
Sybil Defenses in Mobile Social Networks
Wei Chang†, Jie Wu†, Chiu C. Tan†, and Feng Li‡

†Temple University,‡Indiana University-Purdue University Indianapolis
Email: †{wei.chang, jiewu, cctan}@temple.edu,‡fengli@iupui.edu

Abstract—Mobile social networks are vulnerable to Sybil
attacks. By creating a large number of fake identities, malicious
users can gain a disproportionately high benefit through a
Byzantine fashion. Most social network-based Sybil defenses
adopt the assumptions that the honest region is a fast-mixing
network. However, more and more evidence shows that some
real social networks are not fast-mixing, especially when only
strong-trust relations are considered. Moreover, the accuracy of
all existing solutions is related to the number of attack edges
that the adversary can build. In this paper, for addressing these
problems, we propose a local ranking system for estimating
trust-level between users. Our scheme has three unique features.
First, our system is based on both trust and distrust relations.
Second, instead of storing the entire social graph, users carry
limited information related to themselves. Last but not least, our
system weakens the impacts of attack edges by removing several
suspicious edges with high centrality. We validate the effectiveness
of our solutions through comprehensive experiments.

Index Terms—Community, distrust, local gateway, mobile
social networks, sybil attacks, signed social networks.

I. I NTRODUCTION

In recent years, researchers have designed different frame-
works for cooperative services of smartphones [1]. However,
the open environment makes these systems vulnerable toSybil
attacks. In a Sybil attack, an adversary creates a large number
of fake identities (Sybils), and since all Sybils are controlled
by the adversary, she can subvert the system by making actions
that benefit herself. Here is an example from a data sharing
service. In order to reduce a cellphone’s usage of cellular
networks, when several nearby users are watching the same
online content, they locally share partial data (which has been
downloaded to each other’s phone) via other networks; the
amount of shared data a user obtained depends on the quantity
he provided. The attacker can benefit from the service by only
downloading one portion of data and obtaining other parts via
different Sybil identities.

Traditional social network-based Sybil defenses are based
on two common assumptions: (1) sybil-free social networks
are fast-mixing; (2) Sybils can only fool a limited number of
honest users. Intuitively, a fast-mixing network consistsof a
single well-connected core, even after the decomposition of the
graph into itsk cores [2]. However, these assumptions lead to
two problems. First, the accuracy of a sybil defense algorithm
is highly related with the number of attack edges. Second, itis
unclear whether the assumption about the fast-mixing feature
will hold in all social networks. Research by [2], [3] suggested
that in some social networks, there are multiple cores with
considerable sizes. Since we cannot be sure that fast-mixing
will always be present, it is reasonable to make the following

assumption:honest users may cluster into one community, or
several communities with similar sizes.But, under the new
assumption, using most existing sybil defenses will resultin
high false positive rates (many honest users from other honest
communities will be labeled as sybils).

In order to solve the problems, we design a Sybil defense
system in mobile social networks. Considering that trust is
pairwise instead of global, our system explores both trust and
distrust relations among users. For addressing the problemof
multiple honest communities, our system uses a distributed
sybil defense algorithm based on signed networks. For re-
ducing the impacts of attack edges, we propose a gateway-
breaking algorithm. Note that the connectivity between honest
communities is different from that between communities of an
honest and a Sybil.If we cut off several high centrality edges
from the social graph, the connectivity between honest nodes
bears much less of an impact than that between sybil and
honest nodes. This algorithmpotentiallyincreases the accuracy
of any social network-based sybil defense algorithm.

II. RELATED WORK

Neighborhood Monitoring-based Sybil Defenses:since
attackers have a limited number of real devices, a group
of Sybils are actually sharing one device. Based on this
observation, Sybils can be detected by letting honest users
monitor signals’ features [4], [5] or moving patterns of other
users [6]. Paper [7] proposed a strategy for detecting Sybils in
mobile networks: each user locally stores a friendship graph
and a foe graph. Whether a suspected node will be regarded as
a Sybil is dependent on the similarity of the graphs between
the involved users. But, their solution is not suitable for the late
participants or frequent travelers. Moreover, none of the above
schemes work well if the attackers only conduct malicious
actions to a small set of honest users instead of all users.

