to represent the cost of matching nodes
ω ∈ V (u) and µ ∈ V (v). A match in GB is a set of
edges E⋄ ⊆ EB such that each node is associated with
only one edge. The cost of matching is the sum of
the cost of edges in E⋄. An optimal match will cause
the minimum cost match in GB under the constraint
that node u is matched with node v. We apply the
Monte-Carlo algorithm [11] to determine the optimal
matching on a bipartite graph in polynomial time.

The cost function will impact the result of the
optimal match. Let V denote a set of virtual nodes.
If either ω or µ is a virtual node, cost(ω, µ) is set to
a fixed value β. If ω, µ ̸∈ V, the cost function can be
defined as the Hellinger Distance between probability
distributions p⋆

ω and p⋆
µ with Eq. 5:

H(p⋆
ω,p⋆

µ) =
1

2

N∑

i=1

(
√

p⋆
ω(dfi)−

√
p⋆µ(dfi))

2

(5)

Therefore, the cost of matching the bipartite graph,
which is the sum of the costs of matching all nodes
in V (u) and V (v), can be calculated with Eq. 6:
cost(G̃(u)∗, G̃(v)∗) =

∑

ω,µ ̸∈V
H(p⋆

w,p⋆
µ) + (||V|| · β) (6)

For example, given the topological signatures as
shown in Fig. 2, the cost for matching nodes v1 and
v6 is H(p⋆

v1
,p⋆

v6
) = 0.5((

√
0.242−

√
0.294)2+(

√
0.268−√

0.324)2 + (
√
0.294−

√
0.354)2) = 0.004.

Structure Similarity. For a given threshold α, two nodes
u and v are structurally similar if an optimal bipartite
graph matching exists between V (u) and V (v), such that
cost(G̃(u)∗, G̃(v)∗) ≤ α.

5.2 Weight Compatibility
The weight on an edge may be a concrete value or a
range. Let wi denote the value of weight on the i-th
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Fig. 3. Sample of possible candidates.

edge. We consider wi compatible with wj , denoted as
wi ≼ wj , if wi == wj or wi ⊆ wj . For example, if
w1 = 1, w2 = 1, and w3 = [1, 5], we have w1 ≼ w2,
w2 ≼ w1, w1 ≼ w3, and w2 ≼ w3. Let G∗(v) =
(G(v), D(v),W (v)) and G′∗(v) = (G′(v), D′(v),W ′(v))
be node v’s weighted 1-*neighborhood graphs in the
original graph G and the published graph G′, respec-
tively. Inspired by the work in [12], [13], we provide
the following definitions:
Possible Candidate. G∗(u) is a possible candidate of
G′∗(v) if there is a mapping φ : E(u) → E′(v)

⋃
∅, such

that either eω,x ∈ E(u) is mapped to ∅ or eω,x ∈ E(u)
is mapped to eµ,y ∈ E′(v) and wω,x ≼ wµ,y , where
E(u) ∈ G(u) and E′(v) ∈ G′(v).

For example, the weight sequences of G∗(u), G′∗(u),
G′∗(v) are [4, 2, 2, 1, 1, 2], [[2, 4], 2, [2, 3], 1, 1, [1, 3]], and
[[2, 4], 2, [2, 3], [1, 3], 1] in Fig. 3, respectively . For G∗(u)
and G′∗(u), we have 4 ≼ [2, 4], 2 ≼ 2, 2 ≼ [2, 3], 1 ≼ 1,
1 ≼ 1, and 2 ≼ [1, 3]. For G∗(u) and G′∗(v), we have
4 ≼ [2, 4], 2 ≼ 2, 2 ≼ [2, 3], 1 ≼ [1, 3], and 1 ≼ 1,
with the expectation that e4,5 ∈ E(u) is mapped to ∅.
Therefore, G∗(u) is a possible candidate of G′∗(u) and
G′∗(v). That is to say, the attacker with knowledge of
G∗(u)’s weight sequence in G cannot distinguish node
u from node v in G′ with high confidence.
Weight Compatibility. Node u is weight compatible with
node v in graph G′, if G∗(u) and G∗(v) in G are possible
candidates of G′∗(u) and G′∗(v) in G′.

For example, in Fig. 3, G∗(u) is a possible candidate
of G′∗(u) and G′∗(v), and G∗(v) is also a possible
candidate of G′∗(u) and G′∗(v). Therefore, nodes u
and v are weight compatible.

Given a pair of nodes u and v, we define that they
are approximately matching as follows:
Approximate matching. Node u and node v are approxi-
mately matching, denoted as u ≈ v, if they are structurally
similar and weight compatible.

6 ANONYMIZATION AND RANDOMIZATION
6.1 Group Anonymization
Suppose that there are M groups, g1, . . . , gM , where
each group has about [k, 2k) members. In Alg. 2, the
candidate group set (CGS) initially consists of M
groups, and the processed group set (PGS) is null.
We sort groups in descending order of the maximal
node degree in a group, and pick the first one as
the processing group, denoted as g̃. For each pair of
nodes in g̃, we call Alg. 1 to test whether they are

Algorithm 2 Group Anonymization
Input: G = g1, . . . , gM
OutPut: Ĝ = ĝ1, . . . , ĝM

1: Initialize ĝ1, . . . , ĝM with g1, . . . , gM , respectively
2: Sort ĝ1, . . . , ĝM with descending order of the max-

imal node degree of group members
3: Set CGS = {ĝ1, . . . , ĝM} and PGS = {}
4: while CGS is not empty do
5: Set the first group in CGS as

∼
g

6: repeat
7: for each pair of nodes (u, v) in g̃ do
8: Call Alg. 1 to obtain cost(G̃(u)∗, G̃(v)∗)
9: Choose node u ∈ g̃ with the maximal degree

as the group seed
10: for each node v ∈ g̃ do
11: if cost(G̃(u)∗, G̃(v)∗) ≥ α then
12: Call Alg. 3 to approach G̃(v)∗ to G̃(u)∗

13: until all nodes in g̃ are structurally similar
14: Call Alg. 4 to generalize the weights in g̃
15: Move g̃ from CGS to PGS

structurally similar. If not all nodes are indistinguish-
able from each other, we choose the node with the
maximal degree, say node u, as the group seed. Then,
for the node v ∈ g̃ with cost(G̃(u)∗, G̃(v)∗) ≥ α, we
call the Graph Approach algorithm (Alg. 3) to make
G∗(u) and G∗(v) structurally approach each other.
This process will continue until any pair of nodes are
structurally similar. For a group of structurally similar
nodes, we use the Weight Generalization algorithm
(Alg. 4) to make all nodes in a group have compatible
weights. Finally, we move g̃ from CGS to PGS.

