
Ad Hoc Networks 124 (2022) 102727

A
1

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

A collaborative deep learning microservice for backdoor defenses in
Industrial IoT networks
Qin Liu a,∗, Liqiong Chen a, Hongbo Jiang a, Jie Wu b, Tian Wang c, Tao Peng d, Guojun Wang d

a College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China
b Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
c BNU-UIC Institute of Artificial Intelligence and Future Networks, Beijing Normal University (BNU Zhuhai), Zhuhai, Guangdong, 519000, PR China
d School of Computer Science, Guangzhou University, Guangzhou, Guangdong Province, 510006, PR China

A R T I C L E I N F O

Keywords:
Industrial Internet of Things
Secure microservices
Deep neural networks
Backdoor attacks
Backdoor defenses

A B S T R A C T

Deep Learning shows a broad prospect in providing intelligence microservices to Industrial Internet of Things
(IIoT). However, the existence of potential secure vulnerabilities limits the application of deep learning in IIoT.
Therefore, how to provide secure deep learning services in IIoT applications becomes an important research
topic. Among various attacks on deep neural networks (DNNs), backdoor attacks are generally recognized as
the most imperceptible type, where an attacker can upload a poisoned DNN model that misbehaves only when
inputs contain specific triggers. Existing defense solutions assume a defender has prior knowledge of backdoor
triggers or DNN models, remaining far away from practical and flexible. To this end, this paper proposes
a collaborative deep learning microservice, CoDefend, which employs strong intentional perturbation (STRIP)
and cycle generative adversarial network (CycleGAN) to defend against backdoored neural networks. Compared
with previous work, CoDefend has the advantages of flexibility and practicality. Empirical evaluations validate
the high efficacy of CoDefend in providing secure deep learning microservices to IIoT.
1. Introduction

Motivation. The increasing popularity of Industrial Internet of Things
(IIoT) has produced a huge amount of data that requires intelligent
methods to process them. Deep neural networks (DNNs) demonstrate
the distinguished capabilities in discovering high-dimensional struc-
tures from massive volumes of data and have been applied to a wide
range of IIoT fields, such as face recognition, disease diagnosis, au-
tonomous driving and so on [1,2]. However, it is a very time-consuming
and resource-consuming task to train and fine-tune a DNN model at
a large scale. As a result, an increasing number of users outsource
DNN training by using machine learning as a service (MLaaS) [3],
or even by directly using pre-trained models from the online public
repositories (e.g., Caffe Model Zoo [4] and BigML [5]). This offloads
heavy workloads from users, but also boosts opportunity for attackers
to interfere with the training procedure and implant backdoors.

With the seamless connections between cyber and physical spaces
in a city through the Internet of Things (IoT), Artificial Intelligence
(AI) and cloud/edge computing, it is more imminent to meet the need
of the intelligent services in modern cities. Urban Sensing and Com-
puting (USC) [6] as a new sensing and computing paradigm enables
intelligent services to be effectively delivered through existing network

∗ Corresponding author.
E-mail address: gracelq628@hnu.edu.cn (Q. Liu).

infrastructures. Although USC provides a promising solution for smart
city, it faces various security and privacy risks [7–11]. Especially, the
emerging backdoors attack embedded in computing models become
potential safety hazard for USC. In backdoor attacks [12–17], an un-
trustworthy third party returns a poisoned DNN model (referred to as
a BadNet) that behaves normally on the benign inputs, but implements
the misclassification whenever a backdoor trigger is present in the input
. For example, the traffic sign classification BadNet [12] misclassifies
any stop sign stamped with a Post-it note (i.e., a backdoor trigger) into
a speed-limit sign while keeping high accuracy on benign inputs (see
Fig. 1). Among various attacks on DNN models, backdoor attacks are
generally recognized as the most imperceptible type, posing a severe
security threat to neural-based applications. Therefore, how to defend
against the backdoored DNN models becomes the most concerned issue
for users.

Challenge. The opacity nature of DNN models makes backdoor attacks
threatening and unobservable. Existing researches are carried out from
the following aspects: (1) Backdoor detection [18–22], i.e., identifying
whether a pre-trained DNN model is poisoned or not; (2) Trigger identi-
fication [23–28], i.e., determining the shapes and locations of backdoor
vailable online 3 November 2021
570-8705/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.adhoc.2021.102727
Received 30 March 2021; Received in revised form 10 September 2021; Accepted 1
4 October 2021

http://www.elsevier.com/locate/adhoc
http://www.elsevier.com/locate/adhoc
mailto:gracelq628@hnu.edu.cn
https://doi.org/10.1016/j.adhoc.2021.102727
https://doi.org/10.1016/j.adhoc.2021.102727
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2021.102727&domain=pdf

Ad Hoc Networks 124 (2022) 102727Q. Liu et al.
Fig. 1. The overview of backdoor attacks.
triggers; (3) Model mitigation [29–31], i.e., removing backdoor triggers
from the model. However, the transformation of previous defenses into
practical use is far from satisfactory due to the following challenges.

(C1) Limited information about the pre-trained model is available.
Previous work on backdoor detection requires either a clean training
dataset or a clean reference model. In reality, the training data related
to individual privacy cannot be exposed to the public, and a good
reference model is difficult to be obtained in real-world situations.

(C2) Neither assumption about backdoor triggers is reasonable. To
detect backdoors and identify triggers, previous work relies on the prior
knowledge of backdoor triggers. For example, the state-of-the-art de-
fense, Neural Cleanse [23], makes a strong assumption that the size of
backdoor triggers is much smaller than other perturbations. However,
the triggers may be arbitrarily shaped and placed in any position of the
input. The unreasonable assumptions restrict the application scenarios
of these methods.

(C3) It demands extensive resources to identify and remove triggers.
Existing work on triggers identification and model mitigation is ex-
tremely resource-intensive. For example, GangSweep [28] leverages the
generative adversarial networks (GAN) [32] to reconstruct backdoor
triggers and fine-tune the infected model with backdoored samples
and their correct labels. It is impractical to implement these defense
methods on thin devices with limited resources.

Our contributions. In this paper, we propose a new backdoor defense
framework, CoDefend, which divides the defense procedure between
thin devices and edge servers, removing heavy computational work
for users. As shown in Fig. 2, CoDefend enables thin devices to detect
BadNets in a quick and effective way, while offloading the burdensome
task of trigger identification and model mitigation to edge servers.
Specifically, strong intentional perturbation (STRIP) [22] and cycle
generative adversarial network (CycleGAN) [33] are employed in the
backdoor defense procedure. Given a pre-trained model, thin devices
utilize STRIP to detect backdoor triggers in a black-box manner, inde-
pendent of any assumption about backdoor triggers. Once a BadNet is
detected, edge servers adopt CycleGAN to recover backdoor triggers. By
using CycleGAN, the clean validation samples learn backdoor triggers
from backdoored samples, producing a dataset of poisoned data with
correct labels for re-training the BadNet. In summary, our contributions
in this work are listed as below:

• We propose a novel backdoor defense framework, CoDefend, to
offload the resource-intensive work from thin devices to edge
servers. It allows thin devices to actively participate in the defense
procedure.

