Supplemental Material for "On Data Center Network Architectures for Interconnecting Dual-Port Servers"

Dawei Li and Jie Wu, Fellow, IEEE

1 Proof of Theorem 1

For $c=0$, the lengths of a server-to-server-direct hop and a server-to-server-via-a-switch hop are equal. We consider the maximum number of other servers that a server S can reach within distance d. Within distance 1, S has two choices to reach other servers: the first one is to connect two other servers directly, and the second one is to connect two switches, each of which connects $n-1$ other servers, resulting in a total of $2(n-1)$ servers. Obviously, the second choice is better because S reaches more other servers, and more servers has one port remaining for further expansion. Within distance 2 of S, based on the second choice, the $2(n-1)$ servers connect to $2(n-1)$ switches, each of which connects $n-1$ other servers, resulting in another $2(n-1)^{2}$. Extending to distance d, S can reach at most $2(n-1)+2(n-1)^{2}+\cdots+2(n-1)^{d}$ other servers. Plus the original server S itself, the maximum number of dual-port servers that any network can accommodate is: $N_{v} \leq 1+2(n-1)+2(n-1)^{2}+\cdots 2(n-1)^{d}$ $=\left(2(n-1)^{d+1}-n\right) /(n-2)=N_{v}^{u b}$.

2 Proof of Theorem 2

Consider the maximal number of servers that a server S in a DCN can reach within distance d. For $1 \leq d<1+c$, S can reach at most 2 other servers through server-to-server-direct hops; $\lceil d /(1+c)\rceil=1$; the theorem holds.

For $d \geq 1+c$, we consider three choices of S to reach as many other servers as possible within two hops (server-to-server-direct hop(s) and/or server-to-server-via-a-switch hop(s)).

The first one is to reach other servers only by server-to-server-direct hops; in this case, it can reach at most 4 other servers (if possible), 2 of which have one port remaining for further outreaching, and S^{\prime} s remaining outreaching distance is $d-2$.

[^0]The second choice is connecting S^{\prime} s two ports to two switches; by doing this, it can reach $2(n-1)>4$ other servers, all of which have one port remaining for further outreaching, and S^{\prime} s remaining outreaching distance is $d-(1+c) \geq d-2$. Thus, compared with the first choice, the second one is always better.

The third choice is to connect S^{\prime} 's two ports to two other servers first; next, the two new servers connect to two switches, each of which connecting $n-1$ other servers, if $d \geq 1+(1+c)$. By the third choice, S can reach at most $2+2(n-1)=2 n$ other servers, of which $2(n-1)$ have one port remaining. However, if the next step of the third choice is possible, i.e. $d \geq(1+c)+1$, in the second choice, the $2(n-1)$ servers can also connect to $2(n-1)$ other servers within distance $(1+c)+1$. The second choice results in $4(n-1)>2 n$ new servers; there are also $2(n-1)$ servers with one port remaining. Thus, the second choice is also better than the third one.

Based on the analysis of these three choices, we can see that S should always try to reach other servers via server-to-server-via-a-switch hops, if the remaining outreaching distance allows it to do so. Within $\lfloor d /(1+c)\rfloor$ server-to-server-via-a-switch outreaching hops, S can reach at most $2(n-1)+2(n-1)^{2}+\cdots+2(n-1)^{\lfloor d /(1+c)\rfloor}$ other servers. Exploiting the remaining outreaching distance $d-(1+c)\lfloor d /(1+c)\rfloor, S$ can reach at most another $2(n-$ 1) $\lfloor d /(1+c)\rfloor$ servers, if possible. Thus, the maximal number of servers in any network with diameter less than or equal to d is $N_{v} \leq\left(2(n-1)^{\lfloor d /(1+c)\rfloor+1}-n\right) /(n-2)+2(n-$ 1) ${ }^{\lfloor d /(1+c)\rfloor} \leq\left(2(n-1)^{\lceil d /(1+c)\rceil+1}-n\right) /(n-2)=N_{v}^{u b}$.

[^0]: - Dawei Li and Jie Wu are with the Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, E-mail: $\{$ dawei.li, jiewu\}@temple.edu