Given a pair of nodes u and v, Alg. 3 approaches
G̃(v)∗ to G̃(u)∗ as follows. For each pair of optimal
matching nodes ω ∈ V (u) and µ ∈ V (v) if cost(ω, µ) ≥
θ, we make their out-degree equal by adding edges
between dummy nodes and the node with a smaller
out-degree and setting the weights as ∞. Then, for
each edge eω,x ∈ E(u), if eµ,y ̸∈ E(v), we add an
edge between nodes µ and y and set wµ,y = wω,x,
where µ, y ∈ V (v) are the optimal matching nodes
of ω, x ∈ V (u). During the approaching process, new
edges will be added between the nodes in G∗(v) and
those not in G∗(v). Specifically, the node with the
minimal degree will be chosen provided that it is not
a member in g̃ and no edge existed before. Further-
more, nodes will be preferentially chosen first from
CGS and then from PGS. The anonymization process
may be recursive, since some changes may impact
the groups that have been processed previously. For
example, if the dummy nodes are chosen from PGS,
related groups must be moved to CGS. However, due
to the power-law degree distribution and the small
world phenomenon, this process will rapidly stop.

Alg. 4 ensures that the graphs of nodes with similar
structures have compatible weights. We choose a node
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Algorithm 3 Graph Approach

1: Obtain the optimal matching of G̃(u)∗ and G̃(v)∗

2: for each pair of optimal matching nodes ω ∈ V (u)
and µ ∈ V (v) do

3: if cost(ω, µ) ≥ θ then
4: Make the out-degrees of ω and µ equal
5: Set the weights on newly added edges as ∞
6: for each edge eω,x ∈ E(u) do
7: if edge eµ,y ̸∈ E(v), where µ, y ∈ V (v) are

the optimal matching nodes of ω, x ∈ V (u)
then

8: Add edge eµ,y in E(v), set wµ,y = wω,x

with the maximal degree, say node u, as the group
seed. Then, for each edge eω,x in G̃(u)∗, we find the
optimal matching nodes of nodes ω, x in other nodes’
structure graphs. Let ωi, xi denote the optimal match-
ing nodes of ω, x in the i-th member of g̃. If eωi,xi exist-
s, we set wωi,xi = [min({wωi,xi}),max({wωi,xi})]. Note
that an edge occurring in multiple nodes’ weighted 1*-
neighborhood graphs would be generalized multiple
times with different range values. We choose the
extended range as the result. For example, if wu,v

is generalized to [1, 2] and [2, 3] in G∗(u) and G∗(v),
respectively, we extend wu,v to [1, 3]. Furthermore, for
a given weight value w ≥ 0, we have min(w,∞) ≡
max(w,∞) ≡ w and min(∞,∞) ≡ max(∞,∞) ≡ ∞.
After the Group Anonymization step, we find that the
weights on a fraction of edges are not processed. For
edge eu,v with weight value ∞, we first set wu,v =
SPW (u, v), where SPW (u, v) is the sum of weights
on the shortest path from node u to node v in G, and
then generalize wu,v with the Weight Generalization
algorithm. This enables the anonymized graph to have
a weight distribution close to the original graph for
t-closeness.

Fig. 4 shows the working process of the Graph
Approach and Weight Generalization. The optimal
matching node pairs for graphs G∗(u) and G∗(v)
include ⟨v1, v6⟩, ⟨v2, v7⟩, ⟨v3, v8⟩, ⟨v4, v9⟩, ⟨v5, v10⟩. For
example, in Fig. 4-(b), the out-degrees of v2 and v7 are
1 and 0, respectively. Therefore, we add one dummy
node to v7, and set the weight as ∞ to make two
nodes have equal out-degrees. For edge e4,5 ∈ G∗(u),
we find that edge e9,10 ̸∈ G∗(v). Therefore, we bridge
v9 and v10 with the same weight value of e4,5, say 2, to
make a pair of optimal matching nodes have identical
links. In Fig. 4-(c), the weights on both e2,3 and e7,8
are 1, which will be generalized to 1. The weights on
e1,2 ∈ G∗(u) and e6,7 ∈ G∗(v) are 4 and 2, respectively,
which will be generalized to [2, 4].

6.2 Randomization
Consider a graph Ĝ and a randomization proba-
bility p. We randomize the graph to generate an
anonymized graph G′ with the edge-based graph

Algorithm 4 Weight Generalization
1: Choose node u ∈ g̃ with the maximal degree as

the group seed
2: for each edge (ω, x) ∈ G(u) do
3: Find optimal matching nodes ωi and xi of ω

and x in the 1-neighborhood graph of the i-th
member of g̃

4: if edge eωi,xi exists then
5: Generalize wωi,xi with [min({wωi,xi}),

max({wωi,xi})]

perturbation strategies [14]. We first randomly switch
a pair of existing edges eω,x and eµ,y to eω,µ and
ex,y under the condition that eω,µ and ex,y do not
exist in Ĝ. Then, we set wω,µ = SPW (ω, µ) and
wx,y = SPW (x, y) to make the weight distribution
close to the original one, where SPW (x, y) is the
sum of weights on the shortest path from x to y
in G. This process will repeat ⌊p ∗ ||E||⌋ times. After
the Randomization step, the randomized graph is
expected to be different from the original one. The key
problem lies in determining p to randomize the graph.
As discussed in [15], the utility of the social network
will be largely reduced when the perturbation rate
reaches about 10%. To obtain a reasonable parameter,
we conduct experiments in Section 8.1.