• CoDefend employs STRIP and CycleGAN to detect BadNets, re-
cover backdoor triggers, and remedy the models. CoDefend dis-
penses with access to the training dataset of the BadNet, while
making minimal assumptions on backdoor triggers.

• Empirical evaluations on four datasets validate the high effi-
cacy and effectiveness of CoDefend. It reduces the attack success
rate (ASR) from 98% ∼ 100% (before defense) to 0% ∼ 3%
2

(after defense) with a penalty of 1% ∼ 3% reduction in clean
accuracy (CA). Extensive experiments in various settings illus-
trate that CoDefend significantly outperforms the state-of-the-
art defense, Neural Cleanse, while removing assumptions about
backdoor triggers.

Paper Organization. We introduce the preliminaries in Section 2
before presenting CoDefend in Section 3. After empirical evaluations in
Section 4, we introduce related work in Section 5. Finally, we conclude
the paper in Section 6.

2. Preliminaries

2.1. Deep neural network

A DNN consists of a series of layers (𝐹1, 𝐹2,… , 𝐹𝑛), where every
layer 𝐹𝑖 is a differentiable transformation function that converts the
previous layer’s output into current layer’s input. Given an initial input
𝑥, the final output of the DNN 𝑓𝜃 can be expressed as:

𝑓𝜃(𝑥) = 𝐹𝑛(𝐹𝑛−1(… (𝐹2(𝐹1(𝑥))))), (1)

where 𝜃 denotes the parameters of the DNN. In a classification appli-
cation, the DNN maps an 𝑚-dimensional input 𝑥 ∈ R𝑚 into one of 𝑀
classes. The output 𝑦 ∈ R𝑀 is a probability distribution over the 𝑀
classes. Suppose that 𝑦𝑖 represents the probability of input 𝑥 belonging
to class 𝑖. The input 𝑥 is classified into the class 𝑧 if 𝑧 = argmax𝑖∈[1,𝑀] 𝑦𝑖.

The parameters 𝜃 of a DNN are determined by training the network
on a training dataset 𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖, 𝑧𝑖)}, which consists of a set of
inputs 𝑥𝑖 ∈ R𝑚 and the corresponding ground-truth labels 𝑧𝑖 ∈ [1,𝑀].
During the training process, the parameters of DNN are determined
through minimizing the average distance between the predictions and
the ground-truth labels. This minimization progress can be quantified
by a loss function defined as follows:

𝜃 = argmin
𝜃∗

𝑁
∑

𝑖
(𝑓 ∗

𝜃 (𝑥), 𝑧𝑖). (2)

In practice, we minimize the loss function by using stochastic gradient
descent (SGD) algorithms [34] and determine the parameters 𝜃 through
back-propagation. The performance of the trained DNN model is mea-
sured using its accuracy on a validation dataset, 𝑣𝑎𝑙𝑖𝑑 , composed of a
set of inputs and their ground-truth labels, s.t. 𝑣𝑎𝑙𝑖𝑑 ∩𝑡𝑟𝑎𝑖𝑛 = ∅.

2.2. CycleGAN

A GAN consists of a generator and a discriminator, which learns
unknown data distributions through a minmax two-player game. The
objective of the generator is to fool the discriminator with synthesized
images, while the discriminator aims to distinguish real images from
the synthesized one. The generator implicitly learns the distribution,
when the process of the confrontation reaches a dynamic balance.

Ad Hoc Networks 124 (2022) 102727Q. Liu et al.

i

i

Fig. 2. The framework of CoDefend.
CycleGAN employs two mirror-symmetric GANs to learn image-to-
mage mapping functions between two domains 𝑋 and 𝑌 . In CycleGAN,

a primal GAN learns a generator 𝐺 ∶ 𝑋 → 𝑌 that generates synthesized
mages resembling real images from domain 𝑌 , and a discriminator 𝐷𝑌

that distinguishes between 𝐺’s outputs and members of 𝑌 ; analogously,
a dual GAN learns a generator 𝐹 ∶ 𝑌 → 𝑋 and a discriminator 𝐷𝑋 .
During the training process, an adversarial loss and a cycle consistency
loss are considered into the optimization objective.

CycleGAN has been widely used in various applications, including
object transfiguration, season transfer, photo enhancement, etc. In this
paper, CoDefend exploits CycleGAN to covert clean images to their
backdoored versions through black-box access to the BadNet, and
without any prior knowledge about backdoor triggers and training
datasets. Finally, the backdoored versions and their ground-truth labels
are applied to repatch the BadNet through fine-tuning.

2.3. Shannon entropy

Shannon Entropy is a common tool used to quantify the amount
of information in a variable. Given a discrete random variable 𝑋 =
{𝑥1, 𝑥2,… , 𝑥𝑛} with the probability distribution function 𝑝(𝑋), the en-
tropy of 𝑋 is formally defined as:

H(𝑋) = −
𝑛
∑

𝑖=1
(𝑝(𝑥𝑖) × log𝑏 𝑝(𝑥𝑖)), (3)

where 𝑏 is the base of the logarithm used. When 𝑏 is equal to 2, the unit
of entropy is called bit. Therefore, Shannon Entropy provides a way to
estimate the average minimum number of bits needed to encode any
information, based on the information frequency.

3. The CoDefend framework

3.1. Threat model

Attacker. To ensure the practical usage of CoDefend in real-world
situations, we consider a strong white-box attacker, who has full control
over the training procedure and the training dataset of the DNN model.
In the meanwhile, the attacker is allowed to poison the training dataset
with any forms of backdoor triggers. That is, the attributes (such as
the shapes, locations, and sizes) of the injected triggers are completely
determined by the attacker.

Defender. The defender is assumed to have the minimum prior knowl-
edge of the DNN model to reflect his/her maximum defense ability.
Given a pre-trained DNN model, the defender detects and identifies the
backdoor triggers by black-box access to the model. We assume that the
3

defender only has access to the testing dataset 𝑡𝑒𝑠𝑡 and a small set of
clean validation data 𝑣𝑎𝑙𝑖𝑑 (no access to the training dataset 𝑡𝑟𝑎𝑖𝑛 or
training procedure). In the fine-tuning phase, the defender needs white-
box access to the BadNet with a set of poisoned data 𝑝𝑜𝑖𝑠𝑜𝑛 and their
ground-truth labels.

3.2. Overview of CoDefend

DNN are widely used in image recognition tasks in IIoT due to
their efficiency. For example, in the fetal ultrasound standard plane
recognition, the DNN learns the fetal medical image data, which is
obtained via distributed smart equipments, and makes a reliable pre-
diction. CoDefend is designed to detect the backdoor embedded in DNN
and ensure accurate classification.

