
Computer Networks 252 (2024) 110676

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Spatio-temporal graph learning: Traffic flow prediction of mobile edge
computing in 5G/6G vehicular networks
Chao Song a,∗, Jie Wu b, Kunyang Xian a, Jianfeng Huang a, Li Lu a

a School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
b Department of Computer and Information Sciences, Temple University, United States of America

A R T I C L E I N F O

Dataset link: https://ieee-dataport.org/open-ac
cess/crawdad-romataxi

Keywords:
5G/6G vehicular networks
Graph neural network
Mobile edge computing

A B S T R A C T

Mobile Edge Computing (MEC) is a key technology that emerged to address the increasing computational
demands and communication requirements of vehicular networks. It is a form of edge computing that brings
cloud computing capabilities closer to end-users, specifically within the context of vehicular networks, which
are part of the broader Internet of Vehicles (IoV) ecosystem. However, the dynamic nature of traffic flows
in MEC in 5G/6G vehicular networks poses challenges for accurate prediction and resource allocation when
aiming to provide edge service for mobile vehicles. In this paper, we present a novel approach to predict the
traffic flow of MEC in 5G/6G vehicular networks using graph-based learning. In our framework, MEC servers
in vehicular networks are construed as nodes to construct a dynamic similarity graph and a dynamic transition
graph over a duration of multiple days. We utilize Graph Attention Networks (GAT) to learn and fuse the node
embeddings of these dynamic graphs. A transformer model is subsequently employed to predict the vehicle
frequency accessing the edge computing services for the next day. Our experimental results have shown that
the model achieves high accuracy in predicting edge service access volumes with low error metrics.
1. Introduction

With the rapid development of communication technology, 5G/6G
networks have become increasingly prominent in various fields, es-
pecially in vehicular networks [1–3]. The application of 5G/6G in
vehicular networks not only provides high-speed data transmission
but also ensures the security and virtualization of information, which
is crucial in the current intelligent and autonomous driving era. As
a significant part of this advanced network, edge computing service
plays an indispensable role [4,5]. Mobile Edge Computing (MEC) is a
key technology that emerged to address the increasing computational
demands and communication requirements of vehicular networks. It
is a form of edge computing that brings cloud computing capabili-
ties closer to end-users, specifically within the context of vehicular
networks, which are part of the broader Internet of Vehicles (IoV)
ecosystem. It allows for the processing of massive amounts of data
generated by vehicles at the edge of the network, reducing latency,
saving bandwidth, and enhancing user experience.

Traffic flow prediction is a critical component of MEC in vehicular
networks. It allows for proactive resource management, improved ser-
vice quality, and better support for the growing ecosystem of connected
vehicle services. The integration of traffic flow prediction into MEC

∗ Corresponding author.
E-mail addresses: chaosong@uestc.edu.cn (C. Song), jiewu@temple.edu.cn (J. Wu), xiankunyang@std.uestc.edu.cn (K. Xian),

huangjianfeng@std.uestc.edu.cn (J. Huang), luli2009@uestc.edu.cn (L. Lu).

systems is a key enabler for the development of smart transportation
systems and the realization of the full potential of the Internet of
Vehicles (IoV). Fig. 1 illustrates an example of edge service nodes with
visiting vehicles across a city map in 5G/6G vehicular networks. The
time axis represents a series of days, and for each day, a snapshot
is provided. However, accurately predicting the traffic flow for edge
computing remains a challenge due to the dynamic nature of vehicular
networks. The problem of traffic flow prediction for edge computing
service refers to the challenge of accurately forecasting the resource
requirements and service demands of edge computing applications in
the context of vehicular networks. Varying mobility patterns and traffic
scenarios make it difficult to accurately predict the computing demands
of applications.

In vehicular networks, MEC servers exhibit spatio-temporal sim-
ilarities based on the accessing vehicles. MEC servers that are geo-
graphically near to each other may serve similar types of vehicles and
therefore have similar data patterns. For example, MEC servers on high-
ways may receive more commercial vehicles and deliver similar kinds
of high-speed-related services. Depending on the time of day or event,
MEC servers may experience similar patterns in usage. For example,
during rush hours, MEC servers in urban areas might process more
https://doi.org/10.1016/j.comnet.2024.110676
Received 15 March 2024; Received in revised form 22 May 2024; Accepted 26 July
vailable online 31 July 2024
389-1286/© 2024 Elsevier B.V. All rights are reserved , including those for text and
2024

 data mining , AI training , and similar technologies.

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
https://ieee-dataport.org/open-access/crawdad-romataxi
mailto:chaosong@uestc.edu.cn
mailto:jiewu@temple.edu.cn
mailto:xiankunyang@std.uestc.edu.cn
mailto:huangjianfeng@std.uestc.edu.cn
mailto:luli2009@uestc.edu.cn
https://doi.org/10.1016/j.comnet.2024.110676
https://doi.org/10.1016/j.comnet.2024.110676
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110676&domain=pdf

C. Song et al. Computer Networks 252 (2024) 110676
Fig. 1. An example of mobile edge computing in vehicular networks.
data related to route optimization to provide alternate routes and traffic
updates. The traditional solution to predict the vehicular traffic flows
uses time series prediction method. [6] models the univariate traffic
condition data streams as seasonal ARIMA (AutoRegressive Integrated
Moving Average) processes based on historical data. Regression models
like linear regression, polynomial regression, and logistic regression
can be used to establish a relationship between the dependent variable
(demand) and one (or more) independent variables (features), in order
to predict future demands. [7] proposes a spatio-temporal variable
selection-based support vector regression (VS-SVR) model trained with
the high-dimensional traffic data collected from all available road
segments. Artificial Neural Networks can learn the relationship between
inputs and outputs through training and are ideally suited for predic-
tion tasks. Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) are widely used to forecast edge computing service de-
mands based on previous demands and other parameters. [8] proposes
a CNN-based multi-feature predictive model that collectively predicts
network-scale traffic flow with multiple spatio-temporal features.

