
FCell: Towards the Tradeoffs in Designing Data
Center Network Architectures

Dawei Li and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, USA
{dawei.li, jiewu}@temple.edu

Abstract—We propose a novel Data Center Network (DCN)
architecture, named FCell, which is a tradeoff design in three
aspects. First, FCell reflects a tradeoff between DCN power
consumption and network performances, which mainly include
end-to-end delays and bisection bandwidth. We propose a unified
path length definition to characterize end-to-end delays in general
DCNs. Comparisons with existing DCN architectures reveal that
FCell consumes a moderate amount of power, and achieves gener-
ally low end-to-end delays and a satisfiable bisection bandwidth.
Second, FCell reflects a tradeoff between switch-centric and
server-centric designs. Two basic routing schemes are proposed
to show that FCell can place routing intelligence on both servers
and switches; thus, FCell can be regarded as a dual-centric
architecture, which enjoys both the fast switching capability of
switches and the high programmability of servers. Third, FCell
reflects a tradeoff between scalability and flexibility. Scalability
of FCell comes from its regularity; FCell also supports flexible
growth of network size with minimal modifications on its original
architecture. Through simulations, we evaluate the performances
of the two routing schemes in different traffic conditions in FCell,
and verify that our unified path length definition is a useful metric
to characterize end-to-end delays in general DCNs.

Index Terms—Data center network (DCN), power consumption,
end-to-end delay, bisection bandwidth, dual-centric design.

I. INTRODUCTION

Data centers have become important infrastructures to sup-
port various cloud computing services. The Data Center Net-
work (DCN) has significant influences on the quality of the
services that the data center can provide to the applications
that it hosts.

Performance vs. Power. Two important performance met-
rics for a DCN architecture are end-to-end delays in the
DCN and the bisection bandwidth. End-to-end delays translate
directly to applications’ response times in various situations.
Bisection bandwidth provides key information on the potential
throughput that the network can provide and the fault-tolerance
capabilities. the DCN power consumption has also become an
important issue [1]. To provide low end-to-end delays and high
bisection bandwidth, large numbers of networking devices are
usually used in DCNs. For example, in Fat-Trees [2], three
levels of switches are used, resulting in a high network power
consumption. To achieve a low DCN power consumption,
other architectures use significantly fewer networking devices.
For example, in DPillar [3], SWCube, SWKautz [4], DCell
[5], BCN [6], and FiConn [7], the number of switches used is
largely reduced, though a small number of extra NIC ports
(typically less than 4) are required on servers. The DCN
power consumption of these architectures is generally less

than that of Fat-Trees. However, these architectures heavily
rely on servers for packet forwarding. Since servers usually
have much greater processing delays than switches, especially
when servers’ packet forwarding scheme is software-based,
the end-to-end delays in these architectures are much greater;
besides, these architectures also have a much lower bisection
bandwidth. Can we achieve high performances and low power
consumption at the same time?

Switch-centric vs. Server-centric. Existing DCN architec-
tures have been classified into two categories: switch-centric
and server-centric architectures [8]. In switch-centric designs
[1], [2], [9], routing intelligence is placed on switches; servers
are equipped with one NIC port, and are not involved in
forwarding packets for other servers. In server-centric designs
[3]–[7], [10], switches are only used as cross-bars, and routing
intelligence is placed on servers; servers are usually equipped
with multiple NIC ports, and act as both computing and
packet forwarding nodes. Switch-centric architectures enjoy
the fast switching capability of switches, but switches are less
programmable than servers. Server-centric architectures enjoy
the high programmability of servers, but servers usually have
larger processing delays than do switches. Can we combine
the advantages of both categories?

Scalability vs. Flexibility. Scalability requires that the
networking devices, typically the switches, rely on a small
amount of information, which does not increase significantly
with the network size, to make efficient routing decisions.
Flexibility means that expanding the network in a fine-grained
fashion should not destroy the current architecture or replace
the networking devices. Since modern data centers usually
have large network sizes, scalability is an important require-
ment. Also, data centers require flexible growth of network
size after initial deployment, due to the rapidly increasing
needs. Regular architectures are generally highly scalable,
but do not support flexible growth of the network size due
to their rigid topologies. Some regular architectures are able
to increase the network size, but have certain limitations.
For example, FiConn supports coarse-grained growth; because
adding one level to the architecture will make the network size
increase by tens, or even hundreds of times, which does not
reflect practical needs. Recent works have proposed random
networks, such as Jellyfish [11], Scafida [12], and Small-World
Data Center [13], to provide arbitrary-grained flexibility; how-
ever, due to their irregularity, networking devices in these
architectures rely on a large amount of information for efficient



routing, making them unable to scale to a large network size.
Can we design both scalable and flexible DCN architectures?

In this paper, we consider the tradeoffs (in all of the above-
mentioned three aspects) in designing DCN architectures. Our
main contributions are as follows.
• First, we propose a unified path length definition, and

consequently, a unified diameter definition, to character-
ize the end-to-end delays in a general DCN. Also, a DCN
power consumption model is presented to characterize the
power efficiency of general DCNs.

• Second, we propose a novel DCN architecture, named
FCell. FCell reflects a tradeoff between switch-centric
and server-centric designs, and can be regarded as a dual-
centric architecture, where routing intelligence can be
placed on both switches and servers. FCell also reflects
a tradeoff between scalability and flexibility. Scalability
of FCell comes from its high degree of regularity; mean-
while, FCell is a flexible architecture that supports two
fundamental ways to expand its network size in a fine-
grained fashion.

• Third, based on our unified path length, diameter defini-
tions and DCN power consumption model for general
DCNs, we conduct quantitative comparisons between
FCell and several typical existing DCN architectures. Re-
sults show that FCell reflects a tradeoff between network
performances and DCN power consumption.