Social Network-based Sybil Defenses:based on the small-
cut structure of a social network where a Sybil node is more
likely to be connected with Sybil nodes and a Sybil can only
fool a limited number of honest nodes, graph theorems are usu-
ally adopted to detect Sybils [8]–[10]. Our proposed scheme
is also based on the unique link structures of Sybil nodes, but
unlike previous works, we use a more realistic model that the
honest users present single or multiple communities. Under
this model, most of the existing social network-based Sybil
defenses suffer high false positive rates.

Signed social network[11] is a new type of social networks.
Unlike traditional social networks, signed networks allowusers
to add both trust (positive) and distrust (negative) relations to

2

A

B

Signed NetworksSigned Networks

C

20
19

25
21

10

13

1214

2
623

22 17 7

11

4

15

18

24

16

Community 2

Community 3

Sybil

Region

8

5

1

3

27

35
34

33

32
31

30 29

28

26

Community 1

9

Honest

Region

Attack Edge

Community 4

Distrust Edge

Distrust Edge

Attack Edge

Attack Edge

d

d

d

B
Match?

User A’s

distrust profile

User B’s

trust profile

Fig. 1. System model.

their social profiles [12]. In our system, wecreatea signed
social network behind a given mobile social network to capture
the mutual relations among users. The idea of our system is
that, by using the created social graph, Sybil nodes can be
detected through the propagation of both trust and distrust.

III. SYSTEM MODEL

Our system consists of two parts: a remote server and
users. The server is responsible for two jobs: (1) storing
and periodically pruning the created signed network graph;
(2) assigningrandomly sampledsocial profiles to users for
computing the trust-level between users.

We assume that each honest user has one mobile phone,
which is associated with a single identity, while attackers
may associate multiple fake identities with one device. For
the remainder of the paper, we call the identities held by the
attackers asSybil identities, and we also refer to identities as
nodes. Each identity is required to periodically send a special
message to the server to keep valid, and the server will return
updated social profiles. Unlike traditional models, we assume
that the honest region of a social network may form several
communities. Exactly how many honest communities may be
formed is determined by the social networks being considered.

Our system works as follows. Each user locally stores two
randomly sampledsocial profiles: a trust and a distrust profile.
Whenever two strangers encounter and want to establish
cooperative service, each user’s phone will exchange the trust
profile (together with signature and timestamp), and locally
compute a trust and a distrust score to determine whether the
other user is a Sybil. In order to increase the accuracy, a special
pruning algorithm is running on the server.

In our system, to capture the trustworthiness between users,
we createa signed network. If nodeu trusts (distrusts) node
v, thenE+

uv = 1 (E−
uv = 1). The trust relations come from the

friendships of users, soE+ are always bidirectional, while
the distrust edges are unilateral.N+(v) indicates a list of
directly trusted nodes ofv, and N−(v) gives the directly
distrusted list. For example, in Fig. 1,N+(v6) = {v5, v7, v8},
andN−(v29) = {v13}.

IV. SIGNED NETWORK-BASED SYBIL DEFENSE

A. Generation of Signed Network

Our system detects Sybils by exploring both trust and
distrust relations. But, how to find the distrust relations is

Fig. 2. The generation of distrust social profiles.

an open question. Here, we propose several options. First,
consider that multiple Sybils are sharing a single phone, and
that each Sybil identity needs to periodically report some
message in order to keep itself valid. For some honest users,
they may catch the instant that an attacker switches her Sybil
identities. If that is the case, then the honest users will report
this misbehavior to our server, and a distrust edge will be
added from the reporter to the accused. Second, when several
honest users, who have been fooled by the sameattackervia
different identities, physically encounter the attacker at the
same time, some of them may notice that the attacker is using
a different identity; the honest one could report this event
to our server. Besides these two options, any other neighbor
monitoring techniques may also be adopted.

Our system does not require that each honest user must
monitor other users. Instead, we just use the data provided by
some cooperative users, who are willing to report the misbe-
havior events they witnessed. Since the attackers can use hit-
and-run policy, sharing the knowledge about the abnormality
increases the accuracy of our system. Traditional reputation
system-based solutions only maintain a global trust value for
each user while a signed social network preserves much more
information, especially when adversaries have a target list
while act normally to other nodes.