7 ANALYSIS

7.1 Anonymization Strength
Theorem 1. From the anonymized graph G′, an at-
tacker with the knowledge of any target’s weighted 1*-
neighborhood graph cannot re-identify the target with con-
fidence higher than 1/k.

Proof: The attacker will try to re-identify a target
from the published graph G′ by using the target t’s
weighted 1*-neighborhood graph G∗(t) in the original
graph (attacker’s knowledge). There are two possible
consequences after searching G′:

• Case 1. The attacker found at least an exact match
of the target.

• Case 2. The attacker cannot find an exact match
of the target.

Here, we assume an intelligent attacker who knows
the uniform random noise probability p. We also
assume that the intelligent attacker will not give up,
even if the exact match cannot be found.

For Case 1, after the exact matching, the attacker
has two possible strategies: 1. Consider an exact match
u as the re-identified target; 2. Consider other nodes
as the re-identified target t. The latter strategy will
be combined in the discussion of Case 2. Let us first
consider Case 1 with the first strategy. Based on the
uniform random noise, the probability that the target
t’s 1*-neighborhood graph G∗(t) was not changed is
P (G∗(u) = G∗(t) ∧ G′∗(u) = G′∗(t)) = (1 − p)2·||E(t)||.
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To identify whether or not node u is the target node
t, G∗(u) is the only subgraph that is of concern, no
matter whether G∗(u) overlaps with other nodes’ 1*-
neighborhood graphs or not.

Besides this factor, we also know that the exact
match of G∗(t) must belong to an indistinguishable
group g with ||g|| ≥ k. For each node v in g, we
know that an observer cannot decide whether or not
G∗(v) ̸= G∗(t) in the original graph G by comparing
G′∗(v) and G′∗(t) in G′. Therefore, we have P (G∗(v) ̸=
G∗(t)∧G′∗(v) = G′∗(t)) ≥ (1− p)2·||E(t)|| (otherwise, v
and t will violate the indistinguishability requirement
in g). Let τ = (1 − p)2·||E(t)||. Therefore, under Case
1 with the first strategy, the probability that an exact
match node u is the correctly identified target t is:
P (u = t) =

τ

τ +
∑
v∈g,
v ̸=u

P (G∗(v) ̸= G∗(t) ∧G′∗(v) = G′∗(t))

Since P (G∗(v) ̸= G∗(t) ∧ G′∗(v) = G′∗(t)) ≥ τ and
||g|| ≥ k, it is clear that P (u = t) ≤ τ/(k · τ) = 1/k.
Case 2 and the remaining part of Case 1 can be proven
in a similar manner.

Corollary 1. The anonymization strength of the heuris-
tically indistinguishable group anonymization scheme ≥
k-anonymity social network defined in [2].

Proof: The proof of Corollary 1 is obvious. First,
the k-anonymity social network defined in [2] as-
sumes that the attacker only knows a target’s 1-
neighborhood, which contradicts the reality since the
attacker usually collects more information about one-
hop neighbors than only the connection information
between them. With the weighted 1*-neighborhood
knowledge, the attacker can further narrow down the
target in the blend-in group and re-identify it.

Second, even if we assume that the k-anonymity so-
cial network can be extended to the 1*-neighborhood
case (it will significantly increase the information loss
due to the exact matching), the k-anonymity social
network only guarantees that the attacker cannot
identify the target with a confidence higher than 1/k.
According to Theorem 1, our scheme will produce e-
qual or greater anonymization strength. Since a group
of generalized weights will not provide more useful
background knowledge to the attacker, we consider
only the unweighed graphs in the above proof.

7.2 Information Loss
Our solution anonymizes a graph by Graph Ap-
proach, Weight Generalization, and Randomization.
The entire process requires the addition and deletion
of edges and the generalization of weights, and thus
will lead to some information loss.

Consider a weighted social network graph G, where
MAXW denotes the maximal weight. Let null denote
the weights associated with nonexistent edges. We
generalize all operations to weight transformation as

Fig. 4. Working process of Graph Approach and
Weight Generation. The dashed, double-sided arrow
connects a pair of optimal matching nodes, and the
number on the node denotes node degree.

follows: (1) edge addition transforms the weight from
null to a particular value; (2) edge deletion transforms
a particular weight to null; (3) weight generalization
transforms a particular weight to an interval. Note
that edge addition/deletion not only changes the n-
ode degree, but also the related edge weight in G; this
incurs more information loss compared with weight
generalization on existing edges.

To capture this concept, the information loss for
transforming weight wj to w′

j can be calculated as:

φ(wj , w
′
j) =

{
|maxw′

j−minw′
j |

MAXW , w′
j ̸= null ∧ w′

j ̸= null
ρ·DIFF
MAXW , otherwise

where [maxw′
j ,minw′

j ] denotes the weight inter-
val assigned to related edge in G′, and DIFF =
max{|maxw′

j − minw′
j |}w′

j∈G′ is the worst-case cost
for |maxw′

j − minw′
j |. When the factor ρ is larger

than 1, the above definition can guarantee that the
information loss of generalizing existing edges is less
than that of edge addition/deletion.

