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Abstract—In this paper, we address the problem of energy-
aware task scheduling on DVFS-enabled multiprocessors with
DPM-enabled device(s). Given a set of frame-based tasks, we aim
to derive a scheduling where the device occupation constraint is
respected, all of the tasks meet the shared deadline, and the
overall system energy consumption, including energy consumed
on both processors and devices, is minimized. For the problem
when preemption and migration are allowed, after solving the
formulated optimization problem, we regard the tasks that
require the same device as a single preemptive task. An Execution
Time Filling (ETF) process can be applied to derive a scheduling
which adopts the optimal frequency setting; then, we propose
Algorithm ETFR, which achieves the optimal system energy
consumption, and also Reduces the total number of preemptions
and migrations. For the problem when tasks are non-preemptive,
we regard the tasks that require the same device as a single
non-preemptive task. To assign tasks to processors, we adopt
the Worst Fit Decreasing (WFD) strategy using tasks’ optimal
execution times. After task assignment, we readjust the execution
frequency of tasks on each processor, such that the system energy
consumption of tasks on each processor is minimized. Various
analysis, simulations, and experiments verify the strength of our
proposed approaches for the two problems.

Index Terms—Dynamic voltage and frequency scaling (DVFS),
dynamic power management (DPM), system energy consumption,
energy-aware scheduling, execution time filling.

I. INTRODUCTION

A. DVFS and DPM
The main design goal of modern computational systems

has been to improve computing capability. Recently, the high
energy consumption in these systems has become an impor-
tant issue. To facilitate energy-efficient design, the Dynamic
Voltage and Frequency Scaling (DVFS) scheme is widely used
[1] [2].

During the past two decades, tremendous works have been
done for energy-aware scheduling on DVFS-enabled plat-
forms. We refer the readers to a comprehensive survey [3],
which includes energy-aware task scheduling for framed-based
tasks, periodic tasks, sporadic tasks, and tasks with precedence
constraints. The basic idea of the DVFS strategy is to adjust a
processor’s processing frequency (online or offline), as long as
tasks’ deadlines are not violated, to achieve the goal of saving
energy. DVFS provides the possibility of minimizing energy
consumption, given a performance/timing requirement.

In modern computational systems, various devices or com-
ponents also consume significant amounts of energy, which is
usually non-negligible, compared to the energy consumption
on processors. In this paper, we will refer to all units other than

processors in the computational systems as “devices.” Repre-
sentative devices include I/O devices, disk drives, displays,
memory banks, and network interfaces, etc..

To cope with the energy consumption issues on devices,
the Dynamic Power Management (DPM) [4] mechanism is
widely employed. For a device with DPM, though the power
consumption of a device cannot be adjusted, the device can
be put in a low power state when it is idle, to save energy.

In this paper, we address the energy-aware scheduling
problem on multiprocessor platforms where processors are
DVFS-enabled and devices are DPM-enabled. As an initial
study, we assume that a task requires, at most, one device.

B. Related Work
Various works exist that involve the device energy consump-

tion. They can be roughly classified into two categories, name-
ly static/offline scheduling and dynamic/online scheduling.

[5] discusses energy-aware scheduling on a processor with
discrete available speeds and devices. The ideal frequency
setting is solved analytically; then, an algorithm is proposed
to select the practical frequency from the available values.
[6] presents an online I/O device scheduler that takes a
predetermined task schedule and device-usage as inputs, and
generates a sequence of sleep/working states for each device.
Considering the switching overhead of devices, Lu et al. [7]
aim to arrange task execution orders so that device idle periods
are clustered, which is beneficial for device energy saving.
[8] elaborates on executing one application on one DVFS
processor, where the multiple devices considered have explicit
energy and time transition overheads.

[9] proposes both static scheduling and dynamic scheduling
for system energy minimization. [10] considers pure online
device scheduling for a platform without the ability of DVFS.
It aims to cluster the device idle periods to reduce the device
switching overhead. [11] discusses dynamic task scheduling to
determine the speed setting for periodic tasks. When device
power and processor power is comparable, an algorithm which
reduces the system energy is proposed. [12] develops a unified
energy management framework for deadline-driven periodic
real-time applications with both static and dynamic solution
components.

However, all of these works are considering uniprocessors.
To the best of our knowledge, up until now, little work has
been done on energy-aware scheduling involving both devices
and multiprocessor platforms.



C. Our Work and Contributions
In this paper, we deal with the problem of energy-aware task

scheduling on DVFS-enabled multiprocessor platforms with
DPM-enabled devices. Our main contributions are as follows:

• To the best of our knowledge, we are the first to address
energy-aware scheduling on DVFS-enabled multiproces-
sor platforms, with the consideration of device energy
consumption and power management, to minimize the
system energy consumption.

• After formulating the basic optimization problem, we
derive the scheduling that adopts the optimal frequency
setting, and achieves the minimal energy consumption
when tasks are preemptive and migrations are allowed.

• When tasks are non-preemptive, by adopting a widely
used WF strategy to allocate tasks, we can derive a
scheduling that achieves satisfiable energy consumption
on average, and whose energy consumption is no greater
than (1 + β)α−1 times that of the optimal scheduling,
where β ∈ (0, 1) is a parameter that can be easily
achieved from the optimization solution, and α ≥ 2
indicates the relationship between a processor’s execution
frequency and power consumption: p(f) = fα + p0.

D. Paper Organization
Section II provides the detailed platform model and task

model, as well as the problem definition. We address the
problem where preemptions and migrations are allowed in
Section III. Section IV addresses the problem when tasks are
non-preemptive. Experiments and simulations are provided in
Section V. Section VI concludes our work and sketches several
future directions.