• Fourth, we conduct simulations to evaluate the perfor-
mances of the two basic routing schemes under various
traffic conditions in FCell. Also, we verify that our unified
path length definition, and thus the unified diameter
definition, are useful metrics to characterize end-to-end
delays in general DCNs.

The rest of the paper is organized as follows. Section II
presents the unified path length, DCN diameter definitions, and
DCN power consumption model. We describe our novel DCN
architecture, FCell in Section III, where we also illustrate that
FCell is a dual-centric architecture, and that FCell is scalable
and flexible. We review related existing works in Section IV.
Quantitative comparisons on the network performances and the
DCN power consumption between FCell and several typical
existing architectures are provided in Section V. Supporting
simulations are conducted in Section VI. Conclusions are made
in Section VII.
II. UNIFIED PATH LENGTH, DIAMETER DEFINITIONS, AND

DCN POWER CONSUMPTION MODEL
To characterize the end-to-end delays between two servers

in a DCN, the concept of diameter is usually used, which is
defined as the maximum length of the shortest path between
any pair of two servers. However, for switch-centric and
server-centric architectures, the path lengths are calculated
differently. For switch-centric architectures, the length of a
path is calculated as the number of links in the path [14], [15];
for server-centric architectures, the length is calculated as the
number of servers (excluding the source and the destination)
in the path between the two servers, plus 1 [3]–[7], [10]. A
diameter of 6 in Fat-Tree means totally different things from a

diameter of 6 in BCube. However, a lot of works still compare
these two different kinds of diameters [5], [8], [14], [15]. This
somewhat confuses the understanding of the end-to-end delay
in a general DCN.

In a DCN, the end-to-end delay of a packet from a source
server to a destination server consists of the delays on all the
devices that the packet traverses. For the ease of presentation,
we assume that all the switches and servers are homogeneous.
Packets on switches and servers experience three important
delays: processing delay, transmission delay, and queuing
delay; we denote them as dw,p, dw,t, dw,q and dv,p, dv,t, dv,q
for switches and servers, respectively. The processing delay is
the time required to examine the packet’s head and determine
where to direct the packet. Queuing delays largely depend
on network traffic conditions and routing protocols. Currently,
our focus is on the architectures of DCNs; thus, we do not
consider the queuing delay explicitly, and just assume that
dw,q=dv,q=0.

Switches can operate in two modes: store-and-forward and
cut-through. In store-and-forward mode, a switch needs to
receive all the flits of the packet before it forwards the
packet to the next device. The total delay on the switch is
dw = dw,p+dw,t. The typical value of dw,p is around 2µs
[16]. dw,t = Spacket/rbit, where Spacket is the size of the
packet and rbit is the data transmission rate. Spacket varies
between 64 bytes and 1514 bytes. Given data transmission
rate rbit = 1Gbps, dw,t varies from about 0.5µs to about
10µs. In cut-through mode, a switch starts forwarding the
packet when it receives the first flit of the packet. Thus, the
transmission delay is negligible, and the total delay is around
dw=dw,p=2µs.

The packet forwarding scheme on a server can be im-
plemented in either software or hardware. In software-based
forwarding, the processing delay on a server, dv,p is much
higher than that on a switch, with a typical value of about
10µs [16]. Depending on CPU load and NIC configuration,
this value varies significantly. In hardware-based forwarding,
dv,p can be reduced to be close to the processing delay on a
switch [17]. We do not delve into the detailed implementation
of the packet forwarding schemes on servers. The overall delay
on a server is dv=dv,p+dv,t, where dv,t can be calculated in the
same way as dw,t. Based on the typical values, dv is generally
1 to several times of dw.

Network links have propagation delay, dl, which can be cal-
culated by dividing the length of the link (Llink) by the speed
of the signal in the transmission medium: dl = Llink/(ηc),
where η is a constant around 0.7 and c is the speed of light in
vacuum. Since the length of links in a data center is usually
less than 10 meters, the propagation delay on a link is usually
less than 10/(0.7×3×108)s = 0.048µs. Compared with the
typical delays on switches and servers, the propagation delay
is negligible.

Unified Path Length and Diameter Definitions. In general
DCNs, both switches and servers may be used for packet
forwarding. Denote the numbers of switches and servers in
a path, P from a source server to a destination server by



nP,w, and nP,v (excluding the source and the destination),
respectively. We define the path length of P as follows:

dP = nP,wdw + (nP,v + 1)dv, (1)

where 1 is added to nP,v, because the delay on the source
server should be included as part of the end-to-end delay.
The above path length definition applies to all general DCNs.
If we assume that dw = dv = 1, the above path length
definition is consistent with the path lengths in a switch-centric
architecture. If we assume that dv=1 and that dw is negligible,
the above path length definition is consistent with the path
lengths in a server-centric architecture. Under this unified path
length definition, we define the diameter of a general DCN as
the maximum path length (based on (1)) of the shortest paths
between all pairs of servers in the DCN:

d = max
P∈{P}

dP , (2)

where P is the set of shortest paths between all pairs of servers
in the DCN.