As shown in Fig. 2, CoDefend consists of three main steps: STRIP-
based backdoor detection, CycleGAN-based trigger identification, and
unlearning-based model mitigation, dividing the defense procedure
between thin devices and edge servers. In Step 1, given a DNN model
𝑓𝜃 , the thin device first generates a perturbed dataset by superimposing
samples from a clean validation dataset 𝑣𝑎𝑙𝑖𝑑 and a testing dataset
𝑡𝑒𝑠𝑡, then calculates the entropy of predictions, and finally determines
the perturbed inputs with an entropy lower than a predefined detection
boundary 𝜎 as poisoned samples. If a backdoor trigger is found, the thin
device asks the edge server to execute the rest of the steps. Otherwise,
the user deploys the benign model locally for future use without any
interaction with the edge server.

Once a BadNet is detected, the edge server obtains two datasets,
𝑣𝑎𝑙𝑖𝑑 and 𝑝𝑜𝑖𝑠𝑜𝑛, from the thin device. In Step 2, the edge server
utilizes CycleGAN to learn the mapping functions between two datasets.
After Step 2, the edge server obtains a set of poisoned samples and their
correct labels, which can be used to retrain the BadNet in Step 3.

3.3. User-side defenses

The STRIP-based detection is summarized in Algorithm 1. Given a
testing dataset 𝑡𝑒𝑠𝑡, this step mainly aims to verify whether 𝑡𝑒𝑠𝑡 is
compromised by backdoor attacks or not. Specifically, we first choose
𝑁 distinct samples from 𝑣𝑎𝑙𝑖𝑑 to construct 𝑐𝑙𝑒𝑎𝑛, such that at least
one sample for each class is included in 𝑐𝑙𝑒𝑎𝑛. For each testing sample
𝑡 ∈ 𝑡𝑒𝑠𝑡, 𝑁 perturbed samples ′

𝑡 = {𝑡′1,… , 𝑡′𝑁} are generated by
superposing 𝑡 on each clean sample in 𝑐𝑙𝑒𝑎𝑛. The perturbed samples
′

𝑡 are served as model 𝑓𝜃 ’s input. The randomness of the predictions
of ′

𝑡, is quantified by Shannon Entropy:

H𝑡 =
1
𝑁

×
𝑁
∑

𝑖=1
(−

𝑀
∑

𝑗=1
𝑦𝑖𝑗 × log2 𝑦𝑖𝑗), (4)

where 𝑦𝑖𝑗 is the probability for the pre-trained model 𝑓𝜃 to predicate
𝑡′ as class 𝑗, and 𝑀 represents the total number of classes. That is,
𝑖

Ad Hoc Networks 124 (2022) 102727Q. Liu et al.
Fig. 3. The working process of STRIP detection.
Algorithm 1 STRIP-based backdoor detection
Input: A clean validation dataset 𝑣𝑎𝑙𝑖𝑑 , a testing dataset 𝑡𝑒𝑠𝑡, a DNN

model 𝑓𝜃 , the number of replicas 𝑁 , and a detection boundary 𝜎
Output: A poisoned dataset 𝑝𝑜𝑖𝑠𝑜𝑛
1: Set 𝑝𝑜𝑖𝑠𝑜𝑛 and 𝑐𝑙𝑒𝑎𝑛 to empty sets
2: Add 𝑁 distinct samples of 𝑣𝑎𝑙𝑖𝑑 into 𝑐𝑙𝑒𝑎𝑛
3: for each sample 𝑡 in 𝑡𝑒𝑠𝑡 do
4: for the 𝑖-th clean sample 𝑥𝑖 in 𝑐𝑙𝑒𝑎𝑛 do
5: Superimpose the clean sample 𝑥𝑖 on the testing sample 𝑡 to

generate the perturbed sample 𝑡′𝑖
6: end for
7: Set ′

𝑡 to {𝑡′1,… , 𝑡′𝑁}
8: Test 𝑓𝜃 on ′

𝑡 and calculate H𝑡 with Eq. (4)
9: if H𝑡 ≤ 𝜎 then

10: Add the testing sample 𝑡 into 𝑝𝑜𝑖𝑠𝑜𝑛
11: end if
12: end for

𝐻 𝑖
𝑡 = −

∑𝑀
𝑗=1 𝑦

𝑖
𝑗 × log2 𝑦𝑖𝑗 denotes the entropy of the 𝑖th perturbed

sample. The total entropy of all 𝑁 perturbed inputs can be expressed
as 𝐻𝑡 =

∑𝑁
𝑖=1 H

𝑖
𝑡. H𝑡, as the final entropy after the normalization of 𝐻𝑡,

is used to indicate whether the input is backdoored or not. As shown
in [22], the predicted class is input-agnostic, i.e., the lower entropy in
predicted classes suggests the higher probability that backdoor triggers
exist in the testing sample. Therefore, if H𝑡 is lower than a pre-defined
threshold 𝜎, the pre-trained model is deemed as poisoned. Fig. 3 pro-
vides an example to illustrate the working process of STRIP detection,
where the testing sample is replicated 𝑁 times before perturbation.

3.4. Edge-side defenses

If a BadNet is detected in the first step, the edge server will perform
trigger identification and model mitigation as shown in Algorithm 2.
Given a clean validation dataset 𝑣𝑎𝑙𝑖𝑑 and a poisoned testing dataset
𝑝𝑜𝑖𝑠𝑜𝑛, CycleGAN is first employed to learn the mapping functions 𝐺, 𝐹
between 𝑣𝑎𝑙𝑖𝑑 (domain 𝑋) and 𝑝𝑜𝑖𝑠𝑜𝑛 (domain 𝑌). For the generator
𝐺 ∶ 𝑋 → 𝑌 and the discriminator 𝐷𝑌 in the primary GAN, the
adversarial loss is defined as:
𝐺𝐴𝑁 (𝐺,𝐷𝑌 , 𝑋, 𝑌) = E𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦) [log𝐷𝑌 (𝑦)]

+ E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log(1 −𝐷𝑌 (𝐺(𝑥)))].
(5)

In Eq. (5), 𝐺 intends to generate images 𝐺(𝑥) that resemble the poi-
soned images in 𝑝𝑜𝑖𝑠𝑜𝑛, while 𝐷𝑌 tries to distinguish between 𝐺(𝑥) and
𝑝𝑜𝑖𝑠𝑜𝑛. In the optimization process, the generator 𝐺 aims to minimize
the adversarial loss, while the discriminator 𝐷𝑌 aims to maximize the
loss. Similarly, the dual GAN contains a generator 𝐹 ∶ 𝑌 → 𝑋 and a
discriminator 𝐷𝑋 , to calculate the adversarial loss 𝐺𝐴𝑁 (𝐹 ,𝐷𝑋 , 𝑌 ,𝑋).
With the adversarial losses, the generator 𝐺 (resp. 𝐹) is obtained to
4

Fig. 4. The working process of CycleGAN-based trigger identification and unlearning-
based model mitigation.

produce outputs identically distributed as the target domain 𝑌 (resp.
𝑋).