II. SYSTEM MODEL AND PROBLEM DEFINITIONS

A. Platform Model
We consider a multiprocessor platform with m homo-

geneous DVFS-enabled processors with frequency range
[0,+∞). Processors can operate in two modes when it is on:
active mode and idle mode. Active mode refers to the state
when it is executing some task and the power consumption
is the sum of dynamic power, γfα, (γ > 0, α ≥ 2), and
static power, pac0 . Idle mode refers to the state when it is
not executing any task and the power consumption consists
of only static power, pid0 , (pid0 ≤ pac0 ).

The multiprocessor platform has v DPM-enabled devices,
denoted by DvL = {D1, · · · , Dv}, where Dj(j = 1, · · · , v)
is the jth device. We assume that a device can also be in two
modes when it is on: active mode when the device is occupied
by some task, and idle mode when it is not occupied by any
task. The power consumption of device Dj in active mode is
a constant pacj ; in idle mode, the device immediately enters
a low power state pidj , (pidj ≤ pacj ). Power consumption of an
off processor and device is zero.

Though we consider a set of frame-based tasks, these tasks
may also have a periodic feature. We assume that switching a
processor or device on and off will incur a significant amount
of overhead, in terms of both time and energy. Thus, we do

not consider switching the processor/device off; while a pro-
cessor/device can switch between active and idle modes with
negligible overhead. We normalize the power consumption of
a processor as: p(f) = fα + p0 when it is executing a task at
frequency f , and zero when it is idle (p0 = (pac0 − pid0 )/γ).
Similarly, a device power is normalized as pj = (pacj −pidj )/γ
when it is active, and zero when it is idle. From now on,
we will use this normalized energy model for processors and
devices.
B. Task Model

We consider a set of frame-based tasks, T = {τ1, · · · , τn},
which are released at time 0, and share a same deadline D.
Each task may be preemptive or non-preemptive, but they
cannot be executed on more than one processor concurrently.
τi has an execution requirement ci. Besides, a task may require
some device when executing. Denote DvLi as the list of
devices that are required by τi. We further assume that a
task requires at most one device; then, DvLi is a one-element
subset of DvL. The device in DvLi is requested by τi when,
and only when, τi is executing. If τi does not require any
device during its execution, then DvLi is an empty set ∅. It is
necessary to mention that, due to the convexity of the energy
consumption function of processors, different parts of a single
task must execute at the same frequency in order to achieve
less energy consumption. When task τi is executed at fre-
quency f , the time to finish its execution is ci/f . The energy
consumption on the processor is: EPr

τi (f) = ci(f
α−1+p0/f);

if DvLi are required, the energy consumption on the device(s)
is: EDv

τi (f) = (
∑

Dj∈DvLi
pj)ci/f . 1 Thus, the system energy

consumption to execute task τi at frequency f is:

Eτi(f) = EPr
τi (f) + EDv

τi (f)

= cif
α−1 + (p0 + (

∑
Dj∈DvLi

pj))ci/f.

We assume that one device can be occupied by at most one
task at any specific time. Thus, if two tasks require the same
device, they cannot execute simultaneously, even though there
exist idle processors. We are aware that, in practice, some
devices can be occupied by more than one task; however, in
this case, there should be some upper bound on the number of
tasks that can occupy this device at the same time. Considering
this aspect, the problem will become more complicated. We
will investigate this aspect in our future work; in this initial
work, we will stick to the assumption that one device can be
occupied by, at most, one task at any specific time. We can
also regard that the devices we consider here are some critical
resources that cannot be occupied by more than one task.
C. Problem Definition

Given a set of frame-based tasks {τ1, τ2, · · · , τn} with
specified execution requirements and device requirements,
our goal is to schedule these tasks on the platform with m

1In practice, a task’s device energy consumption may be independent of
its execution time. In this case, only device’s occupation constraint should be
considered; device’s energy consumption need not to be addressed. We do
not include this case in our problem formulation, because it is only a simpler
case of our problem.



homogeneous processors and v devices, such that all of the
tasks meet the deadline D, no device is occupied by more than
one task at any time, and the system energy consumption is
minimized. We denote it as the problem of Energy minimiza-
tion on Multiprocessor platforms with Devices (EMD). When
tasks are Preemptive and migrations are allowed, the problem
is denoted as EMDP. When tasks are Non-preemptive and
migration is not allowed, the problem is denoted as EMDN.

III. EMDP
A. Problem Reformulation

As has been mentioned, we assume that each task should
require, at most, one device. Thus, we can classify all of
the tasks into (v + 1) categories: the first category consists
of tasks that do not require any device; the second category
consists of tasks that require device D1; the third category
consists of tasks that require device D2; · · · ; the (v + 1)th
category consists of tasks that require device Dv . We denote
these categories by T0, T1, T2, · · · , Tv, respectively. Relabel
the tasks in these sets such that T0 = {τ0,1, · · · , τ0,|T0|},
T1 = {τ1,1, · · · , τ1,|T1|}, · · · , Tv = {τv,1, · · · , τv,|Tv|}, where
|Tj | (j = 0, 1, · · · , v) is the number of tasks in Tj . Also,
let cj,i (i = 1, 2, · · · , |Tj |) be the execution requirement of
task τj,i. Assume that task τj,i is executed at frequency fj,i,
then, the energy consumption to execute τj,i can be calculated
as Eτj,i(fj,i), where Eτ0,i(f0,i) = c0,i(f

α−1
0,i + p0/f0,i) and

Eτj,i(fj,i) = cj,i(f
α−1
j,i + (p0 + pj)/fj,i), j = 1, 2, · · · , v.

The total system energy consumption can be calculated as∑v
j=0

∑|Tj |
i=1 Eτj,i(fj,i).