To generate an anonymized graph G′ from G, our
scheme first classifies the nodes into M groups,
g1, . . . , gM . For each group gi, we transfer a set of
original weighted 1*-neighborhood graphs {G∗(u)|u ∈
gi} to a set of indistinguishable weighted 1*-
neighborhood graphs {G′∗(u)|u ∈ g′i}. Let Li denote
the number of edges in {G∗(u)|u ∈ gi}, and let
mi and ni denote the number of added edges and
removed edges for transforming gi to g′i, respectively.
The information loss Cgi→g′

i
for transferring gi to g′i

can be calculated with Eq. 7:

Cgi→g′
i
= a

mi∑
j=1

φ(wj , w′
j)

Li
+b

ni∑
j=1

φ(wj , w′
j)

Li
+c

li∑
j=1

φ(wj , w′
j)

Li
(7)

where li = Li+mi−ni denotes the number of edges
in {G′∗(u)|u ∈ g′i}, and a, b, and c are the weights
associated with each component. Therefore, given M
groups, the total information loss for anonymizing G
to G′ is calculated with Eq. 8:

CG→G′ =
∑M

i=1
Cgi→g′

i
(8)
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7.3 Performance Analysis

Time complexity. Let ||V|| and ||E|| denote the number
of nodes and edges in graph G = (V , E ,W), respec-
tively. Group Formation takes O(M1 · ||V||) to classify
nodes into M1 groups. Group Reshaping first utilizes
the Quicksort algorithm to sort groups, which takes
O(M1·logM1). It then takes O(M1) to combine groups,
and O(M2 ·R · ||g||2/k) to split groups into subgroups
with sizes between [k, 2k), where M1 and M2 are the
numbers of groups before and after group combina-
tion, respectively, R is the number of iterations, and
||g|| is the maximal group size before splitting. The
most expensive operation in Randomization is the cal-
culation of SPW between a pair of nodes. The Dijkstra
algorithm is used to solve the single-source shortest
path problem, which takes O(||V|| · log ||V|| + ||E||)
while it is implemented with the priority queue.

The most time consuming algorithm is Group
Anonymization. Given M groups of a size between
[k, 2k), it first utilizes the Quicksort algorithm, which
takes O(M · logM) to sort groups. Then, it takes
O(M · k2 · T1) to perform a structure similarity mea-
surement where T1 is the average overhead for Alg. 1.
Given G̃(u)∗ and G̃(v)∗, Alg. 1 takes about O(n̂·m̂) for
the random walk and O(n̂ · log6 n̂/ε3) for the Monte-
Carlo algorithm, where n̂ and m̂ are the maximal
numbers of nodes and edges in G̃(u)∗ and G̃(v)∗, and
ε > 0 is a real number. Next, Group Anonymization
takes O(M ·k ·T2) for Graph Approach, and O(M ·T3)
for Weight Generalization, where T2 and T3 are the
average overheads for Alg. 3 and Alg. 4, respectively.
Given the optimal matching of G̃(v)∗ and G̃(u)∗,
Alg. 3 is very efficient for adding edges between
nodes that exist in G̃(v)∗. For adding an edge between
the node that exists in G̃(v)∗ and that is not in G̃(v)∗,
it takes O(||V||) to find the node with the minimal
degree in the graph. To ensure a group of nodes have
compatible weights, Alg. 4 takes O(ê · k) for weight
generalization, where ê is the maximal number of
edges in the group.

Memory complexity. Graph information is record-
ed in a 3 × ||E|| matrix EdgeMatrix. Group Formula-
tion takes EdgeMatrix as the input and outputs the
following matrixes: Attribute recording ID, metrics,
and group ID for each node, and Neighbor recording
neighbor IDs and associated weights for each node.
The memory complexity is O(||E|| + ||V|| · D̂) where
D̂ is the maximal degree for nodes in G. Group
Reshaping takes Attribute and Neighbor as inputs and
outputs the following matrixes: GroupInfo recording
the size and maximal degree for M group and Group-
Member recording the member IDs for M group. The
complexity is O(M+M ·k). Moreover, CMS and FMS
will be constructed and released in the runtime, the
size of which relates to the group size.

Alg. 2 first uses dynamic arrays to store CGS
and PGS, the sizes of which are O(M). To calculate

cost(G̃(u)∗, G̃(v)∗), it constructs a n̂× n̂ matrix for the
random walk and optimal matching of the bipartite
graph, where n̂ is the maximal number of nodes in
G̃(u)∗ and G̃(u)∗. Furthermore, for a group of k nodes,
a k2 × D̂ matrix MatchList is constructed to record
the optimal matching nodes where D̂ is the maximal
node degree in the group. The generated matrixes will
be released at the end of operation, and the memory
consumed will not increase with time. In Randomiza-
tion, the Dijkstra algorithm is implemented with the
adjacency list, the size of which is O(||V||).

8 EVALUATION

In this section, we will analyze the performance of
our HIGA scheme and evaluate it on synthetic and
real data sets. Experiments are conducted on a local
machine, running the Microsoft Windows 7 Ultimate
operating system, with an Intel Core 2 Duo E8400
3.0 GHz CPU and 8 GB RAM. The programs are
implemented in C++, compiled using Dev C++ 5.4.0.

8.1 Parameter Setting
Let L̃ and L denote the label associated with non-
dummy nodes and dummy nodes, respectively. Ten-
dency functions are defined as follows: fl(Lu, Lv) =
fl(Lv, Lu) = 0.5, where Lu, Lv ∈ {L̃, L}; fj(Lu, Lv) =
0.95, where Lu, Lv have the same labels and
fj(Lu, Lv) = 0.05, where Lu, Lv have different labels.
Furthermore, the damping factors DF = [0.7, 0.8, 0.9],
and the parameters a, b, and c in Eq. 7 are set to 0.5,
0.4, and 0.1, respectively. We consider that removing
edges will lead to loss of most of the information.