In this paper, we propose an approach using graph learning to
predict traffic flow of MEC in vehicular networks by considering both
the spatial and temporal similarities. In the context of 5G/6G vehicu-
lar networks, to demonstrate the similarities among the edge service
nodes, we construct a dynamic similarity graph over multiple days.
To illustrate the temporal correlation between MEC servers, a dynamic
transition graph is constructed, which captures the sequential interac-
tions between nodes, representing the flow of vehicles from one edge
service node to another over time. Then, we utilize Graph Attention
Networks (GAT) to calculate two different node embeddings for these
two dynamic graphs. These two node embeddings are fused together,
and transmitted to a Transformer model for the traffic flow prediction
of MEC in vehicular networks. Our experimental results demonstrate
that the model achieves high accuracy in predicting edge service access
volumes with low error metrics. Our contributions are multi-folds as
follows:

• We analyze the spatio-temporal correlations among the MEC
servers, and construct a dynamic similarity graph and a dynamic
transition graph.

• We propose a GAT-Transformer method to process these dynamic
graphs for the traffic flow prediction at MEC.

• We experiment the proposed method under the scenario with
real-world data and compared with different algorithms.

The rest of the paper is organized as follows: Section 2 surveys
the related work. Section 3 introduces preliminaries and the models of
graphs. Section 4 presents the algorithms using GAT and Transformer.
Section 5 evaluates our algorithms, and Section 6 concludes this paper.
2
2. Related work

5G/6G vehicular networks: A survey in [9] discusses current
advancements in autonomous vehicles (AVs), automation levels, en-
abling technologies, and the requirements of 5G networks. It focuses
on emerging technologies enabling the integration of 5G with AVs,
the impact of 5G and beyond for AVs, and the envisaged security
concerns in AVs. Sahrish Khan Tayyaba et al. in [10] address the
limitations of current cellular technology and vehicular networks in
satisfying the demands of vehicular network resource management.
They discusses the application of machine learning for improving radio
access in 5G vehicular networks. Xiang Cheng et al. in [11] introduce
recent advanced techniques and important applications in vehicular
communications and networking, focusing on the combination and in-
tegration of Vehicular Communication Networks (VCN) and connected
vehicles. Md. Noor-A-Rahim et al. in [12] provide an overview of recent
advances of machine learning in 6G vehicular networks, discussing
the strengths, open challenges, maturity, and enhancing areas of these
technologies. Hongzhi Guo in [2] predicts that 6G will be a key
driving force for information interaction and social life after 2030,
with characteristics such as AI-driven, highly dynamic, and extremely
heterogeneous networks. Weijing Qi in [13] explores the concept of
edge intelligence (EI) in 6G, combining artificial intelligence (AI) with
mobile edge computing (MEC) to enhance the potential of edge-side
data in vehicular networks.

Edge computing in vehicular networks: In the domain of vehic-
ular networks, the integration of edge computing services has emerged
as a pivotal approach to address the increasing computational demands
of connected vehicles. The references provided offer a comprehensive
overview of the current research and development in this field. The
survey in [4] provides a detailed analysis of vehicular edge computing,
emphasizing the benefits of mobile edge computing (MEC) in enhancing
vehicular network performance. Hong Zhong et al. in [14] present
secure edge computing framework for video reporting services in 5G-
enabled vehicular networks, addressing critical security and privacy
concerns. Another study [15] explores the application of distributed
federated learning and network slicing for efficient resource allocation,
aiming to improve quality of service (QoS). Lastly, [5] envisions the fu-
ture of edge computing in 6G networks, focusing on the customization
of services to meet the diverse and personalized needs of vehicles.

Machine learning (ML) in vehicular networks: The integration of
machine learning (ML) in vehicular networks has emerged as a signifi-
cant research area, offering innovative solutions to address the complex
challenges of traffic management, security, and data processing works
in this area range. From the comprehensive survey in [16] by Ye et al.
which explores the potential of ML in solving various problems in
vehicular networks. To the security-focused survey in [17] by Talpur
and Gurusamy, which delves into the use of ML for enhancing security,

C. Song et al.

c
c
p
p
m
r
e
c
p
t
t
p
w
s
r
a
i
a
a
p
a
f
a
J
o
n
o

3
u

c
t
c
t
t

3

t
r
t

Computer Networks 252 (2024) 110676
Table 1
Main notations.

Notation Description

𝑣𝑖 ∈ 𝑉 The 𝑖th vehicle in the set.
𝑛 = |𝑉 | Number of mobile vehicles.
𝑠𝑖 ∈ 𝑆 The 𝑗th MEC server in the set.
𝑚 = |𝑆| Number of MEC servers.
𝑅 Wireless communication range of vehicle.
𝑘 Number of days for historical data.
𝑉 𝑡
𝑖 The visiting set of vehicles at MEC server 𝑠𝑖 during the day 𝑡.

𝐺𝑆 = {𝐺1
𝑆 , 𝐺

2
𝑆 ,…} The dynamic similarity graph.

𝐺𝑇 = {𝐺1
𝑇 , 𝐺

2
𝑇 ,…} The dynamic transition graph.

𝜏𝑆 , 𝜏𝑇 The thresholds in similarity graph and