Obviously, the frequency setting should at least satisfy the
following constraints. First, the execution time of each task
that does not require the device is less than or equal to the
deadline D, i.e., c0,i/f0,i ≤ D, ∀i = 1, 2, · · · , |T0|. Second,
the occupation time of each device is less than or equal to the
deadline D, because the device cannot be occupied by more
than one task at the same time, i.e.,

∑|Tj |
i=1 cj,i/fj,i ≤ D, ∀j =

1, 2, · · · , v. Third, the overall execution time of all of the tasks
should be less than or equal to the total available execution
time mD, i.e.,

∑v
j=0

∑|Tj |
i=1 cj,i/fj,i ≤ mD. Considering

these three requirements, the frequency setting problem can
be formulated as the following optimization problem:

min
∑v

j=0

∑|Tj |
i=1 Eτj,i(fj,i) (1)

s.t. c0,i/f0,i ≤ D, ∀i = 1, 2, · · · , |T0| (2)∑|Tj |
i=1 cj,i/fj,i ≤ D, j = 1, 2, · · · , v (3)∑v

j=0

∑|Tj |
i=1 cj,i/fj,i ≤ mD. (4)

which will be referred to as Prob 1 throughout this paper.
Although device power is considered, the objective function

of Prob 1 is still convex, and this optimization problem is
still a convex optimization problem, which can be solved
in polynomial time [13]. In our work, we apply the widely
used Interior Point method to solve this problem numerically.
The complexity of this method is polynomial in terms of
the number of variables and the solution accuracy of the
optimization problem. This aspect has also been explained in
the book [13].

The solution of the problem satisfies some important char-
acteristics, which can be used to solve some simpler cases of
the problem, and simplify the problem itself. Denote µ0,1,
µ0,2, · · · , µ0,|T0| as the KKT multipliers [14] associated
with the |T0| inequalities in (2), µ1, µ2, · · · , µv , the KKT
multipliers associated with the v inequalities (3), and µ, the
KKT multiplier associated with the inequality (4). All of these
multipliers are nonnegative. Applying the KKT conditions, we
have:

(α− 1)fα−2
0,i − p0 + µ0,i + µ

f2
0,i

= 0,∀i = 1, 2, · · · , |T0| (5)

(α− 1)fα−2
j,i − (p0 + pj + µj + µ)/f2

j,i = 0 (6)
∀j = 1, 2, · · · , v, ∀i = 1, 2, · · · , |Tj |

µ0,i(c0,i/f0,i −D) = 0, ∀i = 1, 2, · · · , |T0| (7)

µj(

|Tj |∑
i=1

cj,i/fj,i −D) = 0,∀j = 1, 2, · · · , v (8)

µ(
v∑

j=0

|Tj |∑
i=1

cj,i/fj,i −mD) = 0. (9)

Without any confusion, we also denote the optimal fre-
quency setting for this problem as fj,i . There are two im-
portant characteristics that should be noticed. First, according
to (6), we have fj,i = α

√
(p0 + pj + µj + µ)/(α− 1), j =

1, 2, · · · , v; since fj,i does not depend on i, the optimal exe-
cution frequency of all of the tasks that require the device Dj

should be equal. Second, all of the tasks in Tj require the same
device Dj , and thus cannot execute simultaneously. Based on
these two aspects, we can regard Tj as one single preemptive
task. From now on, we will refer Tj to a single task without
any confusion, and denote fj = fj,1 = · · · = fj,|Tj | as the
optimal frequency setting for this task. Let Cj =

∑|Tj |
i=1 cj,i be

the execution requirement of task Tj . The energy consumption
of Tj can be calculated as ETj (fj) = Cj(f

α−1
j +(p0+pj)/fj).

Thus, the optimization problem can be simplified as:

min
∑|T0|

i=0 Eτ0,i(f0,i) +
∑v

j=1 ETj (fj) (10)
s.t. c0,i/f0,i ≤ D, ∀i = 1, 2, · · · , |T0| (11)

Cj/fj ≤ D, j = 1, 2, · · · , v (12)∑|T0|
i=1 c0,i/f0,i +

∑v
j=1 Cj/fj ≤ mD. (13)

The above problem is considered to be a simplification of
Prob 1 because the number of variables that need to be deter-
mined is significantly reduced, namely, from (|T0|+

∑v
1 |Tv|)

to (|T0|+ v). Recall that the complexity of the Interior Point
method, which we have used, is polynomial in terms of
the number of variables. Thus, the simplified problem will
be solved much more efficiently. We denote the simplified
problem as Prob 2 from now on.

Notice that, although the optimal frequency setting can be
achieved by the Interior Point method, it does not guarantee
that the practical scheduling which adopts this frequency
setting is achievable. In the following, we will construct a
schedule that adopts the optimal frequency setting.



Algorithm 1 ETF(Tu,Ms)
Input: Unscheduled task set Tu and the first available proces-

sor Ms; the execution requirement, cτ for each τ ∈ Tu,
also its optimal frequency setting fτ , and consequently,
the optimal execution time tτ = cτ/fτ ;

Output: A feasible preemptive schedule that adopts the
optimal frequency setting and achieves the minimal energy
consumption;

1: Number of processors that should be used: N =
⌈
∑

τ∈Tu tτ/D⌉;
2: Initialize the execution time on processor Mj as Pj , where

Pj = 0, ∀j = 1, 2, · · · , N ;
3: j = s;
4: while Tu ̸= ∅ do
5: Pick τ ∈ Tu;
6: if Pj + tτ > D then
7: Schedule the first part of τ on processor Mj+1

from time 0 to time Pj + tτ −D; Pj+1 = Pj + tτ −D;
Schedule the second part of τ on processor Mj from time
Pj to time D; Pj = D; j = j + 1;