To obtain a reasonable threshold value α for a given
structure graph G̃(u)∗, we first generate a similar
graph G̃(u)′ by randomly modifying pc percentage of
edges in G̃(u)∗. Then, we calculate the cost for optimal
matching G̃(u)∗ and G̃(u)′. The above process will be
conducted for multiple rounds, and the average value
is used as the threshold value α. In our experiments,
pc is set to 10% and the value of α associated with
each node will be dynamically extracted based on d-
ifferent experimental data sets. To obtain a reasonable
randomization probability p, we perturb a graph with
different p values and calculate the percentage P of
structure graphs being changed in the randomized
graph. This process will be done multiple times, and
the average value will be used to measure the impact
of p. Table 2 shows the relationship between p and P
for real data sets. As shown in Table 3, the average
node degrees (AVE) for Facebook, CA-CondMat, En-
ron, and Douban are 44, 8, 10, and 4.2, respectively.
Thus, for a given P , the higher the AVE, the lower p.

The weights assigned on edges are in [1, 80] fol-
lowing the power-law distribution. To evaluate the
utility of the anonymized graph, we test the fol-
lowing metrics: average clustering coefficient (AC-
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TABLE 2
Parameter p vs. percentage P on real data sets

Nodes Edges p P
Facebook2 4,039 88,234 0.0003 48.9%
CA-CondMat3 23,133 93,497 0.01 45.4%
Enron4 36,692 183,831 0.002 51%
Douban5 154,907 327,094 0.02 49.9%

C), degree distribution, weight distribution, mini-
mal/maximal/average degree (MIN/MAX/AVE), av-
erage shortest path weight (APW), and average short-
est path length (APL). Specifically, the ACC of graph
G = (V, E ,W) can be calculated as (1/||V||)

∑
v∈V Cv ,

where Cv is the local clustering coefficient for node
v ∈ V (defined in Section 4.1). In the anonymized
network G′, the weight on the edge may be gener-
alized as a range. Therefore, we uniformly sampled
from the generalized weight range wu,v in G′ to denote
the weight on edge eu,v for answering APW and
APL queries. In the experiments, we randomly choose
P = 20, 000 pairs of nodes in the networks based
on the sampling algorithms proposed in [16]. For
each pair of nodes u and v, we calculate the shortest
paths between them in G and G′, denoted as paths
pathuv and path′

uv , respectively. The shortest path
weight of pathuv and path′

uv , denoted as SPW (u, v)
and SPW ′(u, v), are the sum of weights on the edges
in pathuv and path′

uv , respectively. Given P pairs
of nodes, we have APL = (1/P)

∑P
i=1 ||pathuivi ||

and APW = (1/P)
∑P

i=1 SPW (u, v) for G, and the
anonymized graph can be calculated in the same way.

8.2 Synthetic Data Set
We use the B-A [9] and R-MAT models [17] to generate
synthetic data sets. Both models maintain two major
properties of real social networks: the graphs show
small-world characteristics, and node degrees follow
power-law distribution [18]. In our experiments, the
generated networks contain n = 5, 000 ∼ 25, 000
nodes, where the AVE ranges from 4 to 10. To enable
the percentage of the modified structure graph to
approach 50%, the randomization probability p is set
to 0.01 for B-A networks with AVE=4, 0.002 for B-
A networks with AVE=10, 0.015 for R-MAT networks
with AVE=4, and 0.004 for R-MAT networks with
AVE=10.

The subfigures (a)∼(d) in Figs. 5 and 7 show the
number of modified edges and running time in our
scheme with respect to a different group size, k, and
different graph settings. We know that as k or n
increases, the number of modified edges as well as
the running time increases. Furthermore, our method
performs better in R-MAT networks than B-A net-
works. For example, when k = 5, our scheme takes
513s and changes 2,195 edges for the R-MAT network

2. http://snap.stanford.edu/data/egonets-Facebook.html
3. http://snap.stanford.edu/data/ca-CondMat.html
4. http://snap.stanford.edu/data/email-Enron.html
5. http://socialcomputing.asu.edu/datasets/Douban

and takes 3,805s and changes 7,102 edges for the B-A
network under the setting of n = 25, 000 and AV E =
4. Figs. 6-(a)∼(d) show the related information loss
calculated with Eq. 8. We know that the information
loss increases as k increases or as n decreases. In both
networks, we observed that our HIGA scheme has a
better performance as the AVE increases.

In the experiments, we found that two major factors
impact the ACC: the AVE and the number of nodes
n. Actually, the ACC increases as the AVE increases
or as n decreases. Furthermore, the performance of
our scheme is mainly affected by the AVE and by the
number of nodes other than the ACC. For example,
given the fixed k = 25 and AV E = 10, the percentage
of modified edges decreases from to 14% to 10.7%
in B-A networks and from to 6.7% to 3.2% in R-
MAT networks while n increases from 5,000 to 25,000
(resp. the ACC decreases from 0.0123 to 0.003 in B-
A networks and from 0.0068 to 0.0019 in R-MAT
networks). However, Fig. 5-(e) shows a different trend.
Figs. 5∼7-(e) show the impact of the ACC on the
performance of our HIGA scheme under the fixed
setting of n = 1, 000 and k = 5.

8.3 Real Data Set
Graph characteristics of the real data sets are shown in
Table 2. We group nodes based on certain metrics. In
Facebook, nodes are classified in 3,137 groups, where
group sizes range from 1 to 43. In CA-Condmat, nodes
are classified in 3,439 groups, where group sizes range
from 1 to 2,836. In Enron, nodes are classified in 4,333
groups, where group sizes range from 1 to 3,706. In
Douban, nodes are classified in 3,585 groups, where
group sizes range from 1 to 89,765.