DCN Power Consumption Model. We consider the power
consumption of all DCN devices. A switch’s power consump-
tion, pw is part of the DCN power consumption. For a server in
a switch-centric architecture, only the NIC’s power consump-
tion, pnic belongs to the DCN power consumption. In a DCN
where the server can be used for packet forwarding for other
servers, the power consumption of the server’s packet forward-
ing engine, either software-based or hardware-based, should
also be included as the DCN power consumption. We denote
pfwd as the power consumption of the server’s packet for-
warding engine (either the CPU core’s power consumption for
software-based forwarding [18] or the additional hardware’s
power consumption for hardware-based forwarding [17]), and
denote the extent to which a server is involved in packet
forwarding by α. The overall DCN power consumption can be
calculated as follows: pdcn=Nwpw+nnicNvpnic+αNvpfwd,
where Nw and Nv are the numbers of switches and servers in
the DCN, respectively, and nnic is the average number of NIC
ports used on a server. Since different DCNs can hold different
numbers of servers, we define the DCN power consumption
per server as the power efficiency metric of a general DCN:

pV = pdcn/Nv = pwNw/Nv + nnicpnic + αpfwd. (3)

For switch-centric architectures, α = 0. For DCNs where
servers are involved for packet forwarding for other servers,
α depends on various factors; for simple and fair comparison,
we can choose α = 1. A practical value of pw for a switch
with 48 1Gbps ports is about 150 Watts [19]; a practical value
of pnic for 1Gbps NIC port is 2 Watts [20]. As reported in
[18], when software-based forwarding is used, the CPU cores
can be in reserved or shared models, which correspond to
different pfwd values, varying around 5Watts if NIC ports are
10Gbps. The value for pfwd will be lower if NIC ports are
1Gbps. In hardware-based forwarding, pfwd may also have
quite different values [17].

Algorithm 1 FCellBuild(n)
1: Label the jth server in the ith cluster in an FCell(n) as
ai,j , where 0 ≤ i ≤ n2/2, and 0 ≤ j ≤ n2/2− 1.

2: for i = 0 to n2/2− 1 do
3: for j = i to n2/2− 1 do
4: Connect server ai,j with server aj+1,i.

III. FCELL: A NOVEL DCN ARCHITECTURE

The motivation of our work is to design high performance
architectures with low DCN power consumption. An intuitive
remedy for switch-centric architectures, such as Fat-Tree, is
to reduce the levels of switches. However, this makes the
DCN unable to scale to a practically large size. Thus, we
consider using interconnections among servers to scale the
network. The detailed construction of FCell is presented in
the following.
A. FCell Construction

An FCell built from servers with 2 NIC ports and switches
with n ports is denoted by FCell(n). An FCell(n) consists
of n2/2+1 clusters. In each cluster, there are two levels of
switches: n/2 level 2 switches and n level 1 switches. Every
level 2 switch is connected to every level 1 switch. In other
words, the set of n/2 level 2 switches and the set of n level 1
switches form a complete bipartite graph. Then, there are n/2
ports remaining on each of the level 1 switches; we use these
ports to connect n/2 servers. A level 1 switch is also called
a Top of Rack (ToR) switch. As a result, the switches and
servers in one cluster form a simple instance of the folded
Clos [9] topology. The numbers of switches and servers in
each cluster are 3n/2 and n2/2, respectively.

Servers in all of the n2/2+1 clusters are interconnected
in a similar way to that of DCell [5]. Simply put, each of
the n2/2 servers in a cluster is directly connected to another
server in each of the other n2/2 clusters. Thus, if we regard
each cluster as a single node, the n2/2+1 clusters will form a
complete graph. We denote a server by ai,j , which represents
the jth server in the ith cluster, ∀0≤ i≤n2/2, 0≤j≤n2/2−1.
Algorithm 1 shows the detailed interconnections for building
FCell(n) from the n2/2+1 clusters. Fig. 1 shows the inter-
connections of an FCell(4), where each switch has 4 ports.
B. FCell Basic Properties
Property 1. In an FCell(n), the number of switches is Nw =
3n(n2+2)/4, and the number of servers is Nv = n2(n2+2)/4.
Proof. There are n2/2 + 1 clusters, each with 3n/2 switches
and n2/2 servers.
Property 2. The diameter of an FCell(n) is d = 6dw + 3dv .
Proof. The diameter is defined as the maximum length of
the shortest path between two servers. Obviously, the longest
shortest path in an FCell is between two servers that are not
in the same cluster. We consider two servers, ai,j and ak,l,
which are not in the same cluster, i.e., i 6= k. Without loss
of generality, we assume that 0 ≤ i < k ≤ n2/2. According
to the interconnection rules of FCell, the server ai,k−1 in the
ith cluster, and the server ak,i in the kth cluster are directly



0 1 2 3 4 5 6 7

(a) The interconnections in one cluster.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0
1

2
3

4
5

6
70

1
2

3
4

5
6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

45

6

7

(b) Final interconnections of FCell(4).
Fig. 1. An example of FCell(4). We consistently use rectangles to represent
switches and circles to respresent servers, if not otherwise specified.

connected. The shortest path from server ai,j to server ak,l
consists of at most three segments: 1) the shortest path from
server ai,j to server ai,k−1 in the ith cluster, 2) the path from
server ai,k−1 to server ak,i, and 3) the shortest path from
server ak,i to server ak,l in the kth cluster. Though ai,j and
ai,k−1 may be the same server, or may connect to the same
level 1 switch, in the worst case, the shortest path from ai,j to
ai,k−1 includes 3 switches. Similarly, the shortest path from
ak,i to ak,l includes 3 switches in the worst case. Thus, the
shortest path from ai,j and ak,l includes at most 6 switches (at
most 3 in each cluster), and at most 2 servers (excluding the
source and destination). According to (1) and (2), the diameter
of an FCell(n) is d = 6dw + 3dv .

We assume that all the links in a DCN have a unit band-
width, 1. Then, bisection bandwidth of a DCN is the minimal
number of links to be removed to partition the DCN into two
parts of “equal” sizes that differ by at most 1. We conjecture
that FCell has the following property.
Property 3. The bisection bandwidth of an FCell(n) is B≈
Nv/4.