B. Scheme of Signed Network-based Sybil Defense

When userA needs to interact with a nearby strangerB,
both of them will locally measure a trust-level between each
other by usingSigned Network-based Sybil Defense algorithm
(SNSD), as shown by Algorithm 1. SNSD makes use of
social profiles, which are stored in users’ phones. SNSD first
computes a trust score and a distrust score. Based on the
scores, it further classifies nodes into:trusted, neutral, or
distrusted. Because the Sybil-free social networks may contain
several communities, we use the neutral tag to label the honest
users from other honest communities. Similar to most social-
based Sybil defense algorithms, SNSD also applies random
walks to represent the propagation of trust and distrust. Since
the random paths are generated by the server, the attackers
cannot control how the random walks are conducted.

1) The Generation of Social Profiles:Each user locally
records a trust and a distrust social profile. When a new user
V joins our system and provides his trust-friend list, the server
will generate the two profiles. The generating procedure fora
trust-relation profile is as follows: the server first sends out K
random walkers fromV . Each walker will conduct anl-length

3

Fig. 3. The computation of trust score. The solid blue lines indicateV ’s
trust social profile, and the dashed black lines represent the trust social profile
of S. WhenV sets the verifier thresholdkt = 2, then only suspect path1
will be fully verified. V er(V, S) = 1, |K| = 3, andTrust(V, S) = 1/3.

Algorithm 1 SNSD Algorithm (Run on nodeV)
1: Exchange trust social profile with the other userS.
2: Trusted degree calculation:
3: Extract paths from the trust social profiles ofV andS.
4: SetV er(V,S) to be0.
5: for Each suspect pathPs do
6: if Ps intersects more than half of verifier pathsthen
7: V er(V,S) = V er(V,S) + 1.
8: Compute trusted degree by Equation1.
9: Distrusted degree calculation:

10: Extract paths from the distrust social profiles ofV .
11: for Each suspect pathPs do
12: if Ps comes across more than half of distrusted verifier paths

then
13: Dis(V, S) = Dis(V, S) + 1.
14: Compute trusted degree by Equation2.
15: According to Equation3, label the suspectS.

random walk along trust edges. A generated path represents
one possible way of trust propagation. These paths will be
sent toV as a trust social profile. Obviously, the profile is a
random sample ofV ’s l-hops friendship.

In order to impersonate real users, attackers have to cre-
ate a large friend set for each Sybil identity. Usually, such
friendships are created by letting Sybil nodes friend each
other. Therefore, friends of a distrusted node are likely to
be distrustful. Our server createsV ’s distrust social profile
by using the distrust relations of bothV and his trusted
friends. Take Fig. 2 as an example. First, a distrust seed set
is generated: along trust edges, the server computesK = 3
short-length random paths fromV (solid green lines). The
ends (shadowed circles), which are distrusted by the nodes
on these paths, form the seed set. From each seed, another
l-length random walk will be conducted, and the paths (solid
red lines) will be used as the distrust social profile ofV .

2) Trust Level Estimation:The computation of the trust-
level is based on the similarities between users’ social profiles;
SNSD gives a probability value to represent to what degree a
node can be trusted. Whenever strangersV andS encounter,
they will exchange their trust-social profiles. After obtaining
the profiles,V will locally compute a trust score and a distrust
score forS. For the ease of description, the paths inV ’s trust
social profile are named asverifier paths, and the paths in the
trust profile ofS are calledsuspect paths, as shown by Fig. 3.
If there is a common node on both a verifier path and a suspect
path, the suspect path is verified once; when a suspect path
has been verified more thankt times, wherekt is a constant,

Fig. 4. The computation of distrust score. The distrust social profile of V
contains3 distrust paths (solid blue lines). If we define a verified distrust
path as a suspect path that comes across at least half of the distrust verifier
paths, then only suspect path3 is verified. Dis(V, S) = 1, K ′ = 3 and
DisTru(V, S) = 1/3.

we say that this suspect path is fully verified. LetV er(V, S)
be the number of fully verified paths, and recall that there are
totally K random paths in a trust social profile. In regard toV ,
the trust score ofS is given by:Trust(V, S) = V er(V, S)/K

For the computation of distrust score, SNSD considersV ’s
distrust social profile and the trust social profile ofS, as shown
by Fig. 4. We name the paths fromV ’s distrust social profile
asdistrust verifier paths, and useK ′ to represent the size of
V ’s distrust social profile. When there arekt distrust verifier
paths having common nodes with a suspect path, this suspect
path is a fully verified distrust path. LetDis(V, S) be the total
number of fully verified distrust paths, and the distrust score of
S in regard toV is given by:DisTru(V, S) = Dis(V, S)/K ′

The final label ofS, L(V, S), is determined by the differ-
ence of the two scores:z = Trust(V, S) − DisTru(V, S).
Let α, β be two thresholds,1 ≥ α > β ≥ −1. Whenz ≥ α,
thenL(V, S) =‘Trusted’; if α ≥ z ≥ β, L(V, S) =‘Neutral’;
otherwise,L(V, S) =‘Distrusted’.