Besides the adversarial loss, the cycle consistency loss is defined
to bring the transformed images back to their original versions, i,e.,
𝐹 (𝐺(𝑥)) ≈ 𝑥 and 𝐺(𝐹 (𝑦)) ≈ 𝑦. Formally, the cycle consistency loss can
be calculated as:

𝑐𝑦𝑐 (𝐺, 𝐹) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [‖𝐹 (𝐺(𝑥)) − 𝑥‖1]

+ E𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦) [‖𝐺(𝐹 (𝑦)) − 𝑦‖1]
(6)

The sum of above losses is used to train CycleGAN:

 = 𝜆𝑐𝑦𝑐 (𝐺, 𝐹) + 𝐺𝐴𝑁 (𝐺,𝐷𝑌 , 𝑋, 𝑌) + 𝐺𝐴𝑁 (𝐹 ,𝐷𝑋 , 𝑌 ,𝑋), (7)

where 𝜆 adjusts the contributions of the two losses.

Given a clean dataset 𝑣𝑎𝑙𝑖𝑑 , 𝐺(𝑣𝑎𝑙𝑖𝑑) outputs a set of poisoned
versions that learn backdoor triggers from poisoned samples. Then,
the edge server constructs a new dataset 𝑔𝑒𝑛 consisting of poisoned
samples and their ground-truth labels. To mitigate backdoors, the edge
server fine-tunes the BadNet 𝑓𝜃 with 𝑔𝑒𝑛 so that 𝑓𝜃 unlearns all the
misbehaviors injected by attackers. Fig. 4 depicts the edge-side defense
to obtain a benign model 𝑓 from 𝑓 .
𝜃′ 𝜃

Ad Hoc Networks 124 (2022) 102727Q. Liu et al.
Algorithm 2 CycleGAN-based trigger identification and unlearning-
based model mitigation
Input: A clean validation dataset 𝑣𝑎𝑙𝑖𝑑 , a poisoned dataset 𝑝𝑜𝑖𝑠𝑜𝑛, a

backdoored DNN model 𝑓𝜃
Output: A fine-tuned DNN model 𝑓𝜃′
1: Set 𝑔𝑒𝑛 to an empty set
2: Obtain 𝐺, 𝐹 by training CycleGAN on datasets 𝑣𝑎𝑙𝑖𝑑 and 𝑝𝑜𝑖𝑠𝑜𝑛

using loss function of Eq. (7)
3: for each clean sample 𝑥𝑖 in 𝑣𝑎𝑙𝑖𝑑 do
4: Set 𝑙𝑖 to the ground-true label of sample 𝑥𝑖
5: Add (𝐺(𝑥𝑖), 𝑙𝑖) into 𝑔𝑒𝑛
6: end for
7: Obtain 𝑓𝜃′ by re-training 𝑓𝜃 on 𝑔𝑒𝑛 and 𝑣𝑎𝑙𝑖𝑑

Table 1
Detailed information of datasets and model architectures.

Dataset # of
labels

Input size # of images Model architecture

MNIST 10 28 × 28 × 1 70000 2 Dense+1 Flatten
GTSRB 43 32 × 32 × 3 51839 6 Conv+3 Pooling+4

Dropout+2 Dense
CIFAR-10 10 32 × 32 × 3 60000 8 Conv+3 Pooling+3

Dropout+1 Flatten+1
Dense

CIFAR-100 100 32 × 32 × 3 60000 Resnet-18

4. Evaluations

4.1. Experimental setup

To evaluate the performance of CoDefend, we perform extensive
experiments on four datasets, MNIST, GTSRB, CIFAR-10 and CIFAR-
100. The detailed information of the datasets and model architectures
are shown in Table 1.

As shown in Fig. 5, we apply four types of triggers in our ex-
periments, which have been used to successfully implement backdoor
attacks in [12,13] and also used to explore prior defense strategies [20,
23].

As the BadNet [12], we poison a DNN model by embedding the
triggers in the training dataset and modifying their corresponding labels
to the target label, with a poisoning ratio varying from [0.002, 0.01]. The
performance of the backdoored DNN is measured by CA and ASR. CA
calculates the probability of benign samples being classified correctly,
while ASR measures the probability of adversarial samples being mis-
classified into the target label. In our experiments, the backdoored DNN
achieves the ASR above 98% on poisoned inputs, while maintaining a
high CA on benign inputs (> 68%) (see Table 4).

4.2. Defense performance

In our experiments, we investigate the effectiveness of CoDefend
from the following aspects.

Backdoor Detection. Suppose a backdoored DNN model, a clean val-
idation dataset 𝑣𝑎𝑙𝑖𝑑 and a testing dataset 𝑡𝑒𝑠𝑡 are assumed to be
available to the defender. The experimental hyperparameters in the
STRIP-based backdoor detection step are listed in Table 2. The de-
tection capability is measured by using the following metrics: false
negative rate (FNR) and false positive rate (FPR). FNR is the probability
when the benign inputs are misclassified as the poisoned inputs, while
FPR is the probability that the poisoned inputs are recognized as the
benign inputs.

In our experiments, 𝑡𝑒𝑠𝑡 contains 500 clean samples and 500 poi-
soned samples. The sizes of both 𝑣𝑎𝑙𝑖𝑑 and 𝑝𝑜𝑖𝑠𝑜𝑛 are set to 500. To
ensure effective detection, needs to contain at least one sample
5

𝑐𝑙𝑒𝑎𝑛
Fig. 5. Triggers and their corresponding poisoned samples. Top row: Triggers. Bottom
row: Poisoned samples from datasets MNIST, GTSRB, CIFAR-10, and CIFAR-100.

Table 2
Experimental setting for backdoor detection.

Hyperparameter MNIST GTSRB CIFAR-10 CIFAR-100

Batch Size 128 32 64 64
Epochs 20 100 125 125
Learning Rate 0.001 [0.0001,0.001] [0.0003,0.001] [0.0003,0.001]

For GTSRB, the learning rate is initially set to 0.001 and reduced to be 0.0001 after
80 epochs; for CIFAR-10 and CIFAR-100, the learning rate is initially set to 0.001,
decreased to 0.0005 after 75 epochs, and further to 0.0003 after 100 epochs.

Table 3
Performance of STRIP-based backdoor detection.

Dataset Trigger N FNR FPR

MNIST Trigger A 100 0.1% 0%
GTSRB Trigger B 100 0.6% 0%
CIFAR-10 Trigger C 100 0.38% 0%
CIFAR-10 Trigger D 100 0.46% 0%
CIFAR-100 Trigger C 100 1.2% 0.8%
CIFAR-100 Trigger D 100 1.6% 1.2%

Baseline: SentiNet [20] that exploits the principal feature to detect backdoor triggers
is considered as the baseline work. For CIFAR-10 with Trigger C, the FNR and FPR of
SentiNet achieve 5.74% and 6.04%, respectively. However, SentiNet assumes that the
regions embedding the backdoor triggers are relatively small, but our detection method
works well without any assumption on backdoor triggers.

for each class. We choose 𝑁 = 100 distinct samples from 𝑣𝑎𝑙𝑖𝑑 to
construct 𝑐𝑙𝑒𝑎𝑛. For each testing sample 𝑡, we generate 𝑁 perturbed
samples ′

𝑡 by superposing 𝑡 on each sample in 𝑐𝑙𝑒𝑎𝑛. Then, we supply
′

𝑡 to the deployed DNN model and calculate its entropy by using
Eq. (4). The STRIP-based detection process requires only light-weighted
operations such as image perturbation and entropy calculation, and
thus can be implemented on thin devices in an effective way. In our
experiments, the STRIP-based detection is deployed on a PC machine
(Intel Core i5 3.2 GHz CPU and 8G RAM), which can be used to find
out backdoored samples from a set of 1000 inputs within 90 s.