Proof. The bisection bandwidth of a complete graph with N
nodes, when N is even, is N/2×N/2=N2/4. The reason is
quite straightforward. The cut partitions the N nodes into two
equal sets, each consisting of N/2 nodes. Since each node in
one set has a link to every node in the other set, the total
number of links in the cut is N/2×N/2 = N2/4, which
is the bisection bandwidth. When N is odd, the bisection
bandwidth is (N +1)/2× (N −1)/2 = (N2−1)/4. As has
been mentioned, for the FCell architecture, we can regard
each of the (n2/2+1) clusters as a single node; then, these
nodes form a complete graph. Besides, within each cluster,
the architecture has a much greater bisection bandwidth, just

like Fat-Tree and folded-Clos. For a cut to have a minimum
number of links, it should try to avoid cutting through the
clusters. Thus, the cut should cut between clusters. As a result,
the bisection bandwidth of FCell is approximately equal to the
bisection bandwidth of a complete graph with (n2/2+1) nodes:
B≈1/4(n2/2+1)2≈Nv/4.
Property 4. The DCN power consumption per server of an
FCell(n) is pV=3pw/n+ 2pnic + pfwd.
Proof. The switch-number to server-number ratio in an FCel-
l(n) is Nw/Nv=3/n; in an FCell, all servers are equipped
with 2 NIC ports, and servers may be involved in forwarding
packets for other servers.

We will show that FCell is a tradeoff design between
network performances and DCN power consumption by com-
paring with various existing architectures in Section V. In
the following two subsections, we illustrate FCell’s two other
tradeoffs: between switch-centric and server-centric designs,
and between scalability and flexibility.
C. FCell Routing Schemes

We present two basic routing schemes: shortest path routing
and detour routing, to show that FCell reflects a tradeoff
between switch-centric and server-centric designs. Notice that,
the two basic routing schemes are also useful for practical
routing protocol design.

1) Shortest Path Routing: We denote the source and des-
tination servers by ai,j and ak,l (0 ≤ i, k ≤ n2/2 and
0 ≤ j, l ≤ n2/2−1), respectively. Then, the ith and the kth
clusters are called source and destination clusters, respectively.

If ai,j and ak,l are in the same cluster, i.e., i=k, ai,j sends
the packet to its level 1 (ToR) switch, which checks whether
the destination is in the local rack. If the destination is in
the local rack, the level 1 switch forwards the packet to the
destination. Otherwise, it forwards the packet to a randomly
chosen level 2 switch; the level 2 switch checks which rack the
destination is in, and forwards the packet to the corresponding
level 1 switch, i.e., the bl/(n/2)cth level 1 switch, which
forwards the packet to the destination directly.

If ai,j and ak,l are not in the same cluster, based on servers’
interconnection rules in FCell, the source server can determine
the two servers (one in the source cluster, denoted by ai,r1
and one in the destination cluster, denoted by ak,r2 ) that are
directly connected. Then, ai,j forwards the packet to ai,r1
within the source cluster. After that, ai,r1 sends the packet to
ak,r2 directly, since they are directly connected. Finally, ak,r2
forwards the packet to ak,l within the destination cluster.

We can see that, in all cases, the source server can determine
all the server(s) in the path (including the destination) before
sending the packet. Since the servers have high programma-
bility and the decision logic is quite simple, we place the
task of determining all the servers in the path on the source
server. The source server initializes a server stack (srv stk)
that pushes the servers from the last one to the first one in
the path, and indicates whether they are the true destination
of the packet. For example, for the case where ai,j and ak,l
are not in the same cluster, and i < k, j 6= k− 1, i 6= l,



all the servers in the shortest path are ai,k−1, ak,i, and ak,l
(including the destination). The source server labels ak,l as the
true destination and labels ai,k−1 and ak,i as fake destinations.
Then, it pushes ak,l, ak,i and ai,k−1 into srv stk one by one.
When sending the packet to a ToR switch, the source server
uses the next server of the packet as the temporary destination,
based on which, switches make decisions within the local
cluster.

When another server in the DCN receives the packet, it
pops the srv stk of the packet. If the popped value is a true
destination, the server consumes the packet. If the popped
value is a fake destination, it checks whether the next server in
the path of the packet is in the local cluster. If yes, it sends the
packet to its ToR switch, using the next server as the temporary
destination. Otherwise, it means that the next server is the
server that directly connects with this server; then, it sends
the packet to the next server directly.

When a switch receives the packet, only the destination
(either fake or true) set by the previous sending server is
visible to the switch. We call this destination a temporary
destination. The switch makes forwarding decisions based
on this temporary destination. Specifically, when a level 1
switch receives the packet, it sends the packet to the temporary
destination directly if the temporary destination is in the local
rack; otherwise it sends the packet to a randomly chosen level
2 switch in the local cluster. When a level 2 switch receives
the packet, it sends the packet to the level 1 switch, on which
the temporary destination of the packet resides.

Notice that, instead of randomly choosing, a level 1 switch
can smartly choose a level 2 switch, if related information is
available, and if it has the intelligence to do so. Thus, level
1 switches can help with load-balancing, traffic-aware, fault-
tolerant or even multi-path routing within the local cluster.

2) Detour Routing: The problem with the shortest path
routing is that, if servers in two clusters have intensive
communications, the link that directly connects the two servers
in each of the two clusters will become congested. Thus, the
queuing delay will be increased significantly and the achiev-
able throughput is limited by the capacity of the bottleneck
link, even when other parts of the network have no traffic
load. To solve this problem, a detour routing scheme can
be applied. Instead of determining the shortest path from the
source to the destination directly, the source server can choose
to detour the packet to a randomly chosen intermediate cluster
before the packet arrives at the destination cluster; we call the
intermediate cluster the relay cluster.

After choosing the relay cluster, also based on servers’
interconnection rules in FCell, the source server can determine
the first relay server (in the relay cluster), which has a
direct connection with a server in the source cluster, and the
second relay server (in the relay cluster), which has a direct
connection with a server in the destination cluster. Then, the
detour path consists of the shortest path from the source server
to the first relay server, the shortest path from the first relay
server to the second relay server, and the shortest path from
the second relay server to the destination server.