From Fig. 8, we know that as k increases, our HIGA
scheme performs worse. For example, as k increases
from 5 to 25, the information loss in Douban increases
from 0.026 to 0.078, and the running time for Enron
increases from 1.6h to 4.6h. Facebook and Enron incur
a higher growth rate in terms of information loss
compared with other real data sets. This is mainly
because of the difference between the maximal degree
and the minimal degree in the network. As shown in
Table 3, the minimal/maximal degrees in Facebook,
CA-Condmat, Enron, and Douban are 1/1,045, 1/279,
1/1,383, and 1/287, respectively. Given a network
with a bigger degree difference, our method needs
to add more edges to ensure a group of nodes have
similar 1*-neighborhood graphs. In the worst case,
the percentage of modified edges is 23% in Facebook,
7.2% in CA-Condmat, 13.2% in Enron, and 17% in
Douban. For the Facebook data set with a small
number of nodes and a large degree difference, the
percentage of modified edges grows rapidly (from 4%
to 23%, as k increases from 5 to 25).

In addition, our running time grows linearly as the
number of nodes/edges increases. For example, while
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Fig. 5. Number of modified edges.
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Fig. 6. Information loss.
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Fig. 7. Running time (s).

k = 25, our HIGA scheme will terminate in 491s for
Facebook, but it requires 95h for Douban. Therefore,
it is essential to improve the efficiency of the imple-
mentation for large-scale data sets with millions of
nodes and edges. Our basic idea is to utilize the graph
partition technique proposed in [19] to enable parallel
graph anonymization [20]. Specifically, a large-scale
graph will be divided into many partitions, each
consisting of a set of nodes and the edges in those
nodes’ 1-neighborhood graphs. Assignment of a node
to a partition depends solely on the node ID by
computing a partitioning function hash(ID) mod N ,
where N is the number of partitions. Then, we run
our HIGA scheme on each partition in parallel and
combine all the anonymized partitions by removing
the duplicated added edges.

Given partition i, only the nodes satisfying
hash(ID) mod N = i will be processed and thus, the
running time will be largely reduced. If we apply N
servers running in parallel, an anonymized Douban
network can be generated within one hour when
k = 25 and N = 50. From Fig. 8, we know that the
running time decreases as N increases. However, the
information loss increases as N increases. Therefore,
two key problems needed to be considered: 1) how
to determine an appropriate partition number N ; 2)

6. http://www.cs.cornell.edu/projects/kddcup/datasets.html

how to split the large graphs. As part of our future
work, we will investigate how to make our scheme
work well in parallel graph anonymization.

To show the effectiveness of our HIGA scheme,
we compare it with existing k-neighbor anonymity
and weight anonymization approaches. Specifically,
we first compare our results with those of [2] in terms
of the number of modified edges under the KDD cup
2003 co-authorship data set6. To fairly perform com-
parisons, we extract 120,640 edges from the data set,
so that our experiment setting is the same as theirs.
The work in [2] aims to generate a k-neighbor anony-
mous network where each node’s 1-neighborhood
graph is isomorphic to at least k−1 other nodes’. Un-
like their scheme requiring the isomorphism of graph-
s, our scheme applies the concept of approximate
matching to achieve probabilistic indistinguishability
in the anonymized network and thus, the number of
modified edges is relatively low. From Fig. 9-(a), we
know that our scheme outperforms [2] while keeping
the same level of privacy.

Then, we compare the APW with the work in [21]
under the weighted network, NetSci7, which consists
of 1,589 nodes and 2,742 edges. The work in [21]
aims to anonymize weight volumes and weight distri-
bution without involving the anonymization of sub-

7. http://www-personal.umich.edu/∼mejn/netdata/
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Fig. 8. Performance of HIGA in real data sets.
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Fig. 9. Comparison with existing work.
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Fig. 10. Degree distribution.
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Fig. 11. Weight distribution.

graphs. That is, [21] does not require the structure sim-
ilarity of a group of nodes and thus, the anonymized
networks neither achieve k-neighbor anonymity nor
have the property of probabilistic indistinguishability.
Therefore, [21] has a high graph utility at the cost of
privacy. Fig. 9-(b) shows that our HIGA scheme can
preserve graph utility nearly as well as theirs.

8.4 Utility
Subfigures (a) ∼ (d) in Figs. 10 and 11 show that
both the degree and the weight distributions fol-
low the power-law distribution in the anonymized
graphs. To quantify the comparison results, we u-
tilize the Kolmogorov-Smirnov (KS) test to show
the magnitude of difference between the original
and anonymized distributions. From Fig. 10-(e) and
Fig. 11-(e), we know that the difference between two
distributions increases as the group size, k, increases.
For example, given the significance level 0.01 for the
weight distribution in Facebook, it fails to reject the
null hypothesis with a probability of 95% when k = 5,
but it rejects the null hypothesis as k increases to 10.

Table 3 shows the comparison results for answering
aggregate queries. Similarly, the utility of the network
decreases as k increases. However, the query results
in all the real networks except Facebook are still
very useful even when k = 25. From Table 3, we

know that ACC will decrease as k increases. For
the networks with a higher ACC, the drop rate of
ACC is higher during anonymization. Furthermore,
the APW and the APL decrease as k increases while
anonymizing networks with a small number of nodes
(e.g., Facebook); these values increase as k increases
for large-scale networks (e.g., Enron and Douban).

9 RELATED WORK
Our work is on publishing weighted social networks
while preserving individuals’ identity privacy. To de-
fend the re-identification attacks, the work in [22]
advocated the k-anonymity model, where every node
should be indistinguishable with at least k − 1 other
nodes in terms of both the attributes and the asso-
ciated structural information, such as neighborhood
and node degree. With such a property, the attack-
er cannot re-identify any individual from the pub-
lished networks with a confidence higher than 1/k.
To achieve k-anonymity, existing approaches can be
classified as clustering-based approaches and graph
modification-based approaches. Clustering-based ap-
proaches cluster nodes and edges into groups and
anonymize subgraphs into super nodes, thus leading
to great changes in the structure of the original graph.