C. Security Analysis

Sybil attacks are hard to defend against, because Sybil
nodes can impersonate honest nodes by supporting each other.
However, SNSD forces the attacker into a dilemma. On the
one hand, in order to boost the trust scores, it is better for
Sybils to cluster into one community, such that the verifier
paths are more likely to encounter a suspect path. As the
attacker cannot predict how many and from which attack edges
the trusted verifier paths may enter into the Sybil region,
single community structure provides more chance for having
contact with verifier paths. On the other hand, for reducing the
distrust scores, the attacker should build Sybils into multiple
communities for two reasons. (1) the probability of incurring
the distrust verifier paths is proportional to the size of a Sybil
community; having a single Sybil community may result in
high distrust scores. (2) if a distrust verifier path enters Sybil
region, having multiple communities can trap it in one of the
communities instead of threatening all Sybils.

Although the attackers can adopt bad mouthing strategy, in
our system, such strategy has very limited impacts on honest
users. The main reason is that the distrust seeds come from
an honest user’s close friends. When the attackers create more
distrust edges to honest users, the chance of having these fake
distrust edges in other honest users’ profiles is very small,

4

unless the attackers intensively add the fake distrust edges to
a node. But if it is the case, our pruning algorithm will detect
this high centrality structure. For attackers, the bad mouthing
strategy brings many more problems than benefits.

V. SYBIL GATEWAY -BREAKING

In order to improve the accuracy, a special algorithm called
Sybil gateway-breaking is proposed. Essentially, the algorithm
prunes some suspicious edges of the signed social network.

A. Overview of our Sybil gateway-breaking algorithm

The accuracy of most existing social network-based Sybil
defense algorithms is related to the number of attack edges.If
a malicious user can establish more attack edges, the overall
accuracy of a Sybil defense will decrease; if the attacker
concentratedly establishes attack edges to a targeted group of
users, there will be more victims. But, if we can remove some
attack edges, the accuracy can definitely be increased.

Based on the above idea, we propose Sybil gateway-
breaking algorithm (SGA), as shown by Algorithm 2. Consider
that all of the paths connecting honest and Sybil nodes must
go through the attack edges. The connectivity from a group
of honest nodes (honest region) to a Sybil region is bounded
by the quantity of attack edges. If each honest node is able
to locally check whether it is fooled by others based on the
connectivity, and deletes attack edges, the accuracy ofany
social network-based Sybil defense will be enhanced.

SGA consists of three parts: (1) Suspicious Edge Selection
Algorithm; (2) Gateway Verification Algorithm (GVA); and
(3) Attack Edge Detection Algorithm. GVA is the core part
of SGA. It determines whether an edge is a gateway, which
connects different communities. Since there may be multiple
honest communities, only part of the gateways are attack edges
while others are not. By exploring the distrust relations, the
attack edge detection algorithm locates bad gateways. In order
to reduce the computing time, a suspicious edges selection
algorithm will be adopted at the beginning of SGA.

B. Gateway verification algorithm

Since GVA is the core of SGA, we will discuss it first.
Whether two nodes located at the same community can be
verified by their connectivity to other nodes. Intuitively,if one
node’s connectivity to the third node is much larger than that
of the other node, it is very possible that the two nodes reside
at different communities. Here, we use the number of unique
paths to measure the connectivity feature.

Definition 1: Unique paths indicate a group of paths con-
necting two distinct nodes or regions without sharing a com-
mon edge.
Because the amount of unique paths connecting two nodes is
bounded by node degrees, we compute the unique paths from
a region to another region. Letu andw be the ends of a given
edge,v be the third node for checking the connectivity, and
UP (u,w) represent the number of unique paths fromu to w.
Based on the community structure of these three nodes, we
may observe one of the three cases: (1) Eitheru or w shares