8: else
9: Schedule τ on processor Mj from time Pj to time

Pj + tτ ; Pj = Pj + tτ ;
10: Tu = Tu \ {τ};

B. A Simple Approach
The Execution Time Filling (ETF) procedure, shown by

Algorithm 1, provides a direct way of scheduling: fill in the
processors one by one, from the first empty processor, with
the execution times of unscheduled tasks τ0,1, τ0,2, · · · , τ0,|T0|,
and tasks T1, T2, · · · , Tv (all of these (|T0|+v) tasks can be in
any order). Algorithm 1 provides the details of this scheduling
procedure. ETF({τ0,1, τ0,2, · · · , τ0,|T0|, T1, T2, · · · , Tv},M1)
gives the actual scheduling for a given task set.

In this algorithm, it can be noticed that the number of
preemptions and migrations are equal to the number of used
processors minus one, i.e., (N − 1), in general. By observing
some key properties of the optimization problem, we can
design another algorithm which reduces the number of pre-
emptions and migrations.
C. An Improved Approach

Take a look at (7) and (8). If µ0,i ̸= 0, then c0,i/f0,i = D;
similarly, if µj ̸= 0, then

∑|Tj |
i=1 cj,i/fj,i = D. We can see

in the optimal solution, the execution time of some task(s)
(including T1, T2, · · · , Tv) might be exactly D. If we schedule
each such a task on a separate processor, there will not be
any preemption and migration on this processor. Thus, the
total number of preemptions and migrations will be reduced.
Algorithm 2, denoted by ETFR (short for Execution Time
Filling with Reduced number of preemptions and migrations),
reduces the total number of preemptions and migrations.
D. Example

Consider a task set consisting of six tasks, whose execution
requirements are c1 = c2 = 3, c3 = 9, c4 = 3, c5 = c6 = 6
and have a common deadline, D = 8. The platform consists

Algorithm 2 ETFR
Input: Optimal solution for Prob 2;
Output: A feasible preemptive schedule that adopts the

optimal frequency setting, achieves the minimal energy
consumption, and reduces the number of preemptions and
migrations;

1: Find T r ⊂ {τ0,1, · · · , τ0,|T0|, T1, · · · , Tv}, where, for each
τ ∈ T r, tτ = D;

2: Tu = {τ0,1, · · · , τ0,|T0|, T1, · · · , Tv} \ T r;
3: Schedule the |T r| tasks in T r to |T r| processors separate-

ly, from time 0 to D; s = |T r|+ 1;
4: ETF(Tu,Ms);

    

 

 

 

 

 

1.5

1.5

6

4 8

  
 

2 8

2 4

 

  

 

1

1

 

8

(a) ETF

  

 

 

 

 

 

 

1.5

1.5

6

4 8

  
 

2 8

2

4

  

 

 

1

1

 

8

(b) ETFR
Fig. 1. Example for the EMDP problem with multiple devices

of three processors M1,M2,M3 and two devices D1, D2. We
assume α = 3 and p0 = 0 in this example. The constant
powers of D1 and D2 are p1 = 19/4 and p2 = 1, respectively.
Tasks’ device requirements are: DvL1 = DvL2 = {D1},
DvL3 = DvL4 = {D2}, and DvL5 = DvL6 = ∅.
According to our approach, we relabel the tasks as τ1,1, τ1,2,
τ2,1, τ2,2, τ0,1, τ0,2. Then, c1,1 = c1,2 = 3, c2,1 = 9,
c2,2 = 3, c0,1 = c0,2 = 6. Solving Prob 2, we can get
f1,1 = f1,2 = f2,1 = f2,2 = 3/2, f0,1 = f0,2 = 1.
Considering the tasks in the listed order, algorithm ETF gives
the schedule in Fig. 1(a), where τ2,1 and τ0,1 are split into
two parts. Two preemptions and migrations exist in the ETF
scheduling. Since the total execution time of τ2,1 and τ2,2 is
8, which is exactly the deadline D, the ETFR algorithm first
schedules τ2,1 and τ2,2 on a separate processor, as shown in
Fig. 1(b). The number of preemption(s) and migration(s) is
reduced to one.

IV. EMDN
A. Analysis

When tasks under consideration are non-preemptive, i.e.,
one task should be finished on the processor that it is first
assigned to without any interruption, the problem (either with
one device or multiple devices) involves task set partitioning.
The energy-aware task set partitioning problem, on the pure
homogeneous multiprocessor platforms without any device, is
NP-complete [15]; with the consideration of device occupation
constraint and device power, the problem is made more
complex. Instead of seeking the optimal scheduling, we will
provide a heuristic, with a reasonable approximation ratio and



Algorithm 3 WFD for the EMDN problem
Input: Optimal solution for Prob 2;
Output: A feasible non-preemptive schedule that attempts to

achieve the minimal energy consumption;
1: tsum =

∑|T0|
i=1 c0,i/f0,i +

∑v
j=1 Cj/fj ; Number of pro-

cessors used: N = ⌈tsum/D⌉;
2: Initialize Pk = 0, for k = 1, 2, · · · , N ;
3: Sort tasks in Tu = {τ0,1, · · · , τ0,|T0|, T1, · · · , Tv} in the

non-increasing order of their optimal execution times;
4: while Tu ̸= ∅ do
5: τ = the first task in the sorted Tu;
6: Find Pk∗ = min{Pk|k = 1, 2, · · · , N} (ties can be

broken arbitrarily);
7: Allocate τ to processor Mk∗ ;
8: Pk∗ = Pk∗ + tτ ; Tu = Tu \ {τ};
9: Readjust the execution frequencies of tasks on processors

M1, M2, · · · , MN such that all tasks meet the deadline
and tasks’ system energy consumption on each processor
is minimized.

excellent average performance, based on the optimal solution
to Prob 2. We will first prove the following Lemma:

Lemma 1: The energy consumption of the optimal non-
preemptive scheduling for the EMDN problem will be no less
than that of the optimal solution of Prob 2.