To preserve the scale and the local structures of
the original graph, the graph modification-based ap-
proaches try to locally modify the graph structure
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TABLE 3
Utility of the anonymized social network

Facebook MIN MAX AVE ACC APW APL
Original 1 1045 44 0.605 7.6 4.7
k=5 8 1045 45 0.537 6.42 4.06
k=10 13 1045 47 0.508 6.39 3.98
k=15 17 1045 49 0.478 6.15 3.85
k=20 20 1045 52 0.468 6.03 3.81
k=25 22 1045 54 0.466 5.8 3.73
CA-Condmat MIN MAX AVE ACC APW APL
Original 1 279 8 0.633 11.1 6.4
k=5 2 279 8.2 0.577 11.38 6.38
k=10 2 279 8.3 0.534 11.86 6.42
k=15 3 279 8.5 0.412 12.51 6.49
k=20 3 279 8.6 0.505 12.68 6.58
k=25 3 279 8.7 0.499 13.28 6.64
Enron MIN MAX AVE ACC APW APL
Original 1 1383 10 0.497 8.18 4.9
k=5 2 1383 10.4 0.496 8.93 4.92
k=10 2 1383 10.6 0.4813 9.29 4.99
k=15 3 1383 11 0.476 9.63 5
k=20 3 1383 11.2 0.445 9.75 5.01
k=25 3 1383 11.3 0.423 10.05 5.05
Douban MIN MAX AVE ACC APW APL
Original 1 287 4.2 0.016 9.66 5.7
k=5 1 287 4.3 0.0156 11 5.86
k=10 1 287 4.4 0.0153 11.01 5.87
k=15 1 287 4.5 0.0152 11.03 5.87
k=20 1 287 4.5 0.0151 11.06 5.88
k=25 1 287 4.6 0.015 11.15 5.88

to achieve the privacy preservation requirement. For
example, the work in [1] proposed the guarantee of
k-anonymity on node degrees, so that for every node
v, there are at least k − 1 other nodes that have the
same node degrees as v. The work in [2] provided a
heuristic solution against the 1-neighborhood attack.
The work in [3] anonymized the data graph by graph
partition, block alignment, and edge copy so that the
resulting graph is k-automorphic. The work in [15]
quantified the privacy risks associated with different
kinds of attacks on social networks, and proposed
a randomization method to perturb the graph. The
work in [23] identified two realistic targets of attacks,
NodeInfo and LinkInfo, and proposed a solution to
form k pairwise isomorphic subgraphs.

Existing work mainly focuses on unweighted so-
cial networks. Research in the area of anonymizing
weighted graphs is still in its infancy. As a pioneering
work, the work in [24] built a linear programming
model on weighted social networks and reassigned
edge weights to obtain an anonymized graph with the
linear property. The work in [21] formalized a general
model for weighted graph anonymization to achieve
k-histogram anonymity. The work in [12] proposed
a generation-based anonymization approach to gener-
ate a k-possible anonymity weighted social network.
The work in [25] addressed the problem of outsourc-
ing weighted social networks to the cloud while pre-
serving shortest distances. The work in [26] proposed
a clustering-based k-anonymization method to pre-
vent identity disclosure in weighted social networks.
The work in [13] presented a two-phase approach
to generate a structure and text-aware k-anonymity
social network. However, most of the existing so-
lutions target k-anonymity. Our previous work [27]

defined the probabilistic indistinguishability property
for generating an anonymized social network with
high utility. The main drawback is that the proposed
scheme applies to only unweighted social networks. A
weighted graph is a generalization of the unweighted
graph. Therefore, our HIGA scheme is more practical.

10 CONCLUSION
In this paper, we investigate the problem of
publishing weighted social network data in a
privacy-preserving way. We identify a weighted 1*-
neighborhood attack and define a key property, prob-
abilistic indistinguishability, to resist this attack. Then,
we propose a HIGA scheme to generate a probabilis-
tically indistinguishable social network. The empirical
study indicates that the anonymized social networks
can be used to answer aggregate queries with high
accuracy. In our future work, we will try to introduce
other privacy mechanisms to our scheme, e.g., by
combining with l-diversity and t-closeness, we will
enable the nodes in a group to be associated with at
least l different sensitive attributes, and the distribu-
tion of the sensitive attributes in a group will be close
to the distribution of the attributes in the overall data.
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[3] L. Zou, L. Chen, and M. Özsu, “K-automorphism: A general
framework for privacy preserving network publication,” in
Proc. of the VLDB, 2009.

[4] F. Bonchi, A. Gionis, and T. Tassa, “Identity obfuscation in
graphs through the information theoretic lens,” Information
Sciences, 2014.

[5] Y. Boshmaf, I. Muslukhov, and et al., “Design and analysis of
a social botnet,” Computer Networks, 2013.

[6] M. Gori, M. Maggini, and et al., “Exact and approximate graph
matching using random walks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2005.

[7] L. Page, S. Brin, and et al., “The PageRank citation ranking:
Bringing order to the web,” Stanford InfoLab, Tech. Rep., 1999.

[8] E. Hazan, S. Safra, and et al., “On the complexity of approxi-
mating k-dimensional matching,” in Proc. of APPROX, 2003.

[9] A. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, 1999.

[10] T. Kanungo, D. Mount, and et al., “An efficient k-means
clustering algorithm: Analysis and implementation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2002.

[11] K. R. Varadarajan and P. K. Agarwal, “Approximation algo-
rithms for bipartite and non-bipartite matching in the plane.”
in Proc. of SODA, 1999.



14

[12] X. Liu and X. Yang, “A generalization based approach for
anonymizing weighted social network graphs,” in Web-Age
Information Management, 2011.

[13] Y. Hao, H. Cao, and et al., “K-anonymity for social networks
containing rich structural and textual information,” Social
Network Analysis and Mining, 2014.