Algorithm 2 Sybil gateway-breaking algorithm (SGA)
1: Suspicious Edges Selection:
2: Select edges with high local betweenness as suspicious edges.
3: Use signed network-based Sybil defense algorithm (sectionV)

to determine honest and Sybil.
4: Find shortest paths from the honest nodes to Sybil nodes.
5: Compute the visiting frequency of edges.
6: Take the edges with high visiting frequency as suspicious.
7: Gateway Verification:
8: Generate the initial neighbor set,{u}, {v}, and{w}.
9: Compute the number of unique paths from{v} to {u}, and from

{v} to {w}
10: for Predefined timesdo
11: Respectively add∆k disjoint neighbors into{u}, {v}, {w}.
12: Compute the number of unique paths from{v} to {u}, and

from {v} to {w}
13: Compute the growing speeds of unique paths,Svu andSvw

14: if |Svu − Svw| is greater than a thresholdthen
15: E+

uw is a gateway;
16: E+

uw is not a gateway.
17: Attack Edge Detection:
18: Find attack edges from detected gateways by distrust relations;

break them.

the same community asv. (2) u, w andv locate in the same
community. (3) None of them comes fromv’s community.

For the first case, assuming that nodesu andv reside in the
same community,UP (v, u) is much greater thanUP (v, w)
since all the paths fromv to w must go through the gateways
between communities, which are limited. If we gradually
increase the size of regions by∆k, the number of unique
paths fromw’s region will stop growing much earlier thanu’s
region. But, for the other two cases, we will not observe such
differences. Based on this, we design a gateway verification
algorithm (GVA) for checking whether a given edge is a
gateway. The procedure is as follows. GVA gradually adds
∆k disjoint neighbors into both regions, which respectively
containu and v (or w and v), and examines the amount of
unique paths between the regions. Since we only care whether
the edge is a gateway, GVA only checks the existence of the
growing speeds’ difference for a given nodev.

The selection of the third nodev is based on the fact that
most random walks are trapped in their initial community.
Before checking whetherE+

uw is a gateway, GVA first sends
out severall-length random walks from nodeu or w, and lets
the end nodes be the members of the verifier set. During the
computation of the growing speed, GVA sequentially selects
nodes from the set to be the third nodev.

However, checking every edge of a social network by GVA
is impractical. For fastening the process, we need to find out
a set of suspicious edges first. Based on this idea, we propose
a suspicious edge selection approach.

C. Suspicious edge selection

There are two options for finding the suspicious edges:
one is based on node centrality and the other focuses on
the edge centrality. The reason for caring about the node
centrality is that under target attack, the target nodes will have

5

high centrality values. Hence, the server can first generate
a local map (G) of each node, and computes each node’s
centrality onG. The GVA is only applied to the edges, which
are connected with the high centrality nodes. The criteria of
centrality we used is called the betweenness centrality [13],
which is defined as the number of shortest paths passing a
node out of the total number of shortest paths within a given
network.B(w) =

∑
u,v∈G,u6=v guv(w)/guv, whereguv is the

total number of shortest indirect paths linking nodesu andv,
andguv(w) is the number of those indirect paths that include
nodew.

Since all of the paths between a Sybil node and an honest
node must traverse the same set of attack edges, the suspicious
edges could be the edges passed by the majority of random
paths, which connect the nodes with antagonistic relations(at
least one directly distrust edge between the nodes). Therefore,
the server randomly selects several pairs of antagonistic nodes,
creates random paths between each pair of antagonistic nodes,
and counts the visiting frequency of the transited edges. For the
edges with high frequency, the gateway verification algorithm
will be adopted. The above procedure substantially examines
the centrality of edges based on partial nodes’ relationships.

D. Attack edge detection

A gateway connects two communities together. Whether
a gateway is an attack edge is determined by the distrust
relationships between the communities. If either one of them,
or both of them highly distrust the other, it is very likely
that the gateway is an attack edge. Consider that the majority
of random paths are trapped inside their own communities;
instead of counting the number of distrust relations between
two communities, we adopt random sampling to estimate it.

Attack edge detection algorithm works as follows: for each
gateway, the server temporarily breaks it, and then, from its
both ends, the server sends outk random walkers along the
trust edges, respectively. The length of the random walks is
a small fixed number, and all of the visited nodes form a
sampling set. The server also creates another set, called a
distrust sampling set, which consists of nodes distrusted by
the sampling set’s members. The intersection of these two
sets indicates the intensity of distrust of the communities. The
larger the intersection set is, the more likely the gateway is
an attack edge. The server permanently remove the gateways
with high intensity.