D. FCell Scalability and Flexibility
FCell has good scalability due to its high degree of regu-

larity. As can be seen in the basic routing schemes, switches
in FCell only need local information for packet forwarding.
Servers only need basic configuration parameters of FCell for
packet forwarding. In other words, they both need a small
amount of information to make efficient routing decisions.
Thus, FCell is highly scalable.

Unlike various rigid regular architectures, FCell supports
flexibility quite well, i.e., it allows fine-grained incremental
growth of its network size. We call the FCell(n) constructed
previously in this paper a complete FCell(n). FCell supports
two fundamental ways for expanding the network.

The first way is to expand a complete FCell. In this case,
we require that the level 2 switches have a number of ports
reserved for future expansion. Using one reserved port on
each of the level 2 switches, we are able to add one level
1 switch with n/2 servers to each cluster, by connecting the
added level 1 switch with each of the n/2 level 2 switches
in the cluster. We call the cluster with n/2 added servers an
expanded cluster. After this, each of the n2/2+1 expanded
clusters in the FCell(n) will have n/2(n/2+1) servers, among
which, n/2 added servers are not directly connected to other
servers. Thus, we are allowed to add n/2 expanded clusters
into the current architecture. Adding the first expanded cluster,
the (n2/2)th server of the ith expanded cluster is connected
to the ith server in the newly added expanded cluster, which
becomes the (n2/2+1)th expanded cluster, ∀0≤ i≤ n2/2.
Adding the second expanded cluster, the (n2/2+1)th server
of the ith expanded cluster is connected to the ith server in the
newly added (n2/2+2)th expanded cluster, ∀0≤i≤n2/2+1.
Continuing this process until adding the (n/2)th expanded
cluster, the (n2/2+ n/2− 1)th server of the ith cluster is
connected to the i server in the newly added (n2/2+n/2)th
expanded cluster, ∀0≤i≤n2/2+n/2−1.

Notice that, the original interconnections among switches
and servers are never modified. The original architecture con-
sists of Noriginal

v =n2(n2+2)/4 servers. After expanding, the
architecture consists of Nexpanded

v =(n2/2+n/2)(n2/2+n/2+1)
servers. The increase of the number of servers for n= 24
is from 83,232 to 90,300, i.e., an increase of 8.49%. The
increase for n=48 is from 1,328,256 to 1,384,152, i.e., an
increase of 4.21%. In this way, FCell supports a fine-grained
incremental growth of network size, without modifying its
original interconnections.

We have used one reserved port on each of the level 2
switches. If there are k ports reserved for future expansion
on each level 2 switch, the expanded architecture can reach
(n2/2 + nk/2)(n2/2 + nk/2 + 1) servers. For k = n, it
indicates a size of approximately 4 times of the original size;
we argue that this meets typical requirements of network size
growth. We have to admit that having reserved ports on level
2 switches is a drawback. However, only one third of the
switches need to have reserved ports; this cuts down the extra
initial investment for future expansion.

FCell supports another way of expanding its network size.



TABLE I
COMPARISON OF VARIOUS DCN ARCHITECTURES

Nv(n=24) Nv(n=48) Nw/Nv d B pV
FDCL(n, 3) 3,456 27,648 5/n 5dw+dv Nv/2 5pw/n+ pnic

FDCL(n, 4) 41,472 663,552 7/n 7dw+dv Nv/2 7pw/n+ pnic

FBFLY(4, 7, 3) 49,125 — 8/24 8dw+dv Nv/3 8pw/24 + pnic

FBFLY(8, 6, 6) — 1,572,864 8/48 7dw+dv Nv/3 8pw/48 + pnic

FCell(n) 83,232 1,328,256 3/n 6dw+3dv Nv/4 3pw/n+ 2pnic + pfwd

BCube(n, 3) 331,776 5,308,416 4/n 4dw+4dv Nv/2 4pw/n+ 4pnic + pfwd

SWCube(r, 4) 28,812 685,464 2/n 5dw+5dv (Nv/8)× r/(r − 1) 2pw/n+ 2pnic + pfwd

DPillar(n, 4) 82,944 1,327,104 2/n 6dw+6dv Nv/4 2pw/n+ 2pnic + pfwd

DCell(n, 2) 360,600 5,534,256 1/n 4dw+7dv > Nv/(4 logn Nv) pw/n+ 3pnic + pfwd

FiConn(n, 2) 24,648 361,200 1/n 4dw+7dv > Nv/16 pw/n+ 7pnic/4 + 3pfwd/4

Instead of using n2/2+1 clusters, we can use m+1<n2/2+1
clusters to build an incomplete FCell, by connecting the first
m (<n2/2) servers in all of the m+ 1 clusters. The method
for adding clusters to an incomplete FCell is similar to that of
expanding a complete FCell. This provides the possibility of
flexibly adding servers, without reserving ports on the level 2
switches. Of course, the two ways to expand the network can
be combined. When expanding an incomplete FCell makes the
FCell complete, we can further expand the complete FCell.

Since the original interconnections among switches and
servers are never modified, after expanding the network,
very limited information needs to be updated for switches
and servers to make efficient routing decisions. Therefore,
scalability of FCell is well maintained.