Proof: This fact is obvious, since the execution frequency
settings in any non-preemptive schedule should also satisfy all
the constraints in Prob 1, and Prob 1 and Prob 2 have the same
optimal objective value.

B. Algorithm
In our scheduling, we also regard each task set Tj(j =

1, · · · , v) as a single non-preemptive task. Our guidance to
construct the scheduling is to let more tasks operate on the
optimal frequency setting for Prob 2; if the optimal frequency
setting cannot be guaranteed, we desire the practical frequency
setting to be close to the optimal frequency setting.

Thus, we first find each task τ ∈ {τ0,1, · · · , τ0,|T0|,
T1, · · · , Tv}, whose execution time tτ = D; then, pick it
out and schedule it on a separate processor. Then, we need
to consider scheduling the remaining tasks, whose execution
times are less than D, on the remaining processors. We
adopt the widely used Worst Fit Decreasing (WFD) strategy:
first, sort the tasks in non-increasing order of their optimal
execution times; then, assign the next task to the processor,
which has the least accumulative execution time among all
processors that should be used. Algorithm 3 (denoted by WFD
for short) describes the details of our scheduling scheme for
the EMDN problem.

After allocating the tasks to processors, since all of the
processors are independent, tasks on different processors are
also independent; we can readjust the frequency setting for all
of the tasks such that each task meets the deadline D and tasks’
system energy consumption on each processor is minimized,

by solving the following problem:

min Ck,0(F
α−1
k,0 + p0

Fk,0
) +

∑v
j=1 Ck,j(F

α−1
k,j +

p0+pj

Fk,j
)

s.t.
∑v

i=0 Ck,j/Fk,j ≤ D.

where Ck,j is the total execution requirement of category Tj

tasks that are allocated to the processor Mk (j = 0, 1, · · · , v,
k = 1, 2, · · · , N ); Fk,j is the optimal frequency setting for the
category Tj tasks on processor Mk.

Again, the optimal execution time (solved for Prob 2) of
each task τ ∈ Tu can be calculated as tτ = cτ/fτ . Let βD be
the maximal execution time of tasks in Tu, but not equal to
D. Assume that, up to line 8, the execution time on processor
Mj , (j = 1, · · · , N) is Lj and that, the maximal and the
minimal values among Lj’s are Lmax and Lmin, respectively.
The following Lemma can be easily shown.

Lemma 2: Lmax ≤ (1 + β)D.
Proof: First, Lmin ≤ D; otherwise, the total execution

time of Tu will be greater than ND, which is a contradiction.
Second, Lmax − Lmin ≤ βD, which can also be verified
by contradiction. Assume that Lmax − Lmin > βD; let the
execution time of the last task of Lmax be β1D. Since β1D ≤
βD, Lmax − β1D ≥ Lmax − βD > Lmin. According to the
WFD strategy, the last task of Lmax will not be assigned to
Lmax, which contradicts the fact. Thus, Lmax−Lmin ≤ βD.
Based on the above two aspects, Lmax ≤ (1 + β)D.

Theorem 1: The energy consumption of the scheduling S
derived by Algorithm 3 is no greater than (1 + β)α−1 times
that of the non-preemptive optimal energy consumption.

Proof: After the WFD allocation, we can increase each
task’s execution frequency to max{Lmax/D, 1} (≤ 1 + β)
times its original optimal frequency (solved for Prob 2).
Denote this scheduling by S1. By doing this, the energy
consumption on the devices will not increase, while the energy
consumption on processors will be no greater than (1+β)α−1

times the energy consumption of Prob 2. Notice that S is
further optimized based on the same task set partitioning as
that of S1. Obviously, the energy consumption of S is no
greater than that of S1. Combining Lemma 1, we can conclude
that the energy consumption of the scheduling S derived by
Algorithm 3 is no greater than (1 + β)α−1 times of the non-
preemptive optimal energy consumption.

V. EXPERIMENTS AND SIMULATIONS

A. Simulation Settings
There are various parameters that might affect the per-

formance of a scheduling algorithm, namely, the number
of processors, the number of devices, the constant device
power(s), the number of tasks (including the number of tasks
that do not require any device, and the number of tasks that
require each device), the execution requirements of tasks,
the percentage of the requirement of the tasks that require
the device(s) and the tasks that do not require device(s), the
common deadline of the task set, etc.. We notice that many of
these parameters are correlated, and that some of the values
should be set by referring to practical situations.



Considering the number of processors and the number
of devices, the relative number makes a difference. In our
simulation, we set the number of processors to m = 4,
which is a common configuration of multiprocessor platforms,
and only vary the number of devices. As for the tasks’
characteristics, we notice that, the execution requirement per-
centage has the most significant influence. For each task
that requires a device, we generate a uniformly distributed
random number within [15, 25] as its execution requirements.
Another important parameter to be designed is the common
deadline of a task set. We assume that, when a user submits
a task set, he/she is roughly aware of the average capability
of the computational system, and thus, will set a deadline
that is practically reasonable. We assume that the normal
execution frequency is around 1, which has been normalized
by some reference value. For all our simulations, a reasonable
deadline can be D = max{

∑v
j=0

∑|Tj |
i=1 cj,i/4,max{c0,1, · · ·

, c0,|T0|, C1, · · · , Cv}}.
For the two problems with one device, we fix the number of

tasks that require the device to be 16, i.e., |T1| = 16; we also
generate a random execution requirement within [15, 25] for
tasks that do not require the device, and choose the number of
tasks that do not require the device, |T0| to be 8, 16, and 32.
Denote these three settings as Setting 1, 2 and 3, respectively.
In all these settings, we vary the device power from 0 to 2, with
a step size of 0.1, while p0 is set as 0.1 (if not particularly
specified). Without loss of generality, we set α = 3 in the
simulations.