According to the observation from Fig. 6, the entropy of the poi-
soned samples is far less than the benign samples. It confirms the
argument that the lower entropy of predictions suggests the higher
probability of the inputs being poisoned. Therefore, given an appro-
priate detection boundary, the poisoned testing data can be checked
out effectively. As shown in Table 3, the FNR and FPR is relatively low
under different settings, validating the effectiveness of STRIP.

Trigger Identification. For all datasets, we set the number of epochs
to 200, the initial learning rate to 0.0002 for the first 100 epochs, and
linearly decay it to 0 over the next 100 epochs in the CycleGAN-based
trigger identification. The sizes of both the poisoned testing dataset
 and the clean validation dataset are set to 500. This
𝑝𝑜𝑖𝑠𝑜𝑛 𝑣𝑎𝑙𝑖𝑑

Ad Hoc Networks 124 (2022) 102727Q. Liu et al.
Fig. 6. Entropy distribution of benign and poisoned samples. Triggers and datasets are: (a) Trigger A, MNIST; (b) Trigger B, GTSRB; (c) Trigger C, CIFAR-10; (d) Trigger D,
CIFAR-10; (e) Trigger C, CIFAR-100; (f) Trigger D, CIFAR-100.
Fig. 7. Benign samples and their corresponding poisoned versions. Top row: Benign samples from different datasets. Bottom row: Poisoned samples transformed by CycleGAN.
step runs CycleGAN to learn mapping functions between two domains
𝑝𝑜𝑖𝑠𝑜𝑛 and 𝑣𝑎𝑙𝑖𝑑 . At the end of this step, the clean samples learn
triggers embedded in the poisoned samples, generating 𝑔𝑒𝑛 that con-
tains poisoned samples and their ground-truth labels. To qualitatively
evaluate CoDefend, Fig. 7 shows a collection of backdoored images
generated by CycleGAN.

Model Mitigation. In this step, the sizes of both the poisoned but
correctly labeled dataset 𝑔𝑒𝑛 and the clean validation dataset 𝑣𝑎𝑙𝑖𝑑

are set to 500. We retrain the backdoored DNN for 100 epochs on 𝑣𝑎𝑙𝑖𝑑

and 𝑔𝑒𝑛. In our experiments, we adopt the CA and ASR as indicators
to investigate the effectiveness of the repatched model. As illustrated
in Table 4, the ASR declines sharply after model retraining, with only
minor negative influence on the CA. For example, the CA only drops
2% ∼ 3% when the ASR drops to near 0%.
6

Table 4
Performance of model mitigation.

Benchmark Before repatching After repatching

CA ASR CA ASR

MNIST(Trigger A) 98.70% 100% 98.62% 1.97%
GTSRB(Trigger B) 95.80% 100% 95.26% 2.06%
CIFAR-10(Trigger C) 88.27% 100% 87.18% 2.53%
CIFAR-10(Trigger D) 88.19% 100% 87.21% 1.66%
CIFAR-100(Trigger C) 70.46% 100% 69.35% 2.19%
CIFAR-100(Trigger D) 68.37% 100% 68.05% 3.47%

4.3. Efficacy on multiple-trigger BadNet

Inspired by the Neural Cleanse scheme, we further explore the
effectiveness of our CoDefend scheme against the latest backdoor attack
method: multiple triggers targeting the same label. In the experiments,

Ad Hoc Networks 124 (2022) 102727Q. Liu et al.
Table 5
Comparison with previous work.

Work Dataset &
Trigger

Black-box access Computation
overhead

Assumptions on
triggers

Training data Execution time Detection
capability

Neural Cleanse
[23]

CIFAR-10
(Trigger C)

Yes High Yes Access Long 89.18%CA and
18.53%ASR

Deep-Inspect
[25]

CIFAR-10
(Trigger C)

Yes High No Access Long 86.6%CA and
9.4%ASR

Gang-Sweep [28] CIFAR-10
(Trigger C)

Yes High No No Access Long 87.4%CA and
3.9%ASR

Fine-pruning
[30]

CIFAR-10
(Trigger C)

No High No Access Long 79.7%CA and
12.8%ASR

NNocu-lation
[27]

CIFAR-10
(Trigger C)

No High No No Access Long 87.52%CA and
9.31%ASR

CoDefend CIFAR-10
(Trigger C)

Yes Low No No Access Short 88.27%CA and
2.53%ASR

The first two indicators are used to measure the detection performance.
Fig. 8. The samples with multiple triggers transformed by CycleGAN.

we choose the CIFAR-10 dataset and adopt the model architecture as
shown in Table 1. We assume that the adversary implants multiple
triggers targeting the same label in a single model. In practice, we
randomly generate two distinct triggers for the same class and insert
them into a training dataset to simulate the backdoor attack. The
classification accuracy of the backdoored neural network model is
86.2% and the attack success rate reaches up to 100%. To validate
the effectiveness of our solution, we first adopt CoDefend to detect the
multiple-trigger BadNet. According to the observation, the minimum
entropy of benign images is always higher than the maximum entropy
of the trojaned images. From experiment results, we know that the
STRIP-based backdoor detection method can reduce both FNR and FPR
to nearly 0%. Then, we utilize CycleGAN to identify the embedded
triggers. Fig. 8 demonstrates the empirical results. Finally, we retrain
CoDefend with poisoned data and correct labels. The experiment results
show that the attack success rate of the repatched model drops to below
5%.

4.4. Comparisons with prior work

CoDefend defends against BadNets through backdoor detection, trig-
ger identification, and model mitigation. To validate its flexibility and
practicability, we compare the performance of CoDefend with existing
state-of-the-art defense solutions that also address the whole backdoor
defense procedure. Table 5 illustrates the comparison results performed
on CIFAR-10 with trigger C. In terms of defense capability, all de-
fense solutions exhibit similar performances, but CoDefend achieves the
lowest ASR.

Furthermore, the most obvious advantage of CoDefend is that it
gets rid of making assumptions on backdoor triggers and accessing
to the training dataset. In the meanwhile, unlike NNoculation and
GangSweep that requires the client to perform computation-intensive
task in the detection phase, our CoDefend allows the client to efficiently
detect BadNets. For example, NNoculation trains a reference model to
distinguish the poisoned samples from testing dataset for more than
10 min, while our CoDefend just takes 90 s to detect backdoor triggers
by STRIP-based detection. By implementing the detection step on thin
clients, the users can participate actively in the defense procedure.
7

5. Related work

Deep learning techniques are widely used for intrusion detection
in IoT and IIoT environments. Muder et al. [35] proposed a full-
automated intrusion detection system which utilized the multi-layered
recursive neural networks against cyber-attack in IoT environment.
Ge et al. [36] explored a feed-forward neural networks model for
binary and multi-class classification against the attacks in IoT devices.
However, there are hidden security dangers in neural networks, and the
most typical one is the backdoor attack. This section will introduce the
latest backdoor attacks and backdoor detection methods for the neural
networks.