VI. PERFORMANCEANALYSIS AND EVALUATION

Simulation setup: to generate a social network with dif-
ferent communities, we create2 to 6 communities with256
nodes in each; edges inside a community are randomly de-
ployed according to the power law distribution. Links between
different communities are also randomly generated, and5% of
the nodes from each community are connected to others. We
compare our methods with the SybilGuard [9]. For the ease of
description, we call our Signed Network-based Sybil Defense
“SS”, name our Sybil Gateway-breaking Algorithm “GB”, and
use “SG” to represent SybilGuard.

A. Simulation metric

AFNR and AFPR: the first metric we applied is called Av-
erage False Positive Rate (AFPR) and Average False Negative
Rate (AFNR). If an honest node falsely regards another honest
node as Sybil, we call the event a false positive (FP). A false
negative (FN) means a Sybil being regarded as an honest node.
Since each honest node locally determines whether to accept
other nodes, we compute the False Positive Rate (FPR) and
False Negative Rate (FNR) at each node, and then, compute
the averages of them.FPR = FP/(FP+TN), FNR =
FN/(TP+FN), where TP represents the total amount of true
positives, and TN represents that of true negatives.

SCR: A distributed network system can tolerate some faults
made by Sybils. We term such robustness Sybil Conquered
Rate (SCR). We assume that if more than1/3 of the ac-
cepted nodes of an honest user are sybils, the honest node
is conquered by the attacker. SCR is defined as the number of
conquered nodes out of the total amount of honest nodes. The
smaller the SCR is, the better a Sybil defense algorithm is.

B. Simulation results

Since it is possible that an honest region may consist of
multiple communities, the number of honest communities may
affect the accuracy of the Sybil gateway detection algorithm.
We made one Sybil community and one (up to five) honest
communities. The result is given by Fig. 5: with the number
of honest community increasing, the accuracy of our Sybil
gateway detection algorithm also increases.

In order to reduce the computing time, we filter out a group
of suspicious edges by their betweenness. From the light-
colored bars of Fig. 6, we can see that the number of suspicion
dramatically drops with the increase of betweenness threshold.
But the majority of attack edges (Sybil edges) are still captured
by the suspicion group, as shown by the dark-colored bars of
Fig. 6.

Based on the results of the betweenness experiment, we pro-
duce a derived experiment: what could happen if we directly
delete all of the suspicion edges without using our gateway-
verification algorithm? We created an honest community and
a Sybil community, and then, we remove the suspicion edges.
SybilGuard is used to detect Sybils. The results show that
directly deleting suspicions has a negative effect on accuracy,
which also indicates the necessity of using our gateway-
verification algorithm. One possible explanation is that the
suspect edge group contains too many regular edges (about
90% in Fig. 6); removing these edges fundamentally changes
the structure of the network, and it causes some honest nodes
to become closer to the Sybil community.

Next, we focus on the accuracy of our proposed algorithms.
We examined the impacts of the number of attack edges on
SCR, as shown by Fig. 7. The more attack edges are created,
the more nodes are conquered. The result of SS+GB is better
than that of SG, which means the performance of SG has
increased after using our Sybil gateway-breaking algorithm.
The SCR value of our accepted nodes (SS+GB) is about4%
less than that of SG. By further checking identities of rejected

6

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
D

e
te

c
t
ra

te
 o

f
b
a
d
 g

a
te

w
a
y

Number of honest communities

Fig. 5. The impacts of the number
of honest communities

200 300 400 500 600 700 800

1

2

3

4

5

6

7

8

9

10

11

P
e

rc
e

n
ta

g
e

 (
%

)

Betweenness threshold

 Sybil edges / suspect edges

 Suspect edges / total edges

Fig. 6. The impacts of the between-
ness threshold

1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

S
C

R
 (

%
)

Edges connecting communities (%)

 SG

 SG + GB

 SS + GB

Fig. 7. The impacts of the number
of attack edges.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S

C
R

(%
)

Percentage of nodes having distrust (%)

 SS

 SG

Fig. 8. The impacts of the number
of distrust relations.

nodes, we find that our algorithm does eliminate some Sybil
nodes near attack edges, which are accepted by SG.

Since SS is based on both trust and distrust relations, our
next tested factor is the number of distrust edges, as shown
in Fig. 8. Clearly, with the growing number of distrust edges,
the accuracy of our algorithm will be increased. Moreover, by
letting 20% nodes having one distrust edge, the SCR of SS is
about3.5% less than that of SG.