For the two problems with multiple devices, we vary the
number of devices, v, from 1 to 12 with a step size of 1.
Since we treat Tj as a single task, the total requirement
of Tj matters. We fix the number of tasks in Tj to be 4.
Under this environment, we further conduct two experiment
groups. In the first group, for a given v, we vary |T0| as
8, 16, and 32; execution requirements of tasks in T0 are also
generated within [15, 25], with the mean value being 20. In
the second group, for each given v, we fix |T0| = 4v, which
is equal to the total number of tasks that require a device;
additionally, we vary the execution requirement generation
range for tasks in T0 such that the percentage pct of the
T0 tasks’ total requirement is about 20%, 50%, and 80% of
the overall execution requirement. Specifically, the generation
range is set to be [⌈15pct/(1−pct)⌉, ⌈25pct/(1−pct)⌉], with
the mean value being 20pct/(1−pct). Due to the limited space,
we only show the results for one set of device powers, with
each device’s power around 0.8, randomly generated within
[0.6, 1].

For each specific simulation setting, we calculate the nor-
malized energy consumption values, which are normalized by
the optimal energy consumption of Prob 2.

B. EMDP
As has been mentioned, our proposed algorithm is itself

optimal in terms of minimizing overall system energy con-
sumption. We compare our scheduling with one that only
considers processor energy minimization. For a scheduling

that only considers the processor energy consumption, it is
easy to notice that all of the constraints (2) to (4) should
also be satisfied; however, the objective function only consists
of energy consumption on processors. The optimal frequency
setting that minimizes the processor energy consumption can
be achieved. We can also construct the preemptive scheduling
that adopts this optimal frequency setting by the Execution
Time Filling (ETF) process. We denote this scheduling as
Minimizing Pure Processor Energy Scheduling (MPPES). We
denote “NEC of MPPES” as the Normalized system Energy
Consumption of MPPES, which is normalized by the optimal
energy consumption of Prob 2. We also denote “NECP of
MPPES” as the Normalized Energy Consumption of Proces-
sors of MPPES.

Fig. 2(a) shows the NEC and NECP of MPPES for different
device power values for the three settings, where NEC and
NECP of MPPES 1, 2, 3 represent the values in Settings 1, 2,
and 3, respectively. For each setting, when the device power
is small, MPPES’s system energy consumption is very close
to the optimal solution. When the device power increases,
the NEC of MPPES also increases significantly, and will be
much greater than the optimal system energy consumption.
This phenomenon indicates that when the device power is non-
negligible, a scheduling that considers both device power and
processor power should be applied to minimize system energy
consumption. Given a constant device power, as the number of
tasks in T0 increases (from Setting 1 to Setting 3), though the
percentage of energy consumption on processors is increased,
the system’s NEC still remains at a relatively high level.

For the EMDP problem with multiple devices, the NEC and
NECP of MPPES are provided in Table I and Table II for the
two experiment groups, respectively, both in the rows labeled
“NEC of MPPES” and “NECP of MPPES.” We can see that,
as the number of devices increases, the NEC of MPPES tends
to increase, and it remains at a high level. This aspect suggests
that when device power is non-negligible, especially when
device number is significant, our scheduling ETFR, which
aims to minimize overall system energy consumption, should
be applied.
C. EMDN

We compare the energy consumption of our proposed
scheduling algorithm with several other algorithms as well as
some closely related values, to evaluate the performance of
our proposed algorithm for the EMDN problem. Denote “NEC
of WFD” as the Normalized Energy Consumption (NEC) of
our proposed algorithm. We will compare the NEC of our
scheduling algorithm with the following algorithms and values.

Algorithm DWFN: After solving Prob 2, instead of picking
out each task, whose execution time is exactly D, to schedule
it on a separate processor, this approach Directly applies the
WF strategy to all of the tasks in T , Not involving sorting the
tasks. 2

2We do not apply WFD strategy when allocating tasks, because if WFD
strategy is used, the resulting scheduling will be the same as our proposed
scheduling. As for this fact, it is not mandatory to pick out the tasks, whose
execution times are exactly D, if the WFD strategy is used.



TABLE I
GROUP 1 EXPERIMENTS FOR THE PROBLEMS WITH MULTIPLE DEVICES

|T0| NECs Number of devices, v
1 2 3 4 5 6 7 8 9 10 11 12

8
NECP of MPPES 0.7296 0.7466 0.7097 0.6686 0.6620 0.6515 0.6426 0.6397 0.6268 0.6233 0.6246 0.6183
NEC of MPPES 1.0000 1.0089 1.0086 1.0073 1.0070 1.0065 1.0060 1.0058 1.0049 1.0046 1.0047 1.0042
NEC of WFD 1.0103 1.0210 1.0008 1.0000 1.0016 1.0008 1.0034 1.0001 1.0021 1.0019 1.0013 1.0001
NEC of DWFN 1.4008 1.3485 1.1210 1.0008 1.0553 1.0767 1.0443 1.0021 1.0255 1.0421 1.0213 1.0027
NEC of WFN 1.0164 1.3485 1.1210 1.0008 1.0553 1.0767 1.0443 1.0021 1.0255 1.0421 1.0213 1.0027
NEC of WFDN 1.1232 1.1225 1.0359 1.0064 1.0377 1.0197 1.0582 1.0081 1.0233 1.0259 1.0229 1.0054
NEC of WFDN1 1.2885 1.2215 1.0733 1.0151 1.0884 1.0484 1.1435 1.0210 1.0627 1.0704 1.0621 1.0153
NEC of WFDN2 2.2703 3.7022 3.2166 2.8700 2.6773 2.4234 2.1701 2.1061 1.9319 1.8739 1.7713 1.7000