5.1. Attacks

According to whether or not triggers are injected into training
datasets, current backdoor attacks on DNNs can be classified into the
following two types:

Poisoning-based Attacks. Gu et al. [12] was the first to construct
a BadNet, which poisoned the original training dataset to force the
backdoored DNN to misclassify the inputs stamped with a specific
trigger into the target label. Liu et al. [13] proposed Trojan attacks
on DNNs, which run a reverse engineering algorithm to generate train-
ing samples, without requiring access to the original training dataset.
Unlike BadNet that injected random triggers, the Trojan triggers were
designed to maximize the activation of specific neurons in the DNN.
The above attacks associated poisoned samples with target labels in
the training process. Shafahi et al. [14] proposed the first clean-label
attack where the attacker injected poisoned but correctly labeled data.
To initiate clean-label attacks in a more subtle way, Saha et al. [15]
generated hidden triggers through perturbation.

At present, the research of backdoor attacks were not just confined
to the field of computer vision. Kurita et al. [37] explored the backdoor
attacks against pre-trained language models by inserting some rare and
meaningless tokens, such as ‘‘ef’’. Chen et al. [38] further explored three
different types of triggers (i.e., char-level, word-level and sentence-
level triggers) that can lead to misclassification in natural language
processing. Zhai et al. [39] demonstrated that the speaker verification
can also be backdoored. The authors firstly grouped different speakers
based on their utterance’s similarities through K-means algorithm, and
then adopted a pre-defined utterance in different clusters to trigger
recognition errors.

Non-Poisoning-based Attacks. Tang et al. [16] proposed a TrojanNet,
which directly inserted a fraction of neurons into the target DNN model,
rather than retraining the target model on a poisoned training dataset.
Rakin et al. [17] proposed an advanced Target Bit Trojan attack, which
identified vulnerable neurons by the Trojan Bit Search method and
generated triggers by the Neural Gradient Ranking algorithm. CoDefend
is designed to defend DNNs against the poisoning-based attacks, where
a strong attacker is assumed to have full access to the training dataset,

beside white-box access to the DNN model.

Ad Hoc Networks 124 (2022) 102727Q. Liu et al.

s
c
t
k
n
p
t
p
a
t
s
a
t
e
d
p
o
a

T
w
e
g
t
m
a
N
u
e
l
D
p
a
m
a
t
N
o
t
d
h
o

M
b
L
f
g
‖

d
t
r
Y
o
w
s
f
B
t

5.2. Defenses

With regard to the sequence in implementation, the defense proce-
dure is divided into the following stages:

Backdoor Detection. Tran et al. [18] utilized the singularity of spectral
ignatures to detect backdoor attacks. Unlike [18] which required a
lean validation dataset, Chen et al. [19] proposed activation clus-
ering(AC) to effectively detect inputs embedded with triggers. The
ey intuition behind AC was based on the statistical heterogeneity of
euron activations between malicious and clean inputs. Chou et al. [20]
roposed SentiNet, which exploited the principal feature of determining
he classification result to detect backdoor triggers. Liu et al. [21]
roposed ABS to detect backdoored neurons by observing the aberrant
ctivation values on the DNN’s outputs. However, ABS assumed that
he number of compromised neurons is small. The above detection
olutions either made assumptions on backdoor triggers (e.g., SentiNet
ssumed that the embedded trigger is small enough) or required access
o clean-labeled training data. To make up for these limitations, Gao
t al. [22] proposed STRIP, which intentionally perturbed inputs and
etected triggers by observing the randomness of the corresponding
redicted classes. Hayase et al. [40] amplified the spectral signature
f corrupted data through robust covariance estimation so as to detect
nd remove the poisoned samples in an efficient way.

rigger Identification Wang et al. [23] proposed Neural Cleanse
hich utilized gradient optimization to reverse-engineer the possibly
mbedded triggers. Neural Cleanse was based on the intuition that,
iven a backdoored model, it required the minimal perturbations on
he inputs to transform their original labels to the target label. The
ain limitation of Neural Cleanse was that it became less effective

gainst triggers with increasing size. To improve the performance of
eural Cleanse, TABOR [24] designed a new objective function by
sing non-convex optimization and regularization technique in reverse-
ngineering triggers. To compensate for the limitation of heavy re-
iance on the access to training datasets, Chen et al. [25] proposed
eepInspect, the first black-box detection framework. DeepInspect ex-
loited model inversion to recover training datasets and employed
conditional GAN (cGAN) to learn backdoor triggers, requiring the
inimal prior knowledge of the DNN model. Qiao et al. [26] proposed
max-entropy staircase approximator algorithm to obtain the en-

ire distribution of high-dimensional triggers. Veldanda [27] proposed
Noculation, a two-stage defense method that exploited cycleGAN
n clean validation inputs and quarantined inputs to learn backdoor
riggers. Zhu et al. [28] proposed GangSweep that employed GAN to
etect a variety of new triggers, including multiple, translucent, or even
idden triggers. Aiken et al. [41] proposed mitigation strategies based
n synthetic trigger to remove backdoors.

odel Mitigation. Liu et al. [29] mitigated backdoor attacks in DNNs
y input anomaly detection, input preprocessing, and model retraining.
iu et al. [30] was the first to mitigate backdoors through pruning and
ine-tuning. However, the performance of the fine-tuning model was
uaranteed by a set of clean training data. Cheng et al. [31] applied
𝐿‖∞ in neuron pruning process to remove the backdoor from the back-
oored DNN. Zhao et al. [42] verified that a BadNet could be repaired
hrough the mode connectivity technique. However, their solution
equired the defender to know the neurons connections of the model.
oshida et al. [43] proposed the knowledge distillation algorithm to
vercome this limitation. Li et al. [44] proposed a novel defense frame-
ork Neural Attention Distillation based on transfer learning. Given a

mall clean validation dataset, a teacher network is used to guide the
ine-tuning of a backdoored student network. CoDefend aims to detect
adNets, recover backdoor triggers, and remedy the model, addressing
8

he entire backdoor defense procedure.
6. Conclusion

In this paper, we propose CoDefend, a novel framework against
backdoor attacks on DNNs. CoDefend employs STRIP and CycleGAN to
detect and identify backdoors with minimal knowledge about triggers
and DNN models. CoDefend enables thin devices to detect backdoors
in a quick and effective way, while offloading the burdensome task of
trigger identification and model mitigation to edge servers. Empirical
experiments on four datasets validate the high performance of CoDe-
fend. Compared with previous work, CoDefend has the following ad-
vantages: (1) Flexibility. It can detect backdoor triggers without access
to training datasets, while making minimal assumptions on backdoor
triggers. (2) Practicality. It allows thin devices with limited resources
to actively participate in the defense procedure. CoDefend represents a
promising step towards secure outsourced training procedure of DNNs.

