Supplemental Material for “On Data Center Network Architectures for Interconnecting Dual-Port Servers”
Dawei Li and Jie Wu, Fellow, IEEE

1 Proof of Theorem 1
For \(c = 0 \), the lengths of a server-to-server-direct hop and a server-to-server-via-a-switch hop are equal. We consider the maximum number of other servers that a server \(S \) can reach within distance \(d \). Within distance 1, \(S \) has two choices to reach other servers: the first one is to connect two other servers directly, and the second one is to connect two switches, each of which connects \(n - 1 \) other servers, resulting in a total of \(2(n-1) \) servers. Obviously, the second choice is better because \(S \) reaches more other servers, and \(S \) has one port remaining for further expansion. Within distance 2 of \(S \), based on the second choice, the \(2(n-1) \) servers connect to \(2(n-1) \) switches, each of which connects \(n - 1 \) other servers, resulting in another \(2(n-1)^2 \). Extending to distance \(d \), \(S \) can reach at most \(2(n-1) + 2(n-1)^2 + \cdots + 2(n-1)^d \) other servers. Plus the original server \(S \) itself, the maximum number of dual-port servers that any network can accommodate is: \(N_v \leq 1 + 2(n-1) + 2(n-1)^2 + \cdots + 2(n-1)^d = (2(n-1)^{d+1} - n)/(n-2) = N_v^{ub} \).

2 Proof of Theorem 2
Consider the maximal number of servers that a server \(S \) in a DCN can reach within distance \(d \). For \(1 \leq d < 1 + c \), \(S \) can reach at most 2 other servers through server-to-server-direct hops; \([d/(1+c)] = 1 \); the theorem holds.
For \(d \geq 1 + c \), we consider three choices of \(S \) to reach as many other servers as possible within two hops (server-to-server-direct hop(s) and/or server-to-server-via-a-switch hop(s)).

The first one is to reach other servers only by server-to-server-direct hops; in this case, it can reach at most 4 other servers (if possible), 2 of which have one port remaining for further outreaching, and \(S \)’s remaining outreaching distance is \(d - 2 \).

The second choice is connecting \(S \)’s two ports to two switches; by doing this, it can reach \(2(n-1) > 4 \) other servers, all of which have one port remaining for further outreaching, and \(S \)’s remaining outreaching distance is \(d - (1+c) \geq d - 2 \). Thus, compared with the first choice, the second one is always better.

The third choice is to connect \(S \)’s two ports to two other servers first; next, the two new servers connect to two switches, each of which connecting \(n - 1 \) other servers, if \(d \geq 1 + (1+c) \). By the third choice, \(S \) can reach at most \(2 + 2(n-1) = 2n \) other servers, of which \(2(n-1) \) have one port remaining. However, if the next step of the third choice is possible, i.e. \(d \geq (1+c) + 1 \), in the second choice, the \(2(n-1) \) servers can also connect to \(2(n-1) \) other servers within distance \(1 + (1+c) \). The second choice results in \(4(n-1) > 2n \) new servers; there are also \(2(n-1) \) servers with one port remaining. Thus, the second choice is also better than the third one.

Based on the analysis of these three choices, we can see that \(S \) should always try to reach other servers via server-to-server-via-a-switch hops, if the remaining outreaching distance allows it to do so. Within \([d/(1+c)] \) server-to-server-via-a-switch outreaching hops, \(S \) can reach at most \(2(n-1) + 2(n-1)^2 + \cdots + 2(n-1)^{\lfloor d/(1+c) \rfloor} \) other servers. Exploiting the remaining outreaching distance \(d - (1+c) \lfloor d/(1+c) \rfloor \), \(S \) can reach at most another \(2(n-1)^{\lfloor d/(1+c) \rfloor} \) servers, if possible. Thus, the maximal number of servers in any network with diameter less than or equal to \(d \) is \(N_v \leq 2(n-1)^{\lfloor d/(1+c) \rfloor + 1} - n)/(n-2) + 2(n-1)^{\lfloor d/(1+c) \rfloor - 1} - n)/(n-2) = N_v^{ub} \).

* Dawei Li and Jie Wu are with the Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, E-mail: {dawei.li, jiewu}@temple.edu