IV. RELATED EXISTING WORKS
Existing DCN architectures have been classified as switch-

centric architectures and server-centric architectures.
Typical switch-centric architectures include folded-Clos [9],

Fat-Tree [2], Flattened Butterfly [1], and HyperX [9]. We
denote a folded-Clos DCN architecture with l levels of n-port
switches with by FDCL(n, l). The switch-number to server-
number ratio in an FDCL(n, l) is Nw/Nv=(2l−1)/n. Fat-Tree
is actually a folded-Clos with 3 levels, i.e., FDCL(n, 3). In
a Flattened Butterfly (FBFLY), switches form a generalized
hypercube [21]. Then, each switch is connected to a set of c
servers. An FBFLY with k dimensions and r switches along
each dimension is denoted by FBFLY(r, k, c). The switch-
number to server-number ratio is Nw/Nv=1/c. If the numbers
of switches in each dimension are different in an FBFLY, it
becomes the HyperX architecture.

Typical server-centric architectures include BCube [10],
SWCube [4], DPillar [3], DCell [5], and FiConn [7]. In
a BCube(n, k) the switch-number to server-number ratio is
(k+1)/n and its diameter is (k+1)(dw+dv). It uses k+1
NIC ports on all the servers; its DCN power consumption per
server is pV =(k+1)pw/n+(k+1)pnic+pfwd. The diameter
of SWCube(r, k) is d = (k+1)(dw+dv). The diameter of
DPillar(n, k) is d= (k+bk/2c)(dw+dv). The switch-number
to server-number ratios of SWCube and DPillar are both
2/n, and they both use 2 NIC ports on all the servers; thus,
their DCN power consumption per server values are both
pV=2pw/n+2pnic+pfwd. For DCell and FiConn, their switch-
number to server-number ratios are both 1/n. DCell(n, k) uses
k+1 NIC ports on each server; in FiConn(n, k), the average
number of NICs used on a server is 2−1/2k. The diameters
of DCell(n, 2) and FiConn(n, 2) are both d = 4dw+7dv .

1 2 3 4 5
5

10

15

20

25

30

35

40

D
ia
m
et
er

Delay on Server

 FDCL(n,3)
 FDCL(n,4)
 FBFLY(8,6,6)
 FCell(n)
 BCube(n,3)
 SWCube(r,4)
 DPillar(n,4)
 DCell(n,2)
 FiConn(n,2)

(a) Diameters vs. dv .

2 4 6 8 10
5

10

15

20

25

30

D
C

N
 P

ow
er

 C
on

su
m

pt
io

n 
pe

r S
er

ve
r

Power Consumption of Server's Packet Forwarding Engine

 FDCL(n,3)
 FDCL(n,4)
 FBFLY(8,6,6)
 FCell(n)
 BCube(n,3)
 SWCube(r,4)
 DPillar(n,4)
 DCell(n,2)
 FiConn(n,2)

(b) pV vs. pfwd.
Fig. 2. Comparison of various architectures (n = 48). Notice that, some of
the lines are overlapped.

In DCell(n, 2), pV = pw/n+3pnic+pfwd. In FiConn(n, 2),
pV=pw/n+7pnic/4+3pfwd/4.

V. COMPARISONS OF VARIOUS DCN ARCHITECTURES
We compare various DCN architectures, constructed by

the same homogenous servers and switches, with comparable
numbers of servers. For architectures using 24-port and 48-
port switches, basic quantitative comparisons are presented
in Table I. Typical data centers have tens of thousands, or
hundreds of thousands of servers, and the world’s largest data
centers can achieve one or two million. The numbers of servers
in the table meet the needs of practical data centers.

Switch-centric architectures usually have a small diameter
and a large bisection bandwidth. However their switch-number
to server-number ratio is usually large, resulting in a large
DCN power consumption. BCube also has a large bisection
bandwidth; but it needs to use 4 levels of switches to reach
a comparable DCN, and consequently 4 NIC ports on all
the servers; this results in a large DCN power consumption.
Other server-centric architectures, such as SWCube, DPillar,
DCell and FiConn, use much fewer switches, though a small
number of extra NIC ports are required on servers; their
power consumption is lower than switch-centric architectures
and BCube. However, they rely heavily on servers for packet
forwarding; even the maximum shortest paths contain a con-
siderable number of servers (usually ≥5 for them to scale to
a comparable network size), which results in large end-to-end
delays; besides, their bisection bandwidths are much lower.

We regard the delay on a switch, dw as 1, and vary the delay
on a server, dv from 1 to 5. Fig. 2(a) shows the diameters of
various DCN architectures. FCell has a lower diameter than all
server-centric architectures when dv > 2, which reflects most
practical situations. For switches with n=48 1Gbps ports and
1Gbps NIC ports, we set pw=150 and pnic=2. We vary pfwd

from 1 to 10. Fig. 2(b) shows the DCN power consumption per
server of various architectures. When pfwd ≤ 4, which also
reflects most practical situations, FCell consumes less power



0 100000 200000 300000 400000 500000

0

200

400

600

800

1000

1200
Ag

gr
eg

at
e 

Th
ro

ug
hp

ut

Number of Flows

 shortest path routing
 detour routing

(a) Aggregate throughput.

0 100000 200000 300000 400000 500000
0

100

200

300

400

500

Number of Flows

 APL of shortest path routing
 ADT of shortest path routing
 APL of detour routing
 ADT of detour routing

(b) APL and ADT.
Fig. 3. Aggregate throughput, APL and ADT vs. No. of flows (random traffic).

than switch-centric architectures and BCube(n, 3). Also, FCell
has a satisfiable bisection bandwidth of Nv/4. We can see that
FCell reflects a tradeoff design between network performances
and DCN power consumption.

VI. SIMULATIONS

We develop a proprietary simulator to conduct routing
simulations in FCell. Our goals are: 1) to evaluate the per-
formances of the two basic routing schemes under different
traffic conditions in FCell, and 2) to verify that our unified path
length is a useful metric for end-to-end delays in a general
DCN by evaluating the influences of servers’ and switches’
processing delays on the average path lengths and the average
delivery times of the two basic routing schemes in FCell.