Nevertheless, CoDefend has similar limitations as Neural Cleanse
and STRIP. It shows confined effectiveness during detecting the source-
label-specific triggers, and may cause misclassification when the trig-
gers are stamped on the specific classes. As part of our future work,
we will try to improve the detection performance of CoDefend to fix
this problem. In the meanwhile, we will further explore the backdoor
detection methods in other domains and try to implement our CoDefend
in text and voice domains, in addition to the vision domain.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by NSFC grants 61632009,
61872133, and 61872130; NSF grants CNS 1824440, CNS 1828363,
CNS 1757533, CNS 1629746, and CNS 1651947; the CERNET In-
novation Project (NGII20190409); the Guangdong Provincial Natural
Science Foundation (No. 2017A030308006), and the Hunan Provincial
Natural Science Foundation of China (Grant No. 2020JJ3015).

References

[1] Y. Adi, C. Baum, M. Cisse, B. Pinkas, J. Keshet, Turning your weakness into
a strength: watermarking deep neural networks by backdooring, in: Proc. of
USENIX Security, 2018.

[2] J. Chen, X. Ran, Deep learning with edge computing: A review, Proc. IEEE
(2019).

[3] M. Ribeiro, K. Grolinger, M.A. Capretz, Mlaas: Machine learning as a service, in:
Proc. of ICMLA, 2015.

[4] Caffe Model Zoo. https://github.com/BVLC/caffe/wiki/Model-Zoo..
[5] BigML. https://bigml.com.
[6] J. Wang, L. Wang, Y. Song, Crowd-machine hybrid urban sensing and computing,

Computer (2021).
[7] Q. Liu, P. Hou, G. Wang, T. Peng, S. Zhang, Intelligent route planning on large

road networks with efficiency and privacy, J. Parallel Distrib. Comput. (2019).
[8] Q. Liu, Y. Peng, J. Wu, T. Wang, G. Wang, Secure multi-keyword fuzzy searches

with enhanced service quality in cloud computing, IEEE Trans. Netw. Serv.
Manag. (2020).

[9] Q. Liu, Y. Peng, S. Pei, J. Wu, T. Peng, G. Wang, Prime inner product
encoding for effective wildcard-based multi-keyword fuzzy search, IEEE Trans.
Serv. Comput. (2020).

[10] Q. Liu, Y. Tian, J. Wu, T. Peng, G. Wang, Enabling verifiable and dynamic ranked
search over outsourced data, IEEE Trans. Serv. Comput. (2019).

[11] Q. Liu, G. Wang, F. Li, S. Yang, J. Wu, Preserving privacy with probabilistic
indistinguishability in weighted social networks, IEEE Trans. Parallel Distrib.
Syst. (2016).

[12] T. Gu, K. Liu, B. Dolan-Gavitt, S. Garg, BadNets: Evaluating backdooring attacks
on deep neural networks, IEEE Access (2019).

[13] Y. Liu, S. Ma, Y. Aafer, W.C. Lee, J. Zhai, W. Wang, X. Zhang, Trojaning attack
on neural networks, in: Proc. of NDSS, 2018.

[14] A. Shafahi, W.R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, T. Goldstein,
Poison frogs! Targeted clean-label poisoning attacks on neural networks, in: Proc.

of NIPS, 2018.

http://refhub.elsevier.com/S1570-8705(21)00216-X/sb2
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb2
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb2
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://bigml.com
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb6
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb6
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb6
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb7
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb7
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb7
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb8
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb8
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb8
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb8
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb8
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb9
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb9
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb9
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb9
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb9
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb10
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb10
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb10
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb11
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb11
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb11
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb11
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb11
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb12
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb12
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb12

Ad Hoc Networks 124 (2022) 102727Q. Liu et al.
[15] A. Saha, A. Subramanya, H. Pirsiavash, Hidden trigger backdoor attacks, in: Proc.
of AAAI, 2020.

[16] R. Tang, M. Du, N. Liu, F. Yang, X. Hu, An embarrassingly simple approach for
trojan attack in deep neural networks, in: Proc. of SIGKDD, 2020.

[17] A.S. Rakin, Z. He, D. Fan, TBT: Targeted neural network attack with bit trojan,
in: Proc. of CVPR, 2020.

[18] B. Tran, J. Li, A. Madry, Spectral signatures in backdoor attacks, in: Proc. of
NIPS, 2018.

[19] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee, B. Srivastava,
Detecting backdoor attacks on deep neural networks by activation clustering, in:
Proc. of AAAI, 2019.

[20] E. Chou, F. Tramer, G. Pellegrino, D. Boneh, SentiNet: detecting physical attacks
against deep learning systems, 2018, arXiv preprint arXiv:1812.00292.

[21] Y. Liu, W.C. Lee, G. Tao, S. Ma, Y. Aafer, X. Zhang, ABS: Scanning neural
networks for backdoors by artificial brain stimulation, in: Proc. of CCS, 2019.

[22] Y. Gao, C. Xu, D. Wang, S. Chen, D.C. Ranasinghe, S. Nepal, STRIP: A defence
against trojan attacks on deep neural networks, in Proc. of ACSAC, 2019.

[23] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, B.Y. Zhao, Neural
cleanse: Identifying and mitigating backdoor attacks in neural networks, in: Proc.
of S & P, 2019.

[24] W. Guo, L. Wang, X. Xing, M. Du, D. Song, Tabor: a highly accurate approach
to inspecting and restoring trojan backdoors in AI systems, 2019, arXiv preprint
arXiv:1908.01763.

[25] H. Chen, C. Fu, J. Zhao, F. Koushanfar, DeepInspect: A black-box trojan detection
and mitigation framework for deep neural networks, in: Proc. of IJCAI, 2019.

[26] X. Qiao, Y. Yang, H. Li, Defending neural backdoors via generative distribution
modeling, in: Proc. of NIPS, 2019.

[27] A.K. Veldanda, K. Liu, B. Tan, P. Krishnamurthy, F. Khorrami, R. Karri, S. Garg,
NNoculation: broad spectrum and targeted treatment of backdoored DNNs, 2020,
arXiv preprint arXiv:2002.08313.

[28] L. Zhu, R. Ning, C. Wang, C. Xin, H. Wu, GangSweep: Sweep out neural
backdoors by Gan, in: Proc. of ACM MM, 2020.

[29] Y. Liu, Y. Xie, A. Srivastava, Neural trojans, in: Proc. of ICCD, 2017.
[30] K. Liu, B. Dolan-Gavitt, S. Garg, Fine-pruning: Defending against backdooring

attacks on deep neural networks, in: Proc. of RAID, 2018.
[31] H. Cheng, K. Xu, S. Liu, P.Y. Chen, P. Zhao, X. Lin, Defending against backdoor

attack on deep neural networks, 2020, arXiv preprint arXiv:2002.12162.
[32] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, Y.

Bengio, Generative adversarial networks, 2014, arXiv preprint arXiv:1406.2661.
[33] J.Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using

cycle-consistent adversarial networks, in: Proc. of ICCV, 2017.
[34] L. Bottou, Stochastic gradient descent tricks, in: Neural Networks: Tricks of the

Trade, 2012.
[35] M. Almiani, A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, A. Razaque, Deep

recurrent neural network for IoT intrusion detection system, Simul. Model. Pract.
Theory (2020).