[14] X. Ying and X. Wu, “Randomizing social networks: a spectrum
preserving approach.” in Proc. of SIAM SDM, 2008.

[15] M. Hay, G. Miklau, and et al., “Anonymizing social networks,”
Tech. Rep., 2007.

[16] J. Leskovec and C. Faloutsos, “Sampling from large graphs,”
in Proc. of ACM SigKDD, 2006.

[17] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recur-
sive model for graph mining.” in Proc. of SIAM SDM, 2004.

[18] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B. Y. Zhao,
“Measurement-calibrated graph models for social network
experiments,” in Proc. of WWW, 2010.

[19] G. Malewicz, M. H. Austern, and et al., “Pregel: a system for
large-scale graph processing,” in Proc. of ACM SIGMOD, 2010.

[20] A. Lenharth, D. Nguyen, and K. Pingali, “Parallel graph
analytics,” Communications of the ACM, 2016.

[21] Y. Li and H. Shen, “Anonymizing graphs against weight-based
attacks,” in Proc. of IEEE ICDMW, 2010.

[22] A. Campan and T. Truta, “A clustering approach for data and
structural anonymity in social networks,” in Proc. of PinKDD,
2008.

[23] J. Cheng, A. Fu, and J. Liu, “K-isomorphism: privacy preserv-
ing network publication against structural attacks,” in Proc. of
ACM COMAD, 2010.

[24] S. Das, O. Egecioglu, and A. El Abbadi, “Anonymizing weight-
ed social network graphs,” in Proc. of IEEE ICDE, 2010.

[25] J. Gao, J. Yu, and et al., “Neighborhood-privacy protected
shortest distance computing in cloud,” in Proc. of ACM CO-
MAD, 2011.

[26] M. E. Skarkala, M. Maragoudakis, and et al., “Privacy preser-
vation by k-anonymization of weighted social networks,” in
Proc. of IEEE ASONAM, 2012.

[27] G. Wang, Q. Liu, and et al., “Outsourcing privacy-preserving
social networks to a cloud,” in Proc. of IEEE INFOCOM, 2013.

Qin Liu received her B.S. in Computer Sci-
ence in 2004 from Hunan Normal Univer-
sity, China, received her M.S. in Computer
Science in 2007, and received her Ph.D.
in Computer Science in 2012 from Central
South University, China. She has been a
Visiting Student at Temple University, USA.
Her research interests include security and
privacy issues in cloud computing. She is an
Assistant Professor in the College of Com-
puter Science and Electronic Engineering at

Hunan University, China.

Guojun Wang received his B.S. in Geo-
physics, in 1992, M.S. in Computer Science,
in 1996, and Ph.D. in Computer Science,
in 2002, from Central South University, Chi-
na. He is the Pearl River Scholar Professor
of Guangdong Province at School of Com-
puter Science and Educational Software,
Guangzhou University, China. He has been
an Adjunct Professor at Temple University,
USA; a Visiting Scholar at Florida Atlantic
University, USA; a Visiting Researcher at the

University of Aizu, Japan; and a Research Fellow at the Hong Kong
Polytechnic University. His research interests include network and
information security, Internet of things, and cloud computing. He is
a distinguished member of CCF, and a member of IEEE, ACM, and
IEICE.

Feng Li earned his B.E. (Computer Science
and Technology, 2002) and M.S. (Comput-
er Science, 2005) from Southeast University
(Nanjing, China). He received his Ph.D. in
Computer Science from Florida Atlantic U-
niversity in Aug. 2009. His Ph.D. advisor is
Prof. Jie Wu. He is an Associate Professor
of the Department of Computer, Information,
and Technology at Indiana University-Purdue
University Indianapolis (IUPUI). Dr. Li teach-
es Wireless Network and Wireless courses

in the department. Dr. Li has been actively engaged in research
on computer networks, security and trust issues. He has published
more than 20 papers in top conferences including INFOCOM and
ICDCS. He welcomes any research/project collaboration on the
above research topics.

Shuhui Yang is an assistant professor in the
Department of Math, Computer Science, and
Statistics at Purdue University, Calumet cam-
pus since 2009. She worked in the Depart-
ment of Computer Science at Rensselear
Polytechnic Institute as a postdoc research
associate after she graduated in 2007. Her
host advisor is Dr. Wei Zhao. She received
her Ph.D. degree from the Department of
Computer Science and Engineering, Florida
Atlantic University, in August 2007. She ob-

tained her M.S. degree from Department of Computer Science and
Technology, Nanjing University, Nanjing, China in 2003 and B.S.
degree from Jiangsu University, Zhengjiang, China in 2000, both in
Computer Science. Her Ph.D. dissertation advisors were Dr. Jie Wu
(currently with Temple University) and Dr. Mihaela Cardei. Her re-
search interests include Wireless Networks and Mobile Computing,
Parallel and Distributed Systems, and Wireless Security and Privacy.

Jie Wu is the Associate Vice Provost for
International Affairs at Temple University. He
also serves as Director of Center for Net-
worked Computing and Laura H. Carnell pro-
fessor in the Department of Computer and
Information Sciences. Prior to joining Tem-
ple University, he was a program director at
the National Science Foundation and was
a distinguished professor at Florida Atlantic
University. His current research interests in-
clude mobile computing and wireless net-

works, routing protocols, cloud and green computing, network trust
and security, and social network applications. Dr. Wu regularly
publishes in scholarly journals, conference proceedings, and books.
He serves on several editorial boards, including IEEE Transactions
on Service Computing and the Journal of Parallel and Distributed
Computing. Dr. Wu was general cochair/chair for IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, and ACM MobiHoc 2014, as
well as program co-chair for IEEE INFOCOM 2011 and CCF CNCC
2013. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee
on Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished
Speaker and a Fellow of the IEEE. He is the recipient of the 2011
China Computer Federation (CCF) Overseas Outstanding Achieve-
ment Award.