We build a basic model for store-and-forward switches. Both
switches and servers are assumed to have 1Gbps full duplex
ports. We consider single-packet flows and fixed packet size.
Thus, we have a fixed transmission delay, which is considered
as one unit of time, i.e., dw,t=dv,t=1. This time unit has
a typical value around 2µs. The switch’s and the server’s
processing delays, dw,p and dv,p are normalized by this time
unit. Queuing delay happens when multiple packets compete
for the same output port (either on a switch or on a server)
simultaneously. Two routing schemes are simulated: Shortest
path Routing (SRouting) and Detour Routing (DRouting).

Two traffic patterns are considered: random and bursty
traffic patterns [7]. In random traffic patterns, the source server
and the destination server of each packet are randomly gener-
ated among all the servers. In bursty traffic patterns, servers
in one cluster of FCell have a flow destined at other servers
in another cluster. We choose the zeroth cluster and the first
cluster as the source and destination clusters, respectively. In
both traffic patterns, we can choose different numbers of flows
to be generated, to reflect different traffic loads in the network.
All of the flows are generated and pushed to the network
at the same time. We calculate the aggregate throughput, the
Average Path Length (APL) and the Average Delivery Time
(ADT) of the two routing schemes. Aggregate throughput is
defined as the average amount of data transmitted in one unit
of time when all the flows are delivered to their destinations,
i.e., the total data amount divided by the maximum delivery
time among all flows. For APL, the path lengths are calculated
based on our unified definition in (1).
A. Simulation Settings

We conduct simulations on a complete FCell(12), which
is built from 12-port switches. In an FCell(12), the number
of servers in one cluster is N cluster

v =122/2=72, the total
number of servers is Nv=5, 256. To evaluate the performances

0 1000 2000 3000 4000 5000

0

5

10

15

20

25

Ag
gr

eg
at

e 
Th

ro
ug

hp
ut

Number of Flows

 shortest path routing
 detour routing

(a) Aggregate throughput.

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

2500

3000

Number of Flows

 APL of shortest path routing
 ADT of shortest path routing
 APL of detour routing
 ADT of detour routing

(b) APL and ADT.
Fig. 4. Aggregate throughput, APL and ADT vs. No. of flows (bursty traffic).

of the two routing schemes under different traffic conditions,
we set the switch’s processing delay dw,p = 1, and set the
server’s processing delay dv,p=4. For random traffic, we vary
the number of flows from 657 to 525,600; for bursty traffic,
we vary the number of flows from 9 to 5,760. Step sizes are
different in different ranges.

To evaluate the influences of dv,p on APLs and ADTs, we
set dw,p = 1, and vary dv,p from 1 to 10. To evaluate the
influences of dw,p, we set dv,p=10, and vary dw,p from 1 to
10. We choose the number of flows equal to the number of
servers, Nv=5, 256 for random traffic; and choose the number
of flows equal to (N cluster

v /4)2=324 for bursty traffic.

B. Simulation Results
Fig. 3 shows the performances of the two routing schemes

under random traffic. As we can see, APLs of SRouting and
DRouting remain constant, because APLs do not depend on
the number of flows. APL of DRouting is greater than that of
SRouting, because DRouting does not choose the shortest path.
When the number of flows is small, the aggregate throughput
increases almost linearly with the number of flows, and ADTs
are very close to APLs; this is because the network has a very
light traffic load and the main end-to-end delays come from
processing delays and transmission delays, instead of queuing
delays. When the number of flows is large, the increase of
aggregate throughput becomes slower and slower and ADTs of
both SRouting and DRouting increases almost linearly; this is
because the network tends to be saturated and queuing delays
become an important part of end-to-end delays. Notice that
the upper bound of the aggregate throughput is the bisection
bandwidth B ≈Nv/4 = 1, 314. When the number of flows
is 525,600, SRouting achieves an aggregate throughput of
1,142.6, which is 87.96% of the ideal maximum throughput.
Thus, SRouting has good performances under random traffic.
DRouting has a lower aggregate throughput because it has a
larger maximum delivery time.

Fig. 4 shows the performances of the two routing schemes
under bursty traffic. Though APL of DRouting is greater than
that of SRouting, when the number of flows increases, ADT
of DRouting is much smaller than that of SRouting. This
is because DRouting experiences significantly less queuing
delays by avoiding the congested link. When the number
of flows increases, the aggregate throughput of SRouting
is limited by the capacity of the congested link, 1; while
the aggregate throughput of DRouting continues increasing
significantly, because DRouting largely avoids the congested
link and can use other links’ capacities. Notice that, under
bursty traffic, the aggregate throughput is also upper bounded



2 4 6 8 10
10

20

30

40

50

60

70

Server's Processing Delay

 APL of shortest path routing
 ADT of shortest path routing
 APL of detour routing
 ADT of detour routing

(a) APL and ADT vs. dv,p.

2 4 6 8 10

40

60

80

100

120

140

Switch's Processing Delay

 APL of shortest path routing
 ADT of shortest path routing
 APL of detour routing
 ADT of detour routing

(b) APL and ADT vs. dw,p.
Fig. 5. Influences of servers’ and switches’ processing delays (random traffic).
by the sending and receiving rates of servers in the two
clusters. If on average, only half of the servers are sending
packets at each time unit, it indicates an upper bound on the
maximum aggregate throughput of N cluster

v /2 = 36. It takes
some effort to calculate the true upper bound; we just want
to show that this is the reason why the aggregate throughput
of DRouting tends to approximate an upper bound around
23.5. We can see that DRouting helps both reducing ADTs
and increasing the aggregate throughput. Thus, DRouting has
good performances under bursty traffic.