Our next consideration is the number of Sybil communities
shown in Fig. 9. We kept one honest community, and gradually
add more Sybil communities. For SS, there are approximately
4.75% distrust relations among all the relations. With the
growth of Sybil communities, the AFNR of both algorithms
increases in the beginning, and AFPR drops. However, when
the number of Sybil communities becomes four and five, the
AFNR values of SG+GB and SS+GB decrease. The reason
is that with the growing number of Sybil communities, the
AFNR values of both SG and SS increase, while the result
of GB becomes more accurate. The integrated effects of them
cause the AFNR to increase firstly and then decrease.

Our last consideration is the impacts of the number of honest
communities on the accuracy of the three algorithms. In this
part of simulation, we have one Sybil community and one (up
to five) honest communities, with256 nodes in each one. The
simulation results support our viewpoint that the existingSybil
defense algorithms have high false positive rates when honest
users cluster into multiple communities. From Fig. 10, we can
see that both AFPR and AFNR of SS+GB is better than that of
SG or SG+GB. Moreover, after adopting the gateway-breaking
algorithm, the AFNR value of SS is decreased.

VII. C ONCLUSION

We consider the problem of Sybil attacks in mobile social
networks. Unlike traditional Sybil-defenses, we use a more

1 2 3 4 5
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
F

N
R

 (
%

)

Number of Sybil communities

 SG

 SG + GB

 SS + GB

(a) avg. false negative rate.

1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
F

P
R

 (
%

)

Number of Sybil communities

 SG

 SG + GB

 SS + GB

(b) avg. false positive rate.

Fig. 9. The impacts of the number of Sybil communities.

1 2 3 4 5
0

1

2

3

4

A
F

N
R

 (
%

)

Number of honest communities

 SG

 SG + GB

 SS + GB

(a) avg. false negative rate.

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

A
F

P
R

 (
%

)

Number of honest communities

 SG

 SG + GB

 SS + GB

(b) avg. false positive rate.

Fig. 10. The impacts of the number of honest communities.

realistic model that the social network of honest users may not
be fast-mixing. Based on this model, we propose a new Sybil
defense algorithm by exploring both trust and distrust relation-
s. Our solution is lightweight: users only need to carry two
small social profiles instead of the whole graph. Our algorithm
solves the problem of high false positive in the existing Sybil
defense algorithms. For increasing the accuracy, we propose a
gateway-breaking algorithm, which can be used by any social
networks-based Sybil defenses. Extensive simulations prove
the significant performance of our algorithms.

REFERENCES

[1] I. Constandache, X. Bao, M. Azizyan, and R. Choudhury, “Did you
see Bob?: human localization using mobile phones,” inACM MobiCom,
2010.

[2] A. Mohaisen, A. Yun, and Y. Kim, “Measuring the mixing time of social
graphs,” inACM IMC, 2010.

[3] B. Viswanath, A. Post, K. Gummadi, and A. Mislove, “An analysis of
social network-based sybil defenses,” inACM SIGCOMM, 2010.

[4] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensor
networks: analysis & defenses,” inACM IPSN, 2004.

[5] M. Demirbas and Y. Song, “An RSSI-based scheme for sybil attack
detection in wireless sensor networks,” inIEEE WOWMOM, 2006.

[6] C. Piro, C. Shields, and B. Levine, “Detecting the sybil attack in mobile
ad hoc networks,” inIEEE Securecomm, 2006.

[7] D. Quercia and S. Hailes, “Sybil attacks against mobile users: friends
and foes to the rescue,” inIEEE INFOCOM, 2010.

[8] G. Danezis and P. Mittal, “Sybilinfer: detecting sybil nodes using social
networks,” inNDSS, 2009.

[9] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman, “Sybilguard: de-
fending against sybil attacks via social networks,” inACM SIGCOMM,
2006.

[10] W. Wei, F. Xu, C. Tan, and Q. Li, “SybilDefender: Defend Against Sybil
Attacks in Large Social Networks,” inIEEE INFOCOM, 2012.

[11] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in
social media,” inACM CHI, 2010.

[12] N. Chiluka, N. Andrade, J. Pouwelse, and H. Sips, “Leveraging trust
and distrust for sybil-tolerant voting in online social media,” in ACM
PSOSM, 2012.

[13] P. Marsden, “Egocentric and sociocentric measures of network central-
ity,” Social networks, 2002.