16
NECP of MPPES 0.8628 0.8145 0.7505 0.7457 0.7252 0.7011 0.6867 0.6772 0.6705 0.6642 0.6543 0.6489
NEC of MPPES 1.0067 1.0082 1.0089 1.0089 1.0088 1.0084 1.0080 1.0077 1.0074 1.0071 1.0066 1.0063
NEC of WFD 1.0001 1.0075 1.0036 1.0005 1.0022 1.0003 1.0010 1.0000 1.0011 1.0003 1.0009 1.0000
NEC of DWFN 1.3359 1.1619 1.0863 1.0016 1.0534 1.0408 1.0244 1.0017 1.0278 1.0251 1.0120 1.0010
NEC of WFN 1.3359 1.1619 1.0863 1.0016 1.0534 1.0408 1.0244 1.0017 1.0278 1.0251 1.0120 1.0010
NEC of WFDN 1.0133 1.0962 1.0490 1.0254 1.0304 1.0185 1.0217 1.0028 1.0154 1.0123 1.0278 1.0013
NEC of WFDN1 1.0193 1.1515 1.0896 1.0474 1.0596 1.0391 1.0476 1.0064 1.0358 1.0291 1.0673 1.0032
NEC of WFDN2 3.3682 2.6639 2.6764 2.2774 2.0291 2.0726 1.9676 1.8573 1.7553 1.7088 1.6869 1.6281

32
NECP of MPPES 0.9241 0.8827 0.8405 0.8090 0.7816 0.7664 0.7479 0.7352 0.7289 0.7180 0.7052 0.6964
NEC of MPPES 1.0041 1.0060 1.0075 1.0083 1.0087 1.0089 1.0089 1.0089 1.0088 1.0087 1.0085 1.0083
NEC of WFD 1.0032 1.0027 1.0018 1.0000 1.0008 1.0006 1.0009 1.0000 1.0007 1.0004 1.0006 1.0000
NEC of DWFN 1.0887 1.0461 1.0266 1.0009 1.0210 1.0294 1.0191 1.0024 1.0188 1.0131 1.0085 1.0010
NEC of WFN 1.0887 1.0461 1.0266 1.0009 1.0210 1.0294 1.0191 1.0024 1.0188 1.0131 1.0085 1.0010
NEC of WFDN 1.0311 1.0625 1.0627 1.0013 1.0336 1.0192 1.0405 1.0021 1.0206 1.0158 1.0259 1.0009
NEC of WFDN1 1.0405 1.0871 1.0945 1.0022 1.0575 1.0341 1.0748 1.0041 1.0402 1.0319 1.0537 1.0020
NEC of WFDN2 2.0442 1.8740 1.8650 1.7624 1.7606 1.6693 1.6143 1.5856 1.5732 1.5069 1.5035 1.4905

TABLE II
GROUP 2 EXPERIMENTS FOR THE PROBLEMS WITH MULTIPLE DEVICES

T0% NECs Number of devices, v
1 2 3 4 5 6 7 8 9 10 11 12

20%
NECP of MPPES 0.6302 0.6455 0.7039 0.6957 0.7063 0.7056 0.7033 0.7030 0.7012 0.6998 0.7018 0.7125
NEC of MPPES 1.0000 1.0000 1.0084 1.0083 1.0085 1.0085 1.0084 1.0084 1.0084 1.0084 1.0084 1.0086
NEC of WFD 1.0000 1.0000 1.0000 1.0000 1.0014 1.0004 1.0005 1.0003 1.0001 1.0000 1.0000 1.0000
NEC of DWFN 1.1663 1.3096 1.1237 1.0003 1.0768 1.0459 1.0218 1.0036 1.0117 1.0159 1.0108 1.0002
NEC of WFN 1.0000 1.0029 1.1237 1.0003 1.0768 1.0459 1.0218 1.0036 1.0117 1.0159 1.0108 1.0002
NEC of WFDN 1.0000 1.0065 1.0066 1.0056 1.0156 1.0140 1.0179 1.0081 1.0043 1.0008 1.0024 1.0025
NEC of WFDN1 1.0000 1.0191 1.0138 1.0121 1.0325 1.0292 1.0376 1.0171 1.0091 1.0016 1.0052 1.0052
NEC of WFDN2 2.1875 1.7525 3.1139 2.6022 2.1872 1.9656 1.8687 1.7418 1.6196 1.5577 1.4946 1.4690

50%
NECP of MPPES 0.6325 0.6013 0.7037 0.7049 0.7052 0.6984 0.7068 0.7008 0.7019 0.7022 0.7001 0.7014
NEC of MPPES 1.0000 1.0014 1.0084 1.0085 1.0085 1.0083 1.0085 1.0084 1.0084 1.0084 1.0084 1.0084
NEC of WFD 1.0000 1.0014 1.0031 1.0004 1.0009 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000
NEC of DWFN 1.1650 1.2741 1.1313 1.0051 1.0507 1.0496 1.0242 1.0006 1.0186 1.0157 1.0111 1.0001
NEC of WFN 1.0002 1.1283 1.1313 1.0051 1.0507 1.0496 1.0242 1.0006 1.0186 1.0157 1.0111 1.0001
NEC of WFDN 1.0000 1.0141 1.0634 1.0237 1.0240 1.0043 1.0121 1.0014 1.0017 1.0046 1.0049 1.0002
NEC of WFDN1 1.0000 1.0513 1.1299 1.0492 1.0500 1.0092 1.0252 1.0029 1.0035 1.0097 1.0106 1.0005
NEC of WFDN2 2.5703 3.7999 3.3033 2.5675 2.2189 2.0217 1.8126 1.7040 1.6023 1.5713 1.4972 1.4913