[36] M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, A. Robles-Kelly, Deep learning-based
intrusion detection for iot networks, in: Proc. of PRDC, 2019.

[37] K. Kurita, P. Michel, G. Neubig, Weight poisoning attacks on pre-trained models,
2020, arXiv preprint arXiv:2004.06660.

[38] X. Chen, A. Salem, M. Backes, S. Ma, Y. Zhang, Badnl: backdoor attacks against
nlp models, 2020, arXiv preprint arXiv:2006.01043.

[39] T. Zhai, Y. Li, Z. Zhang, B. Wu, Y. Jiang, S.T. Xia, Backdoor attack against
speaker verification, in: Proc. of ICASSP, 2021.

[40] J. Hayase, W. Kong, R. Somani, S. Oh, SPECTRE: defending against backdoor
attacks using robust statistics, 2021, arXiv preprint arXiv:2104.11315.

[41] W. Aiken, H. Kim, S. Woo, J. Ryoo, Neural network laundering: Removing
black-box backdoor watermarks from deep neural networks, Comput. Secur.
(2021).

[42] P. Zhao, P.Y. Chen, P. Das, K.N. Ramamurthy, X. Lin, Bridging mode connectivity
in loss landscapes and adversarial robustness, 2020, arXiv preprint arXiv:2005.
00060.

[43] K. Yoshida, T. Fujino, Disabling backdoor and identifying poison data by using
knowledge distillation in backdoor attacks on deep neural networks, in: Proc. of
the AISec, 2020.

[44] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, X. Ma, Neural attention distillation:
erasing backdoor triggers from deep neural networks, 2021, arXiv preprint
arXiv:2101.05930.

Qin Liu received her B.Sc. in Computer Science in 2004
from Hunan Normal University, China, received her M.Sc.
in Computer Science in 2007, and received her Ph.D. in
Computer Science in 2012 from Central South University,
China.She has been a Visiting Student at Temple University,
USA. Her research interests include security and privacy
issues in cloud computing. Now, she is an Associate Pro-
fessor in the College of Computer Science and Electronic
Engineering at Hunan University, China.
9

Liqiong Chen received her B.Sc. in Computer Science in
2019 from Fujian Normal University, China. Currently, she
is pursuing the M.Sc. degree in the College of Computer
Science and Electronic Engineering at Hunan University,
China. Her research interests include security and privacy
issues in artificial intelligence.

Hongbo Jiang received the Ph.D. degree from Case Western
Reserve University, in 2008. After that, he joined the faculty
of the Huazhong University of Science and Technology
as a full professor and the dean of the Department of
Communication Engineering. Now, he is a full professor
with the College of Computer Science and Electronic Engi-
neering, Hunan University. His research concerns computer
networking, especially algorithms and protocols for wireless
and mobile networks.He is serving as an editor for the
IEEE/ACM Transactions on Networking, associate editor for
the IEEE Transactions on Mobile Computing, and associate
technical editor for the IEEE Communications Magazine.

Jie Wu is the Chair and a Laura H. Carnell Professor in
the Department of Computer and Information Sciences at
Temple University, Philadelphia, PA, USA. Prior to joining
Temple University, he was a Program Director at the Na-
tional Science Foundation and a Distinguished Professor at
Florida Atlantic University. His current research interests
include mobile computing and wireless networks, routing
protocols, cloud and green computing, network trust and se-
curity, and social network applications. Dr. Wu has regularly
published in scholarly journals, conference proceedings, and
books. He serves on several editorial boards, including IEEE
TRANSACTIONS ON SERVICE COMPUTING, and Journal of
Parallel and Distributed Computing. Dr. Wu was general co-
chair/chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE
ICDCS 2013, and ACM MobiHoc 2014, as well as program
co-chair for IEEE INFOCOM 2011 and CCF CNCC 2013. He
was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical
Committee on Distributed Processing (TCDP). Dr. Wu is a
CCF Distinguished Speaker and a Fellow of the IEEE. He is
the recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.

Tian Wang received his B.Sc. and M.Sc. degrees in Com-
puter Science from Central South University in 2004 and
2007. He received his Ph.D. degree at the City University of
Hong Kong in 2011. Currently, he is a joint professor at the
Institute of Artificial Intelligence and Future Networks, Bei-
jing Normal University & UIC, China. His research interests
include the internet of things, edge computing, and artificial
intelligence.

Tao Peng received the B.Sc. in Computer Science from
Xiangtan University, China, in 2004, the M. Sc. in Circuits
and Systems from Hunan Normal University, China, in 2007,
and the Ph.D. in Computer Science from Central South
University, China, in 2017. Now, she is an Associate Profes-
sor of School of Computer Science and Cyber Engineering,
Guangzhou University, China. Her research interests include
network and information security issues.

http://arxiv.org/abs/1812.00292
http://arxiv.org/abs/1908.01763
http://arxiv.org/abs/2002.08313
http://arxiv.org/abs/2002.12162
http://arxiv.org/abs/1406.2661
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb35
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb35
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb35
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb35
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb35
http://arxiv.org/abs/2004.06660
http://arxiv.org/abs/2006.01043
http://arxiv.org/abs/2104.11315
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb41
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb41
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb41
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb41
http://refhub.elsevier.com/S1570-8705(21)00216-X/sb41
http://arxiv.org/abs/2005.00060
http://arxiv.org/abs/2005.00060
http://arxiv.org/abs/2005.00060
http://arxiv.org/abs/2101.05930

Ad Hoc Networks 124 (2022) 102727Q. Liu et al.
Guojun Wang received B.Sc. degree in Geophysics, M.Sc.
degree in Computer Science, and Ph.D. degree in Com-
puter Science, at Central South University, China, in 1992,
1996, 2002, respectively. He is a Pearl River Scholarship
Distinguished Professor of Higher Education in Guangdong
Province, a Doctoral Supervisor and Vice Dean of School
of Computer Science and Cyber Engineering, Guangzhou
University, China, and the Director of Institute of Computer
Networks at Guangzhou University. He has been listed
in Chinese Most Cited Researchers (Computer Science) by
10
Elsevier in the past six consecutive years (2014–2019). His
research interests include artificial intelligence, big data,
cloud computing, Internet of Things (IoT), blockchain, trust-
worthy/dependable computing, network security, privacy
preserving, recommendation systems, and smart cities. He
is a Distinguished Member of CCF, a Member of IEEE, ACM
and IEICE.

	A collaborative deep learning microservice for backdoor defenses in Industrial IoT networks
	Introduction
	Preliminaries
	Deep neural network
	CycleGAN
	Shannon entropy

	The CoDefend framework
	Threat model
	Overview of CoDefend
	User-side defenses
	Edge-side defenses

	Evaluations
	Experimental setup
	Defense performance
	Efficacy on multiple-trigger BadNet
	Comparisons with prior work

	Related work
	Attacks
	Defenses

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

