
1

QoS-aware Online Service Provisioning and
Updating in Cost-efficient Multi-tenant Mobile

Edge Computing
Shuaibing Lu, Member, IEEE, Jie Wu, Fellow, IEEE, Pengfan Lu, Ning Wang, Haiming Liu, and Juan

Fang, Member, IEEE

Abstract—The vigorous development of IoT technology has spawned a series of applications that are delay-sensitive or
resource-intensive. Mobile edge computing is an emerging paradigm that provides services between end devices and traditional cloud
data centers to users. However, with the continuously increasing investment of demands, it is nontrivial to maintain a higher
quality-of-service (QoS) under the erratic activities of mobile users. In this paper, we investigate the service provisioning and updating
problem under the multiple-users scenario by improving the performance of services with long-term cost constraints. We first decouple
the original long-term optimization problem into a per-slot deterministic one by using Lyapunov optimization. Then, we propose two
service updating decision strategies by considering the trajectory prediction conditions of users. Based on that, we design an online
strategy by utilizing the committed horizon control method looking forward to multiple slots predictions. We prove the performance
bound of our online strategy theoretically in terms of the trade-off between delay and cost. Extensive experiments demonstrate the
superior performance of the proposed algorithm.

Index Terms—mobile edge computing, online service provisioning, cost-efficient, quality-of-service (QoS).

✦

1 INTRODUCTION

THE vigorous development of Internet of things (IoT)
technology has led to the explosive growth of mobile

terminal equipment and data volume. At the same time, a
series of resource-intensive and delay-sensitive applications,
such as augmented reality (AR)/virtual reality (VR), intelli-
gent driving, and dynamic content delivery, have emerged
and been widely used [1], [2], [4], [6]. It is difficult for the
traditional cloud data center to meet the performance re-
quirements due to the long distance from massive terminals.
Mobile Edge Computing (MEC) is a promising framework
for solving this problem by deploying edge servers at base
stations to supply computation, storage, and networking
resources for multiple users [3]. Ensuring the quality of
service (QoS) is a key challenge with significant real-world
implications, as the vigorous development of IoT technol-
ogy has generated numerous delay-sensitive or resource-
intensive applications. However, the finite capabilities of
edge servers and the erratic activities of multiple end-users
pose challenges in guaranteeing the QoS. Therefore, there
are two key problems: (i) How to guarantee the QoS to
avoid service interruption with unknown trajectories when
users are away from the original edge servers? (ii) How to
realize service provisioning, and updating the services that

• Shuaibing Lu, Pengfan Lu, and Juan Fang are with the Faculty of
Information Technology, Beijing University of Technology, Beijing, China,
100124.
E-mail: lushuaibing@bjut.edu.cn.

• Jie Wu is with the Department of Computer and Information Sciences,
Temple University, 1805 N. Broad .Street, Philadelphia, PA 19122.
E-mail: jiewu@temple.edu.

• Haiming Liu is with the School of Software Engineering, Beijing Jiaotong
University, Beijing, China, 100091.
E-mail: liuhaiming@bjtu.edu.cn.

cloud data center

BS

mobile users

s5s3

s1

？s4

s5s2s1 s4s3

?s6

s6 s2or

placed services

edge severs

mobile trajectory

m1

m2

m3

m4

s6

s2

u1u2

u4

u6

u2

u6

u3

u3

u5

u3

Fig. 1. An illustrating example.

can efficiently utilize the limited resources without over-
whelming the cost constraint? In this paper, we investigate
the service provisioning and updating problem under the
multiple-users scenario by improving the performance of
services with a long-term cost constraint.

1.1 Motivation and Challenges

Service provisioning and updating refers to the decision-
making process of the locations of services within a specific
edge computing network to balance the interests of service
providers and consumers to achieve the greatest efficiency
possible [7]. Numerous mobile devices and sensors in edge
networks need to interface with services and exchange data
in real-time, which requires efficient service provisioning

2

and updating strategy to enhance the capacity to accom-
modate real-time data processing. We illustrate the motiva-
tion and challenges of the online service provisioning and
updating problem by using an example in Figure 1. The
squares with six different colors represent the services s1 to
s6, which are initially provisioned in the cloud data center.
We assume that the services required by the users have
been deployed on the edge servers, and each service only
serves one user. For mobile users, the QoS can be guaranteed
through provisioning a replication or migration among edge
servers. (i) The trajectories of multiple users are diverse and
erratic, hence it is non-trivial to find an efficient strategy
that can improve the QoS of mobile users by considering the
cost constraint. Taking service s3 as an example, we suppose
that end user u3 moves from an area in m1 to m4 at time
slot t and goes back to m1 after several slots. One extreme
solution is to migrate or provision a replication of s3 on
edge server m4 which may bring a lower delay for user u3.
However, the total cost will be the maximum one among all
feasible assignments if the replication or migration costs of
services are extremely high. Another extreme assignment
is to retain service s3 within m1, which minimizes the
extra (replication or migration) cost. When u3 moves to m4,
the service can only be enjoyed through communication
with m1, which will make the quality of service decrease.
Therefore, when and where to migrate or replicate services
is crucial for balancing the trade-off between long-term cost
and users’ total delay. (ii). Since the capabilities of edge
servers are limited, determining which services are chosen
to be placed in order to obtain a better performance when
multiple users make the same decision at the same time is
non-trivial. Taking services s2, s3, and s6 as examples, we
suppose that users u2 and u6 move from m1 towards m4

during the same time slot. If both services want to migrate
or replicate to m3, there will be a conflict due to the fact that
the remaining capacity can only receive one service. Let’s
consider a more serious scenario such that if m3 finally
agrees to allow service s6 to migrate or replicate on itself,
which means that service s2 is still locating on m2, while
during that time slot, if user u3 moves from server m4 to
m2, there will be no choice for s3 due to the limitation of
capacity on m2. Therefore, the problem of how to make a
better choice by jointly considering the resource efficiency
and users’ performance is a challenge.

1.2 Contributions and Paper Organization

In this paper, we investigate the online service provisioning
and updating problem under the multiple-users scenario by
improving the performance of services with long-term cost
constraints in mobile edge computing. Our contributions
can be summarized as follows:

• We investigate the online service provisioning and
updating problem by formulating to minimize the
average long-term delay of multiple mobile users,
and we decouple the original long-term optimization
problem into a per-slot deterministic one by using
Lyapunov optimization.

• We propose two service updating decision strategies
by considering the trajectory prediction conditions

TABLE 1
Symbols and Definitions

Symbols Definitions
M Set of mobile edge servers, where M = {mj}.
S Set of services on cloud data center, where S = {sh}.

Smi (t) Set of services provisioning on mi at t.
U Set of mobile users, where U = {ui}.

Û(t) The activity set of users at time slot t.
Dui (t) Total delay of user ui at time slot t.
Dc

ui
(t) Computing delay of user ui at time slot t.

Dl
ui

(t) Communication delay of user ui at time slot t.
Du

ui
(t) Updating delay of user ui at time slot t.

Csh (t) Total cost of sh at time slot t.
Cm

sh
(t) Migration cost of sh at time slot t.

Cr
sh

(t) Replication cost of sh at time slot t.
ηh The conflict resolution factor of service sh.

Lui (t) The location of ui at time slot t.
L̂ui|[τ,τ+ω] The trajectory of ui in a ω steps prediction window.

of users. For one scenario, namely the service up-
dating without available predictive information, we
propose a novel strategy by introducing the conflict
resolution factor. For the other scenario, which is the
service updating with multi-step prediction, we op-
timize the total delay of users per-slot by converting
a weighted graph under the constructed activity set.

• Based on that, we design an online strategy by utiliz-
ing the committed horizon control method looking
forward to multiple slots predictions. We prove the
performance bound of our online service provision-
ing strategy theoretically in terms of the trade-off
between delay and cost.

• We conduct extensive experiments to compare our
strategy with several baselines based on the Mi-
crosoft GPS trajectory dataset which was recon-
structed by 40 users. The results are shown from dif-
ferent perspectives to provide conclusions. Extensive
experiments demonstrate the superior performance
of the proposed algorithm.

The remainder of this paper is organized as follows.
Section 2 surveys related works. Section 3 describes the
model and then formulates the problem. Section 4 investi-
gates the service provisioning and updating problem based
on Lyapunov optimization. Section 5 investigates the online
optimization provisioning strategy by considering multi-
step prediction. Section 6 includes the experiments. Finally,
Section 7 concludes the paper.

2 RELATED WORK

As an emerging paradigm, edge computing extends ser-
vices closer to end-users. However, the finite capabilities
of edge servers and the erratic activities of users pose
new challenges [5]. One of the main open branches is the
service provisioning problem, which is well-investigated in
edge computing under mobility scenarios [6]. Various works
have been studied from different aspects of this problem.
Elgazzar et al. [8] examined the reliability of mobile devices
as data service providers and proposed a cloud-assisted
framework that leverages task offloading to improve ser-
vice performance. Qiu et al. [9] addressed the deployment

3

optimization of VNFs and backup VNFs in a fault-prone
MEC environment with dynamically changing fault prob-
abilities. Li et al. [10] concentrated on the reliability of
Virtual Network Functions (VNFs) in the MEC network and
suggested deploying primary and backup VNF instances
to meet user reliability requirements. Yu et al. [11] inves-
tigated the service provisioning problem in mobile edge
computing, which aimed to minimize the traffic load caused
by service request forwarding, and proposed an efficient
decentralized algorithm based on matching theory. Mao
et al. [12] proposed an approximate algorithm to deploy
service function chains at the edge and the cloud, and
they used the next fit strategy and double spanning tree
to effectively avoid redundant data traffic and reduce the
latency. The resource cost at the edge and on the cloud,
and the optimal point of all corresponding communication
delays were optimized. Gu et al. [13] proposed the JMDLS-
RR algorithm, which cooperatively deploys microservices
by combining intra-server and inter-server layer sharing to
maximize the service capacity of the edge cloud. Nezami et
al. [14] formulated a decentralized load-balancing problem
for IoT service provisioning, and they introduced a decen-
tralized multi-agent system that utilized edge servers to
balance the workloads and minimized the costs involved in
service execution. Zhang et al. [15] solved the computation
and delay costs minimization problem by proposing an
efficiently approximate algorithm based on semi-definite
relaxation. The above works optimized the cost and delay
of services from the offline scenario.

In the online scenario, Chen et al. [16] studied the
service collaboration with master-slave dependency among
service chains of mobile users and jointly optimized the
cost and delay by introducing a distributed algorithm based
on Markov approximation. Xu et al. [17] proposed an effi-
cient online algorithm based on Gibbs sampling which can
achieve provable close-to-optimal performance. Ren et al.
[18] proposed a novel framework called EdgeMatrix and
designed a multi-task mechanism to solve the problem of
joint service orchestration and request scheduling between
edge cloud clusters. They used a dual timescale frame-
work which coordinated resources and services on a large
timescale and scheduled requests on a small one, which
can significantly shorten the running time. Shang et al. [19]
designed an online service provisioning and throughput
adjustment algorithm to coordinate the migration of virtual
services, as well as adjusted its data throughput accord-
ing to real-time bandwidth fluctuations to reduce latency
and improve the Quality of Experience (QoE). They solved
the support challenge of interactive virtual service QoE in
mobile edge computing caused by high user mobility and
unstable network conditions. Wang et al. [20] described
dynamic task placement as an online multi-user dobby slot
machine process and proposed a decentralized algorithm to
optimize users’ rewards affected by network delays. Han
et al. [21] transformed the online multi-component service
placement into an ant colony optimization problem, and
they proposed a level traversal component ranking method
to achieve faster convergence. In the online optimization
problem of edge computing, some existing works utilize the
Lyapunov optimization method. Li et al. [22] proposed a
two-timescale algorithm based on Lyapunov optimization,

which achieves efficient performance close to offline optimal
results by purchasing computing resources and making
task offloading decisions at different timescales. Liu et al.
[23] discussed the challenge of obtaining feasible compu-
tation offloading strategies in an online environment due
to limited resources of unmanned aerial vehicles (UAVs)
and dynamic changes in applications and environments,
which achieved long-term efficient and stable performance.
In cloud computing system optimization, the application
of Lyapunov optimization techniques is also a promising
approach. Zhou et al. [24] proposed an analytical framework
for optimizing the trade-off between power consumption
and performance in SaaS cloud platforms, and they used
Lyapunov optimization techniques to design an optimal
control framework for online decision-making on request
admission control. Fang et al. [25] designed a stochastic
control algorithm using Lyapunov optimization and weight
perturbation techniques, which achieved the maximization
of profit for the management platform through online
decision-making. Qi et al. [26] proposed an online schedul-
ing algorithm based on Lyapunov optimization to optimize
the operation of service systems in a cloud environment,
utilizing queue stability to ensure Quality of Service (QoS).
These works focus on optimizing the cost and delay of
the service provisioning problem; however, they ignore the
erratic movements of users.

In order to tackle the challenge of users’ mobility, some
existing works were proposed based on service migration.
Ning et al. [27] studied the service provisioning problem
by constructing a stochastic mobility system, and they in-
troduced a distributed Markov approximation algorithm
which is linear to the number of users in order to determine
the configurations of services provisioning. T. Kim et al. [28]
proposed a system called MoDEMS to optimize the service
provisioning based on user mobility in edge computing,
and they developed a linear integer programming problem
and a Seq-Creedy heuristic method to generate a migration
plan to minimize system costs and user delays. Zeng et al.
[29] formulated an optimization problem to jointly decide
the service provisioning policy and the routing decision,
and they developed an online distributed algorithm with
provable performance guarantees in terms of convergence
and competitive ratio. Li et al. [30] focused on the service
migration problem for mobile users through modeling a
Markov Decision Process (MDP) model, and they solved
it by using deep reinforcement learning. In addition, some
works consider using the information of the prediction.
Liu et al. [31]. introduced a prediction-based dynamic task
assignment algorithm that assigned the workloads to edge
servers based on the prediction of capacities and costs
in each time slot. Jin et al. [32] designed a set of novel
polynomial-time algorithms to make adaptive decisions by
solving continuous solutions. These continuous solutions
are based on the predicted inputs about the dynamic and
uncertain cloud-edge environments via online learning. Ma
et al. [33] propose a multiple-slots predictive service place-
ment algorithm to incorporate the prediction of user mobil-
ity based on a frame-based design. However, these works
do not take into account the impact of additional prediction
error on the service provisioning. In this paper, we study the
online service provisioning and updating problem in mobile

4

edge computing. Our objective is to improve the QoS by
minimizing the total delay while considering maintaining
the long-term cost under the constraint.

3 MODEL AND PROBLEM FORMULATION

In this paper, we focus on the QoS-aware online service pro-
visioning and updating problem in mobile edge computing
for multiple users with cost efficiency. We build a system
model that describes the physical edge nodes and multiple
users, and then we formalize our problem to minimize the
long-term average delay under the constraints within this
model.

3.1 System Model

As shown in Figure 1, we consider a three layer network ar-
chitecture that includes the cloud data center, edge servers,
and the mobile end-users. We suppose that the services
required by users are initially provisioning in the cloud data
center, which is denoted as set S = {sh}. Let M = {mj}
denote a substrate set of edge servers that are supported
by the operators. Let U = {ui} denote the set of mobile
users, and these users subscribe to the services one-to-one.
In order to capture the mobility of users, we assume that the
system in a slotted structure and its timeline is discretized
into time frame t ∈ {0, 1, 2, ...T − 1} [33], [34], [37]. In
this paper, we suppose that users move erratically and
frequently among several edge servers. At each time slot,
the operators determine whether provisioning replications
or migration follow with users according to navigating the
trade-off between delay and cost. We list the main notations
throughout this paper in Table 1 for ease of reference.

3.1.1 QoS model
In our study, the QoS of users is determined by computing
delay, communication delay, and updating delay. We use
D(t) =

∑|U|
i=1 Dui

(t) to denote the total delay at time slot
t, where Dui

(t) is the delay of ui. The computing delay
is defined as Dc

ui
(t) =

∑
mj∈M

rui
(t)

zc
mj

, where rui
(t) is the

service request of user ui at time slot t, and zcmj
is the

computing capacity of mj measured by the number of CPU
cycles [35], [36]. We use Dl

ui
(t) to represent the commu-

nication delay that occurs when users are far away from
the location of the service. Let tui,mj denote the maximum
transmission rate between user ui and edge server mj ,
where tui,mj

(t) = bui,mj
(t) · log2(1 +

β·g(ui,mj)
N) [37], [38],

[44], [45]. We set bui,mj
(t) as a binary indicator variable

indicating whether user ui is connected to server mj . Here,
by β we denote the transmission power of the local mobile
device of ui. Let g(ui,mj) be the channel gain between
the user ui and the edge server mj , where g(ui,mj) =
127+30·log p(ui,mj) [39]. p(ui,mj) represents the distance
between ui and mj that determine the network propagation.
We use N to represent the noise power. The communication
delay is defined as Dl

ui
(t) =

∑
mj∈M

dui
(t)

tui,mj
(t) , where dui

(t)

denotes the data size of the request [37], [38]. We use Du
ui
(t)

to represent the updating delay, which occurs when the
location of service si that is serving ui changes. Here, we
consider two scenarios. One is that the operator can place

a replication on the edge server to which ui is currently
connected. The other is that operator can migrate service si
to the edge server to which user ui goes forward. The costs
of both scenarios are discussed in the next subsection. The
updating delay is defined as Du

ui
(t) = Υ(vi)+Ψ(si), where

Υ(si) is the delay of rebooting software resources, and Ψ(si)
is the delay of transmitting service profiles [39].

3.1.2 Cost Model
We use C(t) to denote the total cost of users in set U at
time slot t, where C(t) =

∑|S|
h=1 Csh(t). Let Csh(t) denote

the cost of service sh, where Csh(t) = Cm
sh
(t) + Cr

sh
(t). We

use Cm
sh
(t) and Cr

sh
(t) to represent the migration cost and

replication cost, respectively. Let xsh(t) denote the decision
of sh, when sh decides to stay at the edge server with the
same location in the previous step, xsh(t) = 0, otherwise,
xsh(t) = 1.

3.2 Problem Formulation
On the basis of the models above, our problem is formulated
to minimize the long-term average delay subject to the
resource and cost constraints, which is presented as follows:

P1 : minimize lim
T→∞

1

T

T−1∑
t=0

|U |∑
i=1

Dui(t) (1)

s.t. Dui
(t) = Dc

ui
(t) +Dl

ui
(t) + xsh(t) ·Du

ui
(t), (2)

lim
T→∞

1

T

T∑
t=0

|S|∑
h=1

Csh(t) ≤ Γ,Dui
(t) ≤ D,∀ui ∈ U, (3)∑

Smi
∈S

W (Smi(t)) ≤ Rs
mi

,∀mi ∈M, (4)

xsh(t) ∈ {0, 1},∀sh ∈ S. (5)

P1 is the objective function, and equations (2) to (5) are
the constraints. Equation (2) is the total delay of each user,
which needs to be lower than D to ensure the QoS. Equa-
tion (3) states that the long-term average cost cannot exceed
the threshold Γ determined by the operators. Equation (4)
states the constraint on the resource, which means the
services placed on mi should be under the limitation Rs

mi
.

Here, we use W (Smi
(t)) to denote the amount of storage

resources occupied for provisioned services on edge server
mi. Equation (5) states the decision of sh which provides
service for ui at time slot t. As shown in the above equations,
in order to obtain the optimal solution of P1, complete
offline information is required, i.e., the distribution of users’
trajectories over all time slots, which is difficult to predict
in advance. Thus, the main challenge that complicates the
derivation of the optimal solution to the above problem is
the lack of future information. In addition, the constraints
that P1 must satisfy during the optimization process that
make it very difficult to solve even if the future informa-
tion is known a priori. Therefore, these challenges require
an online approach that enables service provisioning and
updating decisions to be made efficiently.

4 SERVICE UPDATING DECISION STRATEGY
BASED ON LYAPUNOV OPTIMIZATION

In this section, we first introduce two service updating
decision strategies based on Lyapunov optimization by

5

considering the trajectory prediction condition of multiple
mobile users.

4.1 Decoupling based on Lyapunov Optimization
Since the major challenge of directly solving P1 is that the
long-term cost constraint of providers couples the service
provisioning and updating decisions across different time
slots, we first decouple the original problem into per-frame
deterministic problems by applying Lyapunov optimization
in this subsection. In order to deal with the constraint on
average cost Γ in Equation (3), we introduce a virtual queue
Q(t) which denotes the historical measurement of the extra
cost of services at time slot t. The queue updates according
to the following equation

Q(t+ 1) = max{Q(t) + C(t)− Γ, 0} (6)

Intuitively, the condition of the total extra cost C(t) that is
produced by the replication or migration of services can
be evaluated by Q(t). When the value of Q(t) is large, it
represents that the cost has exceeded the long-term cost Γ.
Specifically, Equation (6) implies Q(t+1) ≥ Q(t)+C(t)−Γ,
and then we have C(t) − Γ ≤ Q(t + 1) − Q(t). By
summing this inequality during all time slots, we have∑T−1

t=0 (C(t) − Γ) ≤ Q(T) − Q(0). Initialize Q(0) = 0 and
divide by t time slots. One can take expectations and derive
that the expected backlog over time slot in [0, T − 1] is less
than the threshold.

1

T

T−1∑
t=0

E[C(t)] ≤ lim
T→∞

1

T
E[Q(T)] + Γ (7)

As shown in Equation 7, we have that the constraint on the
cost can be guaranteed by stabilizing the virtual queue Q(t).
Therefore, a quadratic Lyapunov function for each slot t is
defined as L(Q(t)) ≜ 1

2Q(t)2 [27], [33], [40], where Q(t)
is a vector that evolves over slots in [0, T − 1]. Here, the
quadratic Lyapunov function can be considered as a scalar
measure of queue deviation which is similar to Q(t). In
order to keep the queue stable, which means enforcing the
extra cost constraint by promoting the Lyapunov function
to lower values continuously, we introduce the one-step
conditional Lyapunov drift as follows.

∆(Q(t)) ≜ E[L(Q(t+ 1))− L(Q(t))|Q(t)] (8)

Lemma 1. Given the updating decisions of services in set S
according to multiple mobile users U in each time slot t,
the statement holds:

∆(Q(t)) ≤ ß +Q(t)E[(C(t)− Γ)|Q(t)] (9)

where ß ≜ 1
2 (C̃(t)

2 + Γ
2
).

Proof: We rearrange Equation (8) for a concise form, where
∆(Q(t)) ≜ E[L(Q(t + 1)) − L(Q(t))|Q(t)] = 1

2E[(C(t) −
Γ)2|Q(t)] + Q(t)E[(C(t) − Γ)|Q(t)]. For each service, we
use C̃sh(t) to denote the cost of updating the decision
of sh in set S by choosing the minimum delay of user
uh ∈ U at time slot t. Based on that, the total cost of
all services will be C̃(t) =

∑
sh∈S C̃sh(t). Because of the

division of the time space taking into account the user’s
mobility on the boundary, the service provider will not
change in one time slot. Thus, we have C̃(t) ≥ C(t). Then,

Algorithm 1 Updating Strategy with No Prediction (USNP)
Input: Sets of edge servers M, users U, and services S;
Output: Service updating decision X(t) of U at time slot t;

1: for users k = 1 to k = |U| in U do
2: Choose the updating decision by optimizing P2;
3: for edge servers i = 0 to i = |M| in M do
4: if

∑
Smi

∈S W (Smi
(t)) ≥ Rs

mi
then

5: Choose service by i = argmin{ηh};
6: end if
7: end for
8: end for
9: return Service updating decision X(t) of S;

we have ∆(Q(t)) ≤ 1
2 (C̃(t)−Γ)

2+Q(t)E[(C(t)−Γ)|Q(t)] ≤
1
2 (C̃(t)

2 + Γ
2
) + Q(t)E[(C(t) − Γ)|Q(t)]. Therefore, we can

obtain that the one-step conditional Lyapunov drift holds
∆(Q(t)) ≤ ß + Q(t)E[(C(t) − Γ)|Q(t)] at each time slot t,
where ß ≜ 1

2 (C̃(t)
2 + Γ

2
). Therefore, the proof of Lemma 1

is complete. ■
According to the Lyapunov optimization framework, we

obtain the upper bound of the Lyapunov drift function by
introducing a Lyapunov drift-plus-penalty function in each
time slot t.

P (t) ≜ ∆(Q(t)) + V E[D(t)|Q(t)] (10)

Here, we define V as a non-negative parameter for adjusting
the trade-off between the extra cost queue and the delay. In
each time slot, the performance of the service provisioning
strategy is guaranteed by minimizing an upper bound of the
following function.

P (t) ≤ß +Q(t)E[(C(t)− Γ)|Q(t)] + V E[D(t)|Q(t)] (11)

Based on that, the service provisioning and updating
problem is formulated by minimizing the right side of
Equation (11) at each time slot, which is formulated as
follows.

P2 : minimize ß +Q(t)(C(t)− Γ) + V D(t) (12)
s.t.(2)− (5). (13)

4.2 Optimal Services Updating Decision Strategy

In this subsection, we propose a service updating decision
strategy by optimizing P2 under the constraints in each time
slot. We start with a definition as follows.

Definition 1 (Optimal Service Updating (OSU) Problem).
Given the distribution of users U, the topology of edge
network G, and the function Θ(t), an OSU problem is
how to find a decision for services in S to minimize P2

under the constraints at time slot t.

On the basis of Definition 1, we discuss two scenarios.
One is the services updating without prediction, and the
other is the service updating with prediction.

6

4.2.1 OSU with no prediction

The first scenario we considered is the OSU problem with-
out available information caused either by the inaccurate
prediction results, or by it being the initial or training stages
of mobile users in per-slot. The specific steps are shown in
Algorithm 1. We use the sets of edge servers M, users U, and
services S as the input. The output is the service updating
decision X(t) at time slot t. For each user in set U, we
choose the updating decision by optimizing P2 in lines 1 to
2. Then, we check the feasibility of services on edge servers
by checking whether

∑
Smi

∈S W (Smi
(t)) ≥ Rs

mi
. Here, we

use
∑

Smi
∈S W (Smi

(t)) to denote the total number of ser-
vices provisioning on mi. In order to avoid conflicts caused
by aggregation requests of multiple users, we introduce a
definition of the conflict resolution factor for the service,
and the specific definition is as follows.

Definition 2 (conflict resolution factor). Let ηh indicate
the conflict resolution factor of service sh and ηh =
Csh(t)/Dl

uh
(t), where Dl

uh
(t) = Dl

uh
(t)|sh /∈Smi

(t).

Here, we use Csh(t) to denote the total extra cost of service
sh when it migrates or replicates on edge server mi at time
slot t, where sh ∈ Smi(t). In line 4, we choose a service
by an increasing order i = argmin{ηh}. Finally, the service
updating decision X(t) is returned in line 6.

4.2.2 OSU with prediction

In this subsection, we explore a more realistic and com-
plicated scenario in which we consider the trajectory pre-
diction for the service provisioning and updating decision
strategy. Here, we introduce an online strategy in the view
of the committed horizon control method, where the predic-
tions are looking forward to several slots for multiple slots
by utilizing the existing well-performance model.

Lemma 2. The decision of OSU problem can be solved by
minimizing Θ(t), where Θ(t) = Q(t)C(t) + V D(t).

Proof: We first rearrange P2 by introducing an intermediate
variable P, where P(t) = ß + Q(t)(C(t) − Γ) + V D(t) =
ß + Q(t)C(t) − Q(t)Γ + V D(t). The value of ß is related
to the distribution of users in set U, which is a constant
value. Meanwhile, the value of Q(t) depends on the decision
of services in the previous time interval [0, t − 1], which
means that the decision at time slot t has no effect on the
value of Q(t). We reconstruct P(t) as P(t) = W + Θ(t),
where W = ß + Q(t) − Γ and Θ(t) = Q(t)C(t) + V D(t).
Therefore, we can obtain that the network determines the
service updating strategies by solving the optimization of
Θ(t) in each time slot. ■

Based on the conversion above, we rearrange Θ(t)
by considering the combinational decision-making where
Θ(t) = Q(t)

∑|S|
h=1 Csh(t) + V

∑|U |
i=1 Dui

(t). The value of
the total extra cost of service sh depends on the decision
choosing to migrate or place replications, i.e., Csh(t) =
Cm

sh
(t) + Cr

sh
(t), which will affect the result of the delay.

Taking the decision of sh as an example, if service sh decides
to migrate or place replications on other edge servers, it
will produce a migration cost Cm

sh
(t) or replication cost

Cr
sh
(t). Meanwhile, the communication part of Dl

ui
(t) will

decrease while the updating part of Du
ui
(t) will increase

s

u2

u3

u6

u1

u4

u5

t

m4

m3

m2

m1

s2

s3

s6

s1

s4

s5

s

u2

u3

u6

u1

u4

u5

t

m4

m3

m2

m1

s2

s3

s6

s1

s4

s5

(a) original connectivity graph.

s2

s3

s6

s

m2

m4

m4

m4

m1

m3

m3

m3

t

(b) extracted connectivity graph.

Fig. 2. The connectivity graphs of Fig 1.

for Dui(t). We reconstruct Θ(t) on the basis of the in-
teraction based on the relationship between services and
users, where Θ(t) =

∑|S|
h=1 Θh(t). For each service, we have

Θh(t) = Q(t)Csh(t) + (Dl
uh

+Du
uh
) +Dc

uh
.

Based on that, we use d(sh,mi) to represent the weight
between service sh and edge server mi at time slot t,
where d(sh,mi)(t) = Q(t)Csh(t). We suppose that dmi(x)
is the delay function. We replace each edge in G◦ with
|Û(t)| parallel edges between the same server mi and the
destination t, and each with weight dmi(x)|ux∈Û(t). Then,
the weight between edge server mi and the destination t
that is connected to it is dmi

(x) = (Dl
ux

+ Du
ux
) + Dc

ux
.

Therefore, we have Θh(t) = d(sh,mi)(t) + dmi
(x)(t).

On the basis of the interaction, we propose a novel
Updating Strategy with No Prediction (USNP) to optimize
the provisioning strategy at each time slot, which is shown
in Algorithm 2. We first construct an original connectivity
graph by considering the information and connection be-
tween services and edge servers. We add two virtual nodes
which are source s and destination t, and the middle two
layers are services and storage resources of edge servers.
The original connectivity graph is shown in Figure 2(a),
where users are represented by the left squares in this dia-
gram, edge servers by the middle circles, and services by the
right squares. We assume that edge nodes are bidirectionally
reachable, which means that users can access all edge nodes
with different costs and delays. In addition, the service
is able to choose any edge server for provisioning when
the capacity of the edge server allows, however, different
positions will result in different delays. Thus, the users and
services are fully connected to the edge servers. In each time
slot, the activities of users are dynamic and independent.
This means that some users may be remaining in their
original locations, while others may be far away from the
connected edge servers. We use thick red lines to mark
services where their users are far away from the original
locations, and thick yellow lines to mark edge servers with
remaining resources. For the users whose locations are not
changing, the corresponding service will not be migrated
or placed by an additional replica, so there is no extra cost
or delay produced. Therefore, we consider optimizing the
provisioning of services by constructing an activity set Û(t)
to reduce the dimensional space. The formal definition is
given as follows.

Definition 3 (Activity Set). Let Û(t) indicate the activity set

7

Algorithm 2 Updating Strategy with Prediction (USP)
Input: Sets of edge servers M, users U, and services S;
Output: Service updating decision X(t) of S at time slot t;

1: Construct the original connectivity graph g based on the
provisioning of S, the connections of G, and U;

2: for users i = 1 to i = |U| in U do
3: Calculate ςui

(t) = (Lui
(t− 1), Lui

(t));
4: if ςui

(t)==1 then
5: Construct the activity set with Û(t)← ui;
6: Update user set at time slot t with U(t) = U(t)/ui;
7: else
8: Update U(t)← ui;
9: end if

10: end for
11: Construct the extracted connectivity graph G◦ based on

the activity set Û(t);
12: Replace the link with |Û(t)| parallel ones with weight

dmi
(x)|ux∈Û(t);

13: Find a feasible service updating decision with min-cost
flow of Û(t);

14: return Service updating decision X(t) of services S;

of users at time slot t, where ui ∈ Û(t) is the user whose
current location Lui(t) is going far away from the edge
server for initial connection Lui(t− 1).

Here, we use Lui
(t) to denote the edge server that user ui

becomes connected to at time slot t. Since one user can
only be served by one service, the number of users and
services are equal. Based on that, we do an extraction by
considering the current status of users and the topology
of the edge network. The extracted connectivity graph is
shown in Figure 2(b). We use the white circle to indicate
that a container on the edge server has been occupied.
Due to the fact that each server provisioning service has
two alternatives, replication and migration, these options
are accessible. The yellow dashed circle indicates migration,
and the edge node, where a copy is placed, is represented
by a solid yellow circle. Based on that, we assign values to
network edges. The virtual source node which is connected
to all user services with the weight of 1. This means that
only one service provisioning decision can be made for
each service, i.e., only one server can be selected for one
service. Here, the weight of a service and each edge node
decision edge for migration is the sum of migration delay
and cost, while the weight of replication decisions is the sum
of replication cost and delay. Each edge server involves two
service provisioning decisions, each of which is connected to
a virtual destination node. Here, the weight of the migration
decision between the edge server and the virtual destination
is the migration delay, while the replication decision is the
replication delay.

The specific steps are shown in Algorithm 2. We use the
sets of M, U, and S as the inputs. The service updating
decision X(t) of S at time slot t is used as the output.
We construct the original connectivity graph g based on
the provisioning of S, the connections of G, and U in
line 1. In line 2, we start to construct the activity set
Û(t). We first check the locations of users in set U, where
ςui(t) = (Lui(t − 1), Lui(t)) in line 3. If ςui(t) = 1, this

denotes that ui has gone away from the edge server at time
slot t − 1. Then, we construct the activity set by adding
ui into set Û(t), where Û(t) ← ui; Otherwise, it denotes
that ui always stays near the edge server from t − 1 to
t, and we update U(t) ← ui. Based on this, we start to
construct the extracted connectivity graph G◦ based on the
activity set Û(t) in line 9. In line 10, we replace the link with
|Û(t)| parallel ones with weight dmi(x)|ux∈Û(t) between
edge servers and destination t. Then, we find a feasible
service updating decision with min-cost flow of Û(t), and
we return the updating decision X(t) of services S in line 12.

5 ONLINE OPTIMIZATION OF SERVICE PROVISION-
ING STRATEGY

In this section, we design an Online Optimization of Service
Provisioning Strategy (O-OSPω) by utilizing the committed
horizon control method with ω steps prediction. The main
ideas of O-OSPω are to leverage the prediction model to
look forward the trajectories of users in multiple steps and
to use the information to realize the optimization of service
provisioning.

The specific steps are shown in Algorithm 3. We illustrate
the whole process through Figure 3. We suppose that the
chosen prediction model exists a small part of adjustment
stage in the initial τ time slots (orange covered area in
Figure 3), which means that the information in first τ steps
is unavailable. Thus, we get service updating decision X(t)
using Algorithm 1 in line 2. After that, we obtain the
service updating decision X(t) using Algorithm 2 based on
L̂U|[t,t+ω] in line 4. Here, L̂ui|[τ,τ+ω] is the trajectory of user
ui in a ω time steps prediction window starting at time τ ,
where L̂ui|[τ,τ+ω] = {L̂ui(τ), L̂ui(τ+1), ..., L̂ui(τ+ω)} (blue
covered area in Figure 3). In line 5, we set t̃ = (t−τ) mod ω,
and we check whether the prediction steps are less than ω. In
lines 9 to 13, we update the service provisioning for services
by introducing a novel factor feasible decision frequency.
We use ash(t) = xsh(t) · ysh(t) to represent the decision
value of sh, where ysh(t) ∈ {−1, 1} and xsh(t) ∈ {0, 1} as
shown in equation (5). Since xsh(t) = 0 when service sh
decides to stay at the original location, the decision value
will be ash(t) = 0. On the contrary, when service sh decides
on migration, ysh(t) = −1 and xsh(t) = 1, and then the
value of ash(t) = −1. Similarly, when service sh makes a
decision on replication, ysh(t) = 1 and xsh(t) = 1, and then
the value of ash(t) = 1. Based on that, we use a queue A

(x)
sh

to record the decision values of service sh in x time steps,
i.e., A(ω)

sh = {ash(t+ 1), ash(t+ 2), ..., ash(t+ ω)}.
Definition 4 (feasible decision frequency). Let ϱa

◦

sh|ω(t) indi-
cate the feasible decision frequency of sh under the value
a◦, where ϱa

◦

sh|ω(t) =
1
ω

∑x=ω−1
x=0 f(A

(x)
sh , a◦).

Here, f(A(x)
sh , a◦) is a function to indicate whether the result

in queue A
(x)
sh is equal to a◦, i.e., ash = a◦. Then, we

choose the updating decision of sh by setting Xsh(t̃) =
argmax

a◦∈A
(ω)
sh

{ϱa◦

sh|ω}.

Theorem 1. By applying O-OSPω , the time-average system
delay satisfies:
1
T

∑t=T−1
t=0 D(t) ≤ 1

2 (OPT +ß+V |U|D)+ϵ+ 1
ωW ·α ·T .

8

Algorithm 3 Online Optimization of Service Provisioning
strategy (O-OSPω)
Input: Sets of edge servers M, users U, and services S;
Output: Service updating decision X of S in each time slot;

1: for t = 0 to t = τ do
2: Get service updating decision X(t) using Algorithm 1;
3: end for
4: for t = τ to t = T − 1 do
5: Get service updating decision X(t) using Algorithm 2

based on L̂U|[t,t+ω];
6: Set t̃ = (t− τ) mod ω;
7: if t̃ = t− τ then
8: Set X(t) = X(t̃);
9: else

10: for service h = 1 to h = |S| do
11: Update the decision value of sh into A

(ω)
sh ;

12: Calculate the decision policy frequencies;
13: Set Xsh(t̃) = argmax

a◦∈A
(ω)
sh

{ϱa◦

sh|ω};
14: end for
15: Set X(t) = {Xsh(t̃)|sh∈S};
16: end if
17: end for
18: return Service updating decision X(t) of S(t);

Proof: We conduct the proof via introducing POSP (t), where
POSP (t) = ß + Q(t)(C(t) − Γ) + V D(t) under the O-OSPω

strategy. For each time slot, we use P(t) to represent the
decision policy with random frequency. We use δ(t) to
denote the prediction error at time slot t. Then, we have
the average value 1

ω

∑t+ω
t+1 b(t) ≤ 1

ω · ω · ϵ = ϵ. Thus, we
have

POSP (t) ≤
1

ω

t+ω∑
t+1

P(t) ≤ OPT + 2ϵ+
2

ω
W · α · T, (14)

which can be obtained in [41]. Here, W =
maxmi∈M{W (Smi(t))}, which denotes the maximum
available storage resource of edge servers. Since each
server needs to make decisions for the services that are
placed on it, there exists a stationary and randomized
policy π for P2 which satisfy E[C − Γ] ≤ δ. Thus, we have
POSP (t) ≤ ß +Q(t) · δ + V D(t). By letting δ go to zero, we
have POSP (t) ≤ ß + V D(t).

POSP (t) ≤ ß + V D(t) ≤ ß + V |U|D. (15)

We sum the inequalities labeled as Equations (14) and
(15), and then we have

POSP (t) ≤
1

2
(OPT + ß + V |U|D) + ϵ+

1

ω
W · α · T. (16)

Therefore, the proof of Theorem 1 is complete. ■
In this paper, the O-OSPω algorithm uses ω steps tra-

jectory prediction and min-cost flow; the time complexity
will be determined by the maximum value of these two
parts. Since the trajectories of users are predicted through
social-LSTM, and the provisioning process is based on the
predicted results. The time complexity is O(TBH2), where
T is the length of the sequence determined by the steps
ω, i.e., T = 2 + 2ω, B is the batch size, and H is the

...

0 τ

ω

...

...

...

...

T

...

...

...

...

updating with no prediction updating with prediction

Fig. 3. An illustrating example of Algorithm 3.

scale of the network hidden layer. In addition, the com-
plexity of min-cost flow is O(GET), where G is the total
number of nodes in the extracted connectivity graph, i.e.,
G = 2 + |Û(t)| + |M̄| +

∑
mi∈M/M̄ Rs

mi
. Here, |M̄| is the

total number of edge servers which are fully occupied. E
is the total number of edges in the extracted connectivity
graph, i.e., E = |Û(t)|+|Û(t)|(|M̄|+

∑
mi∈M/M̄ Rs

mi
)+|M̄|+∑

mi∈M/M̄ Rs
mi

= (|Û(t)|+1)(|M̄|+
∑

mi∈M/M̄ Rs
mi

+1)−1.
T is the number of times the cumulative augmented path
reaches the maximum flow. Therefore, the complexity of
O-OSPω is O(max{TBH2,GET }), which is the maximum
value of both trajectory prediction and min-cost flow.

6 EXPERIMENTS

In this section, we conduct the experiments based on the
Microsoft GPS trajectory dataset [42], [43] to study the
service provisioning problem for multiple mobile users in
edge computing networks.

6.1 Basic Setting
We build our prototype on a workstation that runs a Linux
operating system with E5-2620 CPU, NVIDIA RTX5000
GPU, 128Gb memory, and a 2Tb hard disk. We choose
the Social-LSTM model to predict the future trajectories of
users which can achieve an average accuracy of over 70%.
We used the published Microsoft GPS trajectory dataset
which has been collected in the Geolife project [42], [43].
The Microsoft GPS trajectory dataset is a GPS trajectory
dataset collected from 182 users over a period of more than
three years (from April 2007 to August 2012) as part of the
(Microsoft Research Asia) Geolife project. These trajectories
were recorded by various GPS loggers and GPS phones,
and they have a variety of sampling rates. This dataset
contains 17,621 trajectories with a total distance of about 1.2
million kilometers and a total duration of over 48,000 hours
[42], [43]. Since this dataset recorded 182 users’ outdoor
trajectories in a broad range, we process it according to the
features of users’ activities. We first observed the activity
tracks of 182 users and marked the longitude and latitude of
the origin center coordinates [116.327544, 39.987317]. Then,
we take this location as the central point and divide the
area into three different scopes by setting the radius to
r = 1.0, r = 2.5, and r = 3.0 kilometers. The division
of the activities’ scopes from different groups is shown in
Figure 4 (a). Based on that, we construct three datasets with
different characteristics by comprehensively considering the

9

116.3 116.32 116.34 116.36
Latitude

39.96

39.98

40

40.02

Lo
ng

itu
de

(a) activities’ scopes of users.

116.32 116.33 116.34
Latitude

39.98

39.985

39.99

39.995

Lo
ng

itu
de

(b) users activities under r = 1.0
with 20-steps.

116.3 116.32 116.34
Latitude

39.97

39.98

39.99

40

40.01

Lo
ng

itu
de

(c) users activities under r = 2.5
with 60-steps.

116.3 116.32 116.34 116.36
Latitude

39.96

39.98

40

40.02

Lo
ng

itu
de

(d) users activities under r = 3.0
with 120-steps.

Fig. 4. Users’ activities under different scopes of users with scaling steps.

116.3 116.32 116.34 116.36
Latitude

39.96

39.97

39.98

39.99

40

40.01

Lo
ng

itu
de

(a) time slot 0.

116.3 116.32 116.34 116.36
Latitude

39.96

39.97

39.98

39.99

40

40.01

Lo
ng

itu
de

(b) time slot 20.

116.3 116.32 116.34 116.36
Latitude

39.96

39.97

39.98

39.99

40

40.01

Lo
ng

itu
de

(c) time slot 40.

116.3 116.32 116.34 116.36
Latitude

39.96

39.97

39.98

39.99

40

40.01

Lo
ng

itu
de

(d) time slot 59.

Fig. 5. The distribution of users at different time slots.

time, scopes and trajectories of users’ activities. For each
group of datasets, we select 40 users to construct our dataset
U and traverse their trajectories to find the ones within the
areas under a scaled time series. We continuously collect
users’ data during 20 (r = 1.0km), 60 (r = 2.5km), and
120 (r = 3.0km) consecutive time slots for each group,
respectively. The trajectories of U in different scopes are
shown in Figures 4 (b) to (d). We can see that in the first
group of users, the overlap of user activity trajectories is
not obvious due to the small geographic location and time
range. Then we expanded the activities’ scopes of users
while increasing the tracked time slots into 60 and 120. We
found that the probability of trajectory overlap in the time
slot increases. Specifically, we take the group in r = 2.5
during 60 consecutive time slots as an example to show the
distribution of users in different slots in Figure 5, which
includes the initial locations in time slots 0, 20, 40, and 59
in Figures 5(a), (b), (c), and (d). We found that the locations
of users vary in different time slots, however, the number of
connected users will remain at a high level for edge servers
with a high frequency of utility. Based on that, we simulate
the edge computing network based on U, and we set up
49 edge servers with the service range of 450 meters. We
set the computing capacity of each server to range from
2GHz to 5GHz, and the data size of each service is 1GB.
The storage of each edge server ranges from 5GB to 10GB,
which also denotes the number of services that can be placed
on edge servers. Compared to the proposed online service
provisioning strategy, three baselines are used.

• USNP-only: Services provisioning and updating
without using the prediction information, and the
decisions are only made by USNP.

• USP-only: Services provisioning and updating by

using the prediction information, and the decisions
are only made by USP.

• O-OSP: Online services provisioning and updating
based on O-OSPω without considering ω steps pre-
diction.

6.2 Experiment Results

6.2.1 Average total delay under different strategies

We investigate the average total delays under these four
strategies with four groups of users (|U| = 10, |U| = 20,
|U| = 30, and |U| = 40) in different time scales. The results
are shown in Figures 7 to 8. Combined with the distribution
characteristics of user activities in consecutive time slots for
each group under different activity scopes 20 (r = 1.0),
60 (r = 2.5), and 120 (r = 3), respectively, we have the
following observations.

(i) For each group, the numbers of users in set U affect
the results of strategies. We analyze the average total delay
for different groups of users under the same trajectory.
Viewing the results in Figures 6 to 8 as a whole, the tenden-
cies of the average total delays in groups of 20-step, 60-step,
and 120-step climb with the increasing number of users. The
main reason for this situation is the resource competition
problem caused by the increase of users in the same active
area. For the group with the shortest trajectory steps (20-
step), algorithm USNP-only has the largest fluctuation on
the total delay, which reaches about 1.3 multiples on av-
erage. By comparison, the fluctuation of the average total
delay under algorithms O-OSP and O-OSPω are relatively
stable and slow. However, for different numbers of users
(|U| = 10, |U| = 20, |U| = 30, and |U| = 40), the average
total of algorithm O-OSP is the highest, which means that

10

setting
用户步数-半径(20-1000)

USNP-only USP-only O-OSP O-OSP-ω USNP-only

10 0.17505 0.21305 0.22842 0.15605 USP-only
20 0.741057 0.730267 0.815978 0.630437 oosp
30 1.04894 0.93409 1.10932 0.85279 oosp-w
40 1.27349 1.42242 1.58373 1.01038

USNP-only USP-only O-OSP O-OSP-ω

0.17505 0.21305 0.22842 0.15605

USNP-only

0.741057

0.17505 0.21305 0.22842 0.15605

0

0.5

1

1.5

2

2.5
a

v
e

ra
g

e
 t

o
ta

l
d

e
la

y
 (

m
s
)

0.741057 0.730267 0.815978
0.630437

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
(m

s
)

service provisioning and updating strategies

(a) # of users (|U|=10).

setting
用户步数-半径(20-1000)

USNP-only USP-only O-OSP O-OSP-ω USNP-only

10 0.17505 0.21305 0.22842 0.15605 USP-only
20 0.741057 0.730267 0.815978 0.630437 oosp
30 1.04894 0.93409 1.10932 0.85279 oosp-w
40 1.27349 1.42242 1.58373 1.01038

USNP-only USP-only O-OSP O-OSP-ω

0.17505 0.21305 0.22842 0.15605

USNP-only

0.741057

0.17505 0.21305 0.22842 0.15605

0

0.5

1

1.5

2

2.5

a
v
e
ra

g
e
 t

o
ta

l
d
e
la

y
(m

s
)

service provisioning and updating strategies

0.741057 0.730267 0.815978
0.630437

0

0.5

1

1.5

2

2.5

a
v
e
ra

g
e
 t

o
ta

l
d
e
la

y
 (

m
s
)

(b) # of users (|U|=20).

USNP-only USP-only O-OSP O-OSP-ω

1.04894 0.93409 1.10932 0.85279

USNP-only USP-only O-OSP O-OSP-ω

1.27349 1.42242 1.58373 1.01038

1.04894 0.93409
1.10932

0.85279

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
 (

m
s
)

1.27349
1.42242

1.58373

1.01038

0

0.5

1

1.5

2

2.5

a
v
e

ra
g
e

 t
o
ta

l
d

e
la

y
(m

s
)

service provisioning and updating strategies

(c) # of users (|U|=30).

USNP-only USP-only O-OSP O-OSP-ω

1.04894 0.93409 1.10932 0.85279

USNP-only USP-only O-OSP O-OSP-ω

1.27349 1.42242 1.58373 1.01038

1.04894 0.93409
1.10932

0.85279

0

0.5

1

1.5

2

2.5

a
v
e

ra
g
e

 t
o

ta
l
d

e
la

y
(m

s
)

service provisioning and updating strategies

1.27349
1.42242

1.58373

1.01038

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
 (

m
s
)

(d) # of users (|U|=40).

Fig. 6. Average total delay under different strategies of users with 20-step trajectory (r = 1.0km).

setting

USNP-onlyUSP-only O-OSP O-OSP-ω

10 0.163934 0.208692 0.283643 0.210481
20 0.588688 0.69675 0.838612 0.696103
30 0.976033 1.087696 1.379993 1.141033
40 1.83655 1.855473 2.447204 1.813681

USNP-onlyUSP-only O-OSP O-OSP-ω

0.163934 0.208692 0.283643 0.21048

USNP-only

0.58868

0.163934 0.208692 0.283643 0.21048

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
 (

m
s
)

0.58868

0.696750
333 0.838612

0.696103
333

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
(m

s
)

service provisioning and upstrategies

(a) # of users (|U|=10).

setting

USNP-onlyUSP-only O-OSP O-OSP-ω

10 0.163934 0.208692 0.283643 0.210481
20 0.588688 0.69675 0.838612 0.696103
30 0.976033 1.087696 1.379993 1.141033
40 1.83655 1.855473 2.447204 1.813681

USNP-onlyUSP-only O-OSP O-OSP-ω

0.163934 0.208692 0.283643 0.21048

USNP-only

0.72306

0.163934 0.208692 0.283643 0.21048

0

0.5

1

1.5

2

2.5

a
v
e
ra

g
e
 t

o
ta

l
d
e
la

y
(m

s
)

service provisioning and upstrategies

0.72306 0.69808
0.86404

0.68196

0

0.5

1

1.5

2

2.5
a
v
e
ra

g
e
 t

o
ta

l
d
e
la

y
 (

m
s
)

(b) # of users (|U|=20).

USNP-onlyUSP-only O-OSP O-OSP-ω

1.07603 1.00519 1.35584 0.99049

USNP-onlyUSP-only O-OSP O-OSP-ω

1.84758 1.80426 2.447204 1.77058

1.07603 1.00519
1.35584

0.99049

0

0.5

1

1.5

2

2.5

a
v
e
ra

g
e
 t

o
ta

l
d
e
la

y
 (

m
s
)

1.84758 1.80426

2.447204

1.77058

0

0.5

1

1.5

2

2.5
a
v
e
ra

g
e
 t

o
ta

l
d
e
la

y
(m

s
)

service provisioning and upstrategies

(c) # of users (|U|=30).

USNP-onlyUSP-only O-OSP O-OSP-ω

0.976033 1.087696 1.379993 1.141033

USNP-onlyUSP-only O-OSP O-OSP-ω

1.84758 1.80426 2.447204 1.77058

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
(m

s
)

service provisioning and upstrategies

1.84758 1.80426

2.447204

1.77058

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
 (

m
s
)

(d) # of users (|U|=40).

Fig. 7. Average total delay under different strategies of users with 60-step trajectory (r = 2.5km).

setting

USNP-onlyUSP-only O-OSP O-OSP-ω

10 0.26124 0.24791 0.29354 0.19458
20 0.80967 0.7842 0.90221 0.73732
30 1.32752 1.11982 1.53151 0.97783
40 2.70882 2.64946 3.20454 2.04677

USNP-onlyUSP-only O-OSP O-OSP-ω

0.26124 0.24791 0.29354 0.19458

USNP-only

0.80967

0.26124 0.24791 0.29354 0.19458

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
 (

m
s
)

0.80967 0.7842 0.90221
0.73732

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
(m

s
)

service provisioning and updating strategies

(a) # of users (|U|=10).

setting

USNP-onlyUSP-only O-OSP O-OSP-ω

10 0.26124 0.24791 0.29354 0.19458
20 0.80967 0.7842 0.90221 0.73732
30 1.32752 1.11982 1.53151 0.97783
40 2.70882 2.64946 3.20454 2.04677

USNP-onlyUSP-only O-OSP O-OSP-ω

0.26124 0.24791 0.29354 0.19458

USNP-only

0.80967

0.26124 0.24791 0.29354 0.19458

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
(m

s
)

service provisioning and updating strategies

0.80967 0.7842 0.90221
0.73732

0

0.5

1

1.5

2

2.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
 (

m
s
)

(b) # of users (|U|=20).

USNP-onlyUSP-only O-OSP O-OSP-ω

1.32752 1.11982 1.53151 0.97783

USNP-onlyUSP-only O-OSP O-OSP-ω

2.70882 2.64946 3.20454 2.04677

1.32752
1.11982

1.53151

0.97783

0

0.5

1

1.5

2

2.5

3
a
v
e
ra

g
e
 t

o
ta

l
d
e
la

y
 (

m
s
)

2.70882 2.64946

3.20454

2.04677

0

0.5

1

1.5

2

2.5

3

3.5

a
v
e
ra

g
e
 t

o
ta

l
d
e
la

y
(m

s
)

service provisioning and updating strategies

(c) # of users (|U|=30).

USNP-onlyUSP-only O-OSP O-OSP-ω

1.32752 1.11982 1.53151 0.97783

USNP-onlyUSP-only O-OSP O-OSP-ω

2.70882 2.64946 3.20454 2.04677

1.32752
1.11982

1.53151

0.97783

0

0.5

1

1.5

2

2.5

3

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
(m

s
)

service provisioning and updating strategies

2.70882 2.64946

3.20454

2.04677

0

0.5

1

1.5

2

2.5

3

3.5

a
v
e

ra
g

e
 t

o
ta

l
d

e
la

y
 (

m
s
)

(d) # of users (|U|=40).

Fig. 8. Average total delay under different strategies of users with 120-step trajectory (r = 3.0km).

if you only focus on the direction of the users in the next
step, there may be extra overhead by the prediction error
or the repeated operations of users’ trajectories. As shown
in Figure 6, O-OSPω can obtain the minimum delay for
different groups of users, which means that considering
the multi-step prediction can effectively help to avoid ex-
tra overhead being produced by the complex environment
when users increase. The group with longest trajectory steps
(120-step) showed similar trends to the one with 20 steps.
The group with 60 steps has a slight difference. As shown
in Figures 7(b), (c), and (d), O-OSPω has the lowest average
total delays under the groups of 20, 30, and 40. Meanwhile,
the average total delay decreases notably with an increasing
number of users. However, as shown in Figure 7(a), USNP-
only obtains the lowest delay in the group with 10 users.
On one hand, there are abundant resources when there are
fewer users, which leads to deviation in the decision-making
under the prediction trajectory. On the other hand, we found
that the trajectories for the selected 10 users in group one
hardly changed, which results in errors in the algorithms
using the prediction information.

(ii) For different groups, the activities’ scopes and tra-
jectories of users affect the results of strategies. Compar-
ing Figures 6 to 8, expanding the activities’ scopes has
no significant impact on the average total delay of users,
which is reflected in that the tendency has not changed
significantly on the whole. For each group, the total average

latency of algorithm O-OSP is the largest. Compare to the
other three strategies, the result of O-OSPω is the minimum.
The delay of USNP-only is higher than that USP-only in
different trajectory ranges when the numbers of users are
10, 20, and 30. The tendency is slightly different for the
group with 40 users, which is presented in the results under
these four strategies most obviously. Like the group with
a small range of scale shown in Figures 6 (d), USP-only is
better than USNP-only. This fluctuation is mainly due to the
increased number of users moving in a small range, which
will bring resource constraints. Once a service provisioning
is improperly, this will result in a relatively strong impact.
However, the average total delay using algorithm USP-only
is indeed lower than USNP-only for users |U| = 40 with a
wide range of activities, 120-step trajectory. When the range
of activities stays in the middle, the effects of these two
algorithms (USNP-only and USP-only) are very close to the
O-OSPω , which means that they obtain better results in the
current active range.

(iii) Prediction with ω slots in O-OSPω can effectively
reduce the problem of service quality degradation caused by
erratic activities of mobile users. As shown in Figure 7(d),
the average total delay of O-OSP becomes significantly
higher than that of the other algorithms. In this case, besides
the lowest average total delay of O-OSPω , USNP-only and
UPS-only can also achieve better performances. The reason
is that the increase in delay is due to the scaling of users

11

under limited resources. Especially in the case of the trajec-
tories of users changing frequently, it may be inappropriate
to determine the location of the service only by one step,
which will affect the delay of other users. The simulation
results show that our algorithm can reduce the average total
delay of 28.7% (20-step trajectory, r = 1.0km), 17.8% (60-
step trajectory, r = 2.5km), and 17.8% (120-step trajectory,
r = 3.0km) when comparing with baselines, respectively.

6.2.2 Average total delay with different ω time slots
Based on the compared results above, we study the average
total delay of O-OSPω with different predictive ω slots. We
predict the trajectories of 40 users (|U|) using the Social-
LSTM model in multiple groups (20-step, 60-step, and 120-
step), and we choose two sub-groups for each one with
different accuracies. The results are shown in Figures 9 to
11. Additionally, we have the following observations.

(i) The value of ω can influence the efficiency of O-
OSPω , and there are existing differences with the increase
of ω in the tendency of the average total delay even if the
prediction accuracies are similar. As shown in Figures 9(a)
to 11(a), the accuracies of these groups are 81%, 77%, and
72% which means that the differences between any two
groups’ fluctuations within 10%. However, it is clear that
the fluctuations between the average total delays under dif-
ferent prediction steps ω vary greatly. For the first group of
20-step, the average accuracy of prediction under different
steps (ω) is the highest (81%). The initial change of ω, where
increases from ω = 1 to ω = 2 occurred, resulted in a
very significant drop in the average total delay. But when
the steps increase to ω = 3, the delay increased slightly.
Then, there is an approximately linear decline from ω = 4
to ω = 9. When the number of the prediction step becomes
too large where ω = 10, the average total delay of users in
the group with 20-step trajectory decreases. For the second
group of 60-step, which are shown in Figures 10(a) and
10(b), we have 72% and 57% percent accuracies for the
comparative experiments. When the ω steps range from 1
to 9, the average total delay of users keeps decreasing. For
each group, we can see that there is an obvious change
between ω = 2 and ω = 3 which means that the initial
change of ω has no effect on the delay, and the inflection
point appears when ω = 3. Then, there is an approximately
linear decline from ω = 3 to ω = 9. When the slots
scale into ω = 9 and ω = 10 (ω ≥ 9), the average total
delay does not change notably. The reason for this is that
the prediction of users’ trajectories too far ahead of their
movements may cause inaccurate results which may lead to
invalid decisions. For group three with the widest range of
activity scope (120-step), which are shown in Figures 11(a)
and 11(b), the average total delay decreases smoothly for the
group with 77% accuracy. When the value of ω increases to
8, the subsequent increase of ω has little effect on the delay.
From the analysis by comparing Figure 9(a) to Figure 11(a),
we have that when the accuracy rates are higher and close,
the limitation on the activity scope of users causes local
anti-correlation between the number of prediction steps ω
and the average total delay. Therefore, the total average
delay under the O-OSPω strategy decreases in a range with
the increasing value of ω, and the setting of ω is related
to the characteristics of users and the prediction model.

1 2 3 4 5 6 7 8 9 10
of predictive time slots

1

1.5

2

2.5

av
er

ag
e

to
ta

l d
el

ay
 (

m
s)

(a) group with 81% accuracy.

1 2 3 4 5 6 7 8 9 10
of predictive time slots

1

1.5

2

2.5

av
er

ag
e

to
ta

l d
el

ay
 (

m
s)

(b) group with 54% accuracy.

Fig. 9. Average total delay of users with 20-step trajectory (ω ∈ [1, 10]).

1 2 3 4 5 6 7 8 9 10
of predictive time slots

1.6

1.8

2

2.2

2.4

2.6

av
er

ag
e

to
ta

l d
el

ay
 (

m
s)

(a) group with 72% accuracy.

1 2 3 4 5 6 7 8 9 10
of predictive time slots

1.6

1.8

2

2.2

2.4

2.6

av
er

ag
e

to
ta

l d
el

ay
 (

m
s)

(b) group with 57% accuracy.

Fig. 10. Average total delay of users with 60-step trajectory (ω ∈ [1, 10]).

Comparing the three groups comprehensively, the number
of predicted steps about ω = 9 can obtain good results.

(ii) The accuracy of the chosen prediction model has little
effect on the results of O-OSPω . As shown in Figures 9 to 11,
we selected two sub-groups with large differences which
can reach about 20% on average in the prediction accuracy
under different scope of activities for analysis. When the
number of prediction steps is extremely small, i.e., ω = 1,
the lower accuracy has little effect on the average total delay.
In some groups, the delay of users decreases with accuracy.
As per users with 60-step trajectories in Figure 10, when the
accuracy decreases to 57%, the average total delay under
ω = 1 is barely growing. For the users with 120-step trajecto-
ries in Figure 11, compared the group with 61% accuracy to
the 72% one, there is an obvious growth on the average total
delay under ω = 1 which is caused by the scaling activity
scope. At the same time, the result of the decreased delay
may also occur in the case of lower accuracy under a small
prediction step, such as for users with 20-step trajectories in
Figure 9 when ω = 1. When the number of prediction steps
gradually change, the delays for these three groups decrease
and the gap between sub-groups become narrower with the
increase of ω. For the group with a wide range of activity
which leads to higher uncertainty on the trajectories of users
(120-step trajectory, r = 3.0km), the total average delay
with smaller prediction steps shows increasing tendencies,
and the results are getting closer when the steps are over
ω ≥ 6. For the other two groups of users (20-step trajectory,
r = 1.0km, and 120-step trajectory, r = 3.0km) which are
shown in Figures 9 and 10, the average total delay under
ω = 6 in these two groups with 54% and 57% accuracies are
also basically the same. Therefore, we have that even if the
accuracy of the prediction model is imprecise, O-OSPω can
still obtain a better result.

12

1 2 3 4 5 6 7 8 9 10
of predictive time slots

1

1.5

2

2.5
av

er
ag

e
to

ta
l d

el
ay

 (
m

s)

(a) group with 77% accuracy.

1 2 3 4 5 6 7 8 9 10
of predictive time slots

1

1.5

2

2.5

av
er

ag
e

to
ta

l d
el

ay
 (

m
s)

(b) group with 61% accuracy.

Fig. 11. Average total delay of users with 120-step trajectory (ω ∈
[1, 10]).

7 CONCLUSION

In this paper, we investigate the service provisioning and
updating problem in a multi-user scenario by improving
the performance of services within the long-term cost con-
straint. First, we decouple the original long-term optimiza-
tion problem into a deterministic per-slot problem using
Lyapunov optimization. Based on that, we propose two
service updating decision strategies by considering the tra-
jectory prediction conditions of users. Based on this, we
design an online strategy by utilizing the committed horizon
control method while looking ahead to ω slots predictions.
We prove the performance bound of our online strategy
theoretically in terms of the trade-off between delay and
cost. Finally, we conduct extensive experiments based on
the Microsoft GPS trajectory dataset, and we demonstrate
the superior performance of the proposed algorithm.

In our future work, we intend to investigate the appli-
cability of our algorithm to edge service markets, focusing
on the study of backup strategies and service reliability in
dynamic environments. In addition, we plan to find feasible
and effective solutions considering fairness.

ACKNOWLEDGMENTS

This work was supported by the Fundamental Research
Funds for the Central Universities (2021RC258), the China
Postdoctoral Science Foundation (Grant No. 2021M700366),
and the National Natural Science Foundation under grant
(Grant No. 92267107).

REFERENCES

[1] Tu, S., Waqas, M., Rehman, S. U., Mir, T., Halim, Z., & Ahmad, I.
(2021). “Social phenomena and fog computing networks: A novel
perspective for future networks,” IEEE Transactions on Computa-
tional Social Systems, 9(1), 32-44.

[2] Waqas, M., Tu, S., Halim, Z., Rehman, S. U., Abbas, G., & Abbas, Z.
H. (2022). “The role of artificial intelligence and machine learning
in wireless networks security: principle, practice and challenges.
Artificial Intelligence Review,” 1-47.

[3] Dang, T. K., Mohan, N., Corneo, L., Zavodovski, A., Ott, J., & Kan-
gasharju, J. (2021). ”Cloudy with a chance of short RTTs: analyzing
cloud connectivity in the internet.” In Proceedings of the 21st ACM
Internet Measurement Conference, pp. 62-79.

[4] Chen, Y., Wu, J., & Ji, B. (2018, September). “Virtual network
function deployment in tree-structured networks,” In 2018 IEEE
26th International Conference on Network Protocols (ICNP) (pp.
132-142). IEEE.

[5] Siriwardhana, Y., Porambage, P., Liyanage, M., & Ylianttila, M.
(2021). “A survey on mobile augmented reality with 5G mobile
edge computing: architectures, applications, and technical aspects,”
IEEE Communications Surveys & Tutorials, 23(2), 1160-1192.

[6] Salaht, F. A., Desprez, F., & Lebre, A. (2020). “An overview of
service placement problem in fog and edge computing. ACM
Computing Surveys (CSUR),” 53(3), 1-35.

[7] Wang, L., Jiao, L., He, T., Li, J., & Bal, H. (2020). Service placement
for collaborative edge applications. IEEE/ACM Transactions on
Networking, 29(1), 34-47.

[8] Elgazzar, K., Martin, P., & Hassanein, H. S. (2013, December).
Empowering mobile service provisioning through cloud assistance.
In 2013 IEEE/ACM 6th International Conference on Utility and
Cloud Computing (pp. 9-16). IEEE.

[9] Qiu, Y., Liang, J., Leung, V. C., Wu, X., & Deng, X. (2022). On-
line Reliability-Enhanced Virtual Network Services Provisioning
in Fault-Prone Mobile Edge Cloud. IEEE Transactions on Wireless
Communications, 21(9), 7299-7313.

[10] Li, J., Liang, W., Huang, M., & Jia, X. (2020). Reliability-aware
network service provisioning in mobile edge-cloud networks. IEEE
Transactions on Parallel and Distributed Systems, 31(7), 1545-1558.

[11] Yu, N., Xie, Q., Wang, Q., Du, H., Huang, H., & Jia, X. (2018, De-
cember). “Collaborative service placement for mobile edge comput-
ing applications,” In 2018 IEEE Global Communications Conference
(GLOBECOM) (pp. 1-6). IEEE.

[12] Mao, Y., Shang, X., & Yang, Y. (2022, May). “Joint Resource
Management and Flow Scheduling for SFC Deployment in Hybrid
Edge-and-Cloud Network,” In IEEE INFOCOM 2022-IEEE Confer-
ence on Computer Communications (pp. 170-179). IEEE.

[13] Gu, L., Chen, Z., Xu, H., Zeng, D., Li, B., & Jin, H. (2022,
May). “Layer-aware Collaborative Microservice Deployment to-
ward Maximal Edge Throughput,” In IEEE INFOCOM 2022-IEEE
Conference on Computer Communications (pp. 71-79). IEEE.

[14] Nezami, Z., Zamanifar, K., Djemame, K., & Pournaras, E. (2021).
“Decentralized edge-to-cloud load balancing: Service placement for
the Internet of Things,” IEEE Access, 9, 64983-65000.

[15] Zhang, G., Zhang, S., Zhang, W., Shen, Z., & Wang, L. (2021). “Joint
service caching, computation offloading and resource allocation in
mobile edge computing systems,” IEEE Transactions on Wireless
Communications, 20(8), 5288-5300.

[16] Chen, H., Deng, S., Zhu, H., Zhao, H., Jiang, R., Dustdar, S., &
Zomaya, A. Y. (2022). “Mobility-Aware Offloading and Resource
Allocation for Distributed Services Collaboration,” IEEE Transac-
tions on Parallel and Distributed Systems, 33(10), 2428-2443.

[17] Xu, J., Chen, L., & Zhou, P. (2018, April). “Joint service caching and
task offloading for mobile edge computing in dense networks,” In
IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions (pp. 207-215). IEEE.

[18] Ren, Y., Shen, S., Ju, Y., Wang, X., Wang, W., & Leung, V. C. (2022,
May). “EdgeMatrix: A Resources Redefined Edge-Cloud System for
Prioritized Services,” In IEEE INFOCOM 2022-IEEE Conference on
Computer Communications (pp. 610-619). IEEE.

[19] Shang, X., Huang, Y., Mao, Y., Liu, Z., & Yang, Y. (2022, May).
“Enabling QoE Support for Interactive Applications over Mobile
Edge with High User Mobility,” In IEEE INFOCOM 2022-IEEE
Conference on Computer Communications (pp. 1289-1298). IEEE.

[20] Wang, X., Ye, J., & Lui, J. C. (2022, May). “Decentralized task
offloading in edge computing: a multi-user multi-armed bandit
approach,” In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications (pp. 1199-1208). IEEE.

[21] Han, P., Liu, Y., & Guo, L. (2021). “Interference-aware online
multicomponent service placement in edge cloud networks and its
ai application,” IEEE Internet of Things Journal, 8(13), 10557-10572.

[22] Li, R., Zhou, Z., Chen, X., & Ling, Q. (2019). Resource price-aware
offloading for edge-cloud collaboration: A two-timescale online
control approach. IEEE Transactions on Cloud Computing, 10(1),
648-661.

[23] Liu, B., Zhang, W., Chen, W., Huang, H., & Guo, S. (2020). Online
computation offloading and traffic routing for UAV swarms in
edge-cloud computing. IEEE Transactions on Vehicular Technology,
69(8), 8777-8791.

[24] Liu, F., Zhou, Z., Jin, H., Li, B., Li, B., & Jiang, H. (2013). On
arbitrating the power-performance tradeoff in SaaS clouds. IEEE
Transactions on Parallel and Distributed Systems, 25(10), 2648-2658.

[25] Fang, W., Yao, X., Zhao, X., Yin, J., & Xiong, N. (2016). A stochastic
control approach to maximize profit on service provisioning for

13

mobile cloudlet platforms. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 48(4), 522-534.

[26] Qi, Y., Pan, L., & Liu, S. (2022). A Lyapunov optimization-based
online scheduling algorithm for service provisioning in cloud com-
puting. Future Generation Computer Systems, 134, 40-52.

[27] Ning, Z., Dong, P., Wang, X., Wang, S., Hu, X., Guo, S., ... &
Kwok, R. Y. (2020). “Distributed and dynamic service placement
in pervasive edge computing networks,” IEEE Transactions on
Parallel and Distributed Systems, 32(6), 1277-1292.

[28] Kim, T., Sathyanarayana, S. D., Chen, S., Im, Y., Zhang, X., Ha, S.,
& Joe-Wong, C. (2022, May). “Modems: Optimizing edge comput-
ing migrations for user mobility,” In IEEE INFOCOM 2022-IEEE
Conference on Computer Communications (pp. 1159-1168). IEEE.

[29] Zeng, Y., Huang, Y., Liu, Z., & Yang, Y. (2020, June). “Online
Distributed Edge Caching for Mobile Data Offloading in 5G Net-
works,” In 2020 IEEE/ACM 28th International Symposium on
Quality of Service (IWQoS) (pp. 1-10). IEEE.

[30] Li, Z., Jiang, C., & Lu, J. (2021, December). “Distributed Service
Migration in Satellite Mobile Edge Computing,” In 2021 IEEE
Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE.

[31] Liu, E., Deng, X., Cao, Z., & Zhang, H. (2018, December). “Design
and evaluation of a prediction-based dynamic edge computing sys-
tem,” In 2018 IEEE Global Communications Conference (GLOBE-
COM) (pp. 1-6). IEEE.

[32] Jin, Y., Jiao, L., Qian, Z., Zhang, S., & Lu, S. (2021, May). “Learning
for learning: predictive online control of federated learning with
edge provisioning,” In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications (pp. 1-10). IEEE.

[33] Ma, H., Zhou, Z., & Chen, X. (2020). “Leveraging the power of pre-
diction: Predictive service placement for latency-sensitive mobile
edge computing,” IEEE Transactions on Wireless Communications,
19(10), 6454-6468.

[34] Ouyang, T., Zhou, Z., & Chen, X. (2018). “Follow me at the
edge: Mobility-aware dynamic service placement for mobile edge
computing,” IEEE Journal on Selected Areas in Communications,
36(10), 2333-2345.

[35] Ale, L., Zhang, N., Fang, X., Chen, X., Wu, S., & Li, L. (2021). Delay-
aware and energy-efficient computation offloading in mobile-edge
computing using deep reinforcement learning. IEEE Transactions
on Cognitive Communications and Networking, 7(3), 881-892.

[36] Xiao, Z., Shu, J., Jiang, H., Lui, J. C., Min, G., Liu, J., & Dustdar, S.
(2022). Multi-objective parallel task offloading and content caching
in D2D-aided MEC networks. IEEE Transactions on Mobile Com-
puting.

[37] Lu, S., Wu, J., Shi, J., Lu, P., Fang, J., & Liu, H. (2022). “A Dy-
namic Service Placement Based on Deep Reinforcement Learning
in Mobile Edge Computing,” Network, 2(1), 106-122.

[38] Taleb, T., Ksentini, A., & Frangoudis, P. A. (2016). “Follow-me
cloud: When cloud services follow mobile users,” IEEE Transactions
on Cloud Computing, 7(2), 369-382.

[39] Gao, B., Zhou, Z., Liu, F., & Xu, F. (2019, April). “Winning at
the starting line: Joint network selection and service placement for
mobile edge computing,” In IEEE INFOCOM 2019-IEEE conference
on computer communications (pp. 1459-1467). IEEE.

[40] Neely, M. J. (2010). “Stochastic network optimization with applica-
tion to communication and queueing systems,” Synthesis Lectures
on Communication Networks, 3(1), 1-211.

[41] Comden, J., Yao, S., Chen, N., Xing, H., & Liu, Z. (2019). “Online
optimization in cloud resource provisioning: Predictions, regrets,
and algorithms,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3(1), 1-30.

[42] Zheng, Y., Li, Q., Chen, Y., Xie, X., & Ma, W. Y. (2008, September).
“Understanding mobility based on GPS data,” In Proceedings of
the 10th international conference on Ubiquitous computing (pp.
312-321).

[43] Zheng, Y., Zhang, L., Xie, X., & Ma, W. Y. (2009, April). “Mining
interesting locations and travel sequences from GPS trajectories,”
In Proceedings of the 18th international conference on World wide
web (pp. 791-800).

[44] Qiao, G., Leng, S., Maharjan, S., Zhang, Y., & Ansari, N. (2019).
Deep reinforcement learning for cooperative content caching in
vehicular edge computing and networks. IEEE Internet of Things
Journal, 7(1), 247-257.

[45] Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., & Shen, X. (2019).
Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach. IEEE Transactions on Mobile
Computing, 20(3), 939-951.

Shuaibing Lu is currently a lecturer at the Fac-
ulty of Information Technology of Beijing Uni-
versity of Technology. She received her Ph.D.
degree in Computer Science and Technology
from Jilin University, Changchun, in 2019. She is
supported by the China Scholarship Council as a
visiting scholar supervised by Prof. Jie Wu in the
Department of Computer and Information Sci-
ences at Temple University (2016-2018). She is
a member of IEEE. Her current research focuses
on distributed computing, cloud computing and

edge computing.

Powered by TCPDF (www.tcpdf.org)

Jie Wu is the Director of the Center for Net-
worked Computing and Laura H. Carnell profes-
sor at Temple University. He also serves as the
Director of International Affairs at the College of
Science and Technology. He served as Chair of
Department of Computer and Information Sci-
ences from the summer of 2009 to the summer
of 2016 and Associate Vice Provost for Interna-
tional Affairs from the fall of 2015 to the summer
of 2017. Prior to joining Temple University, he
was a program director at the National Science

Foundation and was a distinguished professor at Florida Atlantic Uni-
versity. His current research interests include mobile computing and
wireless networks, routing protocols, cloud and green computing, net-
work trust and security, and social network applications. Dr. Wu regularly
publishes in scholarly journals, conference proceedings, and books. He
serves on several editorial boards, including IEEE Transactions on Ser-
vice Computing and the Journal of Parallel and Distributed Computing.
Dr. Wu was general co-chair for IEEE MASS 2006, IEEE IPDPS 2008,
IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP 2016, and IEEE CNS
2016, as well as program co-chair for IEEE INFOCOM 2011 and CCF
CNCC 2013. He was an IEEE Computer Society Distinguished Visitor,
ACM Distinguished Speaker, and chair for the IEEE Technical Commit-
tee on Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished
Speaker and a Fellow of the IEEE. He is the recipient of the 2011
China Computer Federation (CCF) Overseas Outstanding Achievement
Award.

Pengfan Lu received his B.Sc. in Computer Sci-
ence and Technology at Harbin University of Sci-
ence and Technology. Currently, he is working to-
ward a M.Sc. degree in Computer Science under
the Faculty of Information Technology at Beijing
University of Technology. His research interests
include cloud computing and edge computing.

14

Ning Wang is currently an assistant profes-
sor in the Department of Computer Science at
Rowan University, Glassboro, NJ. He received
his Ph.D. degree from the Department of Com-
puter and Information Sciences at Temple Uni-
versity, Philadelphia, PA, USA, in 2018. He ob-
tained his B.E. degree from the School of Phys-
ical Electronics at the University of Electronic
Science and Technology of China, Chengdu,
Sichuan, China, in 2013. He currently focuses
on communication and computation optimization

problems in Internet-of-Things systems and operation optimization in
Smart Cities applications. He has published nearly thirty papers in high-
impact networking conferences and journals, such as, IEEE ICDCS,
IEEE INFOCOM, IEEE/ACM IWQoS, IEEE Transactions on Big Data,
Journal of Parallel and Distributed Computing, etc. He has served as
a program committee member for top international conferences such as
IEEE ICDCS, IEEE WCNC, etc., and reviewers for premier journals such
as IEEE TPDS, TWC, TMC, TITS, TOIT, TITS, TSC, etc.

Haiming Liu Haiming Liu is currently a lec-
turer in the School of Software Engineering
at Beijing Jiaotong University. He received his
Ph.D. degree in Computer Science and Tech-
nology (Bioinformatics) from Jilin University,
Changchun, in 2019. Before that, he received his
M.S. degree in Computer Software and Theory
from Jilin University, Changchun, in 2015 and
B.S. degree in Computer Science and Technol-
ogy from Jilin University, Changchun, in 2012.
He is a member of Chinese Association for Ar-

tificial Intelligence (CAAI). His current research focuses on edge com-
puting, data mining, and bioinformatics.

Juan Fang Juan Fang, received her M.S. degree
from Jilin University of Technology, Changchun,
China in 1997, and her Ph.D. degree from the
College of Computer Science, Beijing University
of Technology, Beijing, China, in 2005. In 1997,
she joined the College of Computer Science,
Beijing University of Technology. From 2015, she
has been a professor at Beijing University of
Technology. Her research interests include high
performance computing, edge computing and
big data technology.