80%
NECP of MPPES 0.6377 0.6374 0.6932 0.7048 0.7075 0.6990 0.7048 0.7034 0.6995 0.7008 0.6981 0.7031
NEC of MPPES 1.0000 1.0000 1.0082 1.0085 1.0085 1.0083 1.0085 1.0084 1.0083 1.0084 1.0083 1.0084
NEC of WFD 1.0000 1.0000 1.0041 1.0019 1.0001 1.0003 1.0001 1.0000 1.0001 1.0003 1.0000 1.0000
NEC of DWFN 1.1642 1.3519 1.1481 1.0020 1.0703 1.0566 1.0321 1.0013 1.0116 1.0132 1.0133 1.0007
NEC of WFN 1.0000 1.0000 1.1481 1.0020 1.0703 1.0566 1.0321 1.0013 1.0116 1.0132 1.0133 1.0007
NEC of WFDN 1.0000 1.0000 1.0471 1.0269 1.0084 1.0208 1.0090 1.0022 1.0038 1.0134 1.0004 1.0010
NEC of WFDN1 1.0000 1.0000 1.1002 1.0559 1.0175 1.0442 1.0188 1.0046 1.0082 1.0284 1.0008 1.0020
NEC of WFDN2 2.5332 1.6993 3.3242 2.5612 2.1611 2.0626 1.8138 1.6923 1.6637 1.5900 1.5176 1.4727

Algorithm WFN: After solving Prob 2, this approach also
picks out the tasks whose optimal execution time is exactly
D, to assign it to a separate processor; after that, however, it
applies the WF strategy, also Not involving sorting the tasks.

Algorithm WFDN: After allocating the tasks in the same
way as that of our proposed algorithm, to ensure schedulabil-
ity, this algorithm adopts the simplest method, which is to in-
crease the execution frequency of each task to max{Lmax/D,
1} times that of its optimal frequency setting (solved for
Prob 2). The normalized energy consumption of this algorithm
can be calculated; we denote it by “NEC of WFDN,” short

for WFD strategy Not involving optimally readjusting the
frequency setting. The processor energy consumption will be
(max{Lmax/D, 1})2 times that of the processor energy con-
sumption in the optimal solution; while the device energy con-
sumption will not increase. Thus, the overall energy consump-
tion of Algorithm WFDN will be less than (max{Lmax/D,
1})2 times that of the preemptive optimal solution. We have
also proven that (Lmax/D)2 < (1 + β)2. We include these
values in our comparisons, and denote (max{Lmax/D, 1})2
and (1 + β)2 by “NEC of WFDN1” and “NEC of WFDN2,”
respectively.
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(b) EMDN(|T0|= 8)
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(c) EMDN(|T0|= 16)
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(d) EMDN(|T0|= 32)

Fig. 2. Simulation Results with One Device

Fig. 2(b), Fig. 2(c), and Fig. 2(d) present the results for
the problem with one device in the settings 1, 2, and 3,
respectively. We notice that when device static power p0
reduces the difference of the comparing values increases.
To show the results more clearly, we choose p0 = 0 for
simulations in Fig. 2(b), Fig. 2(c), and Fig. 2(d). When device
power is very small, the optimal frequency setting for Prob 2
also attempts to stretch the tasks as much as possible. Thus, T1

has a great chance to have an execution time of D. Assigning
T1 to a separate processor (as in WFD and WFN) has great
advantages over Algorithm DWF. When the device power is
significant, T1 will not have an execution time of D; in this
case, Algorithm WFN and Algorithm DWF are actually the
same.

The results for various numbers of devices are also provided
in Table I and Table II. In Table I, the first column, |T0|, means
the number of tasks in T0. In Table II, the first column, T0%,
means the approximate execution requirement percentage of
the tasks in T0. Related values are listed from the third row
to the eighth row for each simulation setting. We can see that
our proposed WFD strategy always achieves the lowest energy
consumption, and near optimal solution. Also, it is always
upper bounded by the the two values: “NEC of WFDN1” and
“NEC of WFDN2.”

VI. CONCLUSION AND FUTURE WORK

This paper addresses the problem of minimizing system
energy consumption on multiprocessor platforms with devices,
given a set of frame-based tasks, some of which require
device(s) and some of which do not. We consider the problem
both when preemption and migration are allowed (EMDP
problem), and when preemption and migration are not allowed
(EMDN problem). For the EMDP problem, we formulated the
problem as a convex optimization problem, and numerically
solve it by applying the widely used Interior Point method.
Based on the optimal solution, we construct a schedule that

adopts the optimal frequency setting and achieves the optimal
system energy consumption. For the EMDN problem, we de-
rive a schedule that achieves near-optimal energy consumption
on average and has an approximation ratio of (1 + β)α−1(<
2α−1), where β is within (0, 1), and can be easily achieved
from the optimal solution of the originally formulated convex
optimization problem and α ≥ 2 indicates the relationship
between a processor’s power consumption and its execution
frequency.

Our future work will investigate the problem when one
device can be required by more than one task, and/or each task
can require more than one device. Further, device switching
overhead (both time and energy) can be included in the
problems.
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