The influences of dv,p and dw,p on APLs and ADTs are
shown in Fig. 5 and Fig. 6. Under random traffic, ADTs of
both SRouting and DRouting are close to their APLs, and all
the values increase linearly with dv,p and dw,p. Under bursty
traffic, ADT of DRouting is close to its APL, and they increase
linearly with dv,p and dw,p; however, ADT of SRouting is
much greater than its APL. The reason is that, under random
traffic, the network congestion is quite low; processing delays
and transmission delays account for a majority of ADTs,
compared with queuing delays. However, under bursty traffic,
if SRouting is adopted, the link that directly connects the
source cluster and the destination cluster is heavily congested;
the queuing delay accounts for a majority of ADT in SRouting.
DRouting largely avoids the congested link; thus, its ADT is
still close to APL. The results indicate that, for moderate traffic
loads and efficient routing schemes where queuing delays are
not significant, APLs characterize ADTs quite well. Thus, our
unified path length definition is a useful metric to characterize
end-to-end delays in general DCNs.

VII. CONCLUSION

We consider the tradeoffs in designing DCN architectures.
We present a unified path length definition and a DCN power
consumption model for general DCNs, to enable fair and
meaningful comparisons. We identify a new class of DCNs,
that can be regarded as dual-centric. We propose a novel
DCN architecture, named FCell, which belongs to this class
and serves as a good example of a tradeoff design in three
aspects: between performances and power, between switch-
centric and server-centric designs, and between scalability and
flexibility. Two basic routing schemes are provided for FCell,
and their performances under different traffic conditions are
evaluated. By simulations, we verify that our unified path
length definition is a useful metric to characterize end-to-end
delays in general DCNs.

ACKNOWLEDGEMENT

This work is supported in part by NSF grants CNS 149860,
CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774,

2 4 6 8 10

20

40

60

80

100

120

140

160

180

200

Server's Processing Delay

 APL of shortest path routing
 ADT of shortest path routing
 APL of detour routing
 ADT of detour routing

(a) APL and ADT vs. dv,p.

2 4 6 8 10

20

40

60

80

100

120

140

160

180

200

Switch's Processing Delay

 APL of shortest path routing
 ADT of shortest path routing
 APL of detour routing
 ADT of detour routing

(b) APL and ADT vs. dw,p.
Fig. 6. Influences of servers’ and switches’ processing delays (bursty traffic).

ECCS 1231461, ECCS 1128209, and CNS 1138963.

REFERENCES

[1] D. Abts, M. Marty, P. Wells, and et al, “Energy proportional datacenter
networks,” in ISCA, 2010.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Conf. on Data Comm.,
2008.

[3] Y. Liao, D. Yin, and L. Gao, “Dpillar: Scalable dual-port server
interconnection for data center networks,” in ICCCN, 2010.

[4] D. Li and J. Wu, “On the design and analysis of data center network
architectures for interconnecting dual-port servers,” in IEEE INFOCOM,
2014.

[5] C. Guo, H. Wu, K. Tan, and et al, “Dcell: a scalable and fault-tolerant
network structure for data centers,” in ACM SIGCOMM Conf. on Data
Comm., 2008.

[6] D. Guo, T. Chen, D. Li, and et al, “Expandable and cost-effective
network structures for data centers using dual-port servers,” IEEE Trans.
on Computers, vol. 62, no. 7, 2013.

[7] D. Li, C. Guo, H. Wu, and et al, “Ficonn: Using backup port for server
interconnection in data centers,” in IEEE INFOCOM, 2009.

[8] Y. Zhang and N. Ansari, “On architecture design, congestion notification,
tcp incast and power consumption in data centers,” Communications
Surveys Tutorials, IEEE, vol. 15, no. 1, 2013.

[9] J. H. Ahn, N. Binkert, A. Davis, and et al, “Hyperx: Topology, routing,
and packaging of efficient large-scale networks,” in ACM/IEEE SC,
2009.

[10] C. Guo, G. Lu, D. Li, and et al, “Bcube: a high performance, server-
centric network architecture for modular data centers,” in ACM SIG-
COMM Conf. on Data Comm.

[11] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in USENIX NSDI, 2012.

[12] L. Gyarmati and T. A. Trinh, “Scafida: A scale-free network inspired
data center architecture,” SIGCOMM Comput. Commun. Rev., vol. 40,
no. 5, Oct. 2010.

[13] J.-Y. Shin, B. Wong, and E. G. Sirer, “Small-world datacenters,” in ACM
SOCC, 2011.

[14] Y. Liu, J. Muppala, M. Veeraraghavan, and et al, Data Center Networks:
Topologies, Architectures and Fault-Tolerance Characteristics. Springer
Briefs in Computer Science, 2013.

[15] L. Gyarmati and T. A. Trinh, “How can architecture help to reduce
energy consumption in data center networking?” in e-Energy, 2010.

[16] A. Greenberg and D. A. Maltz, “What goes into a data center - sigmetrics
2009 tutorial.” [Online]. Available: http://research.microsoft.com/apps/
pubs/default.aspx?id=81782

[17] G. Lu, C. Guo, Y. Li, and et al, “Serverswitch: A programmable and
high performance platform for data center networks,” in USENIX NSDI,
2011.

[18] L. Popa, S. Ratnasamy, G. Iannaccone, and et al, “A cost comparison
of datacenter network architectures,” in Co-NEXT, 2010.

[19] “Cisco nexus 2000 series fabric extenders data sheet.” [Online]. Avail-
able: http://www.cisco.com/c/en/us/products/collateral/switches/nexus-
2000-series-fabric-extenders/data sheet c78-507093.html

[20] “Intel gigabit et, et2, and ef multi-port server adapters.” [Online].
Available: http://www.intel.com/content/dam/doc/product-brief/gigabit-
et-et2-ef-multi-port-server-adapters-brief.pdf

[21] L. Bhuyan and D. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” IEEE Trans. on Computers, vol.
C-33, no. 4, 1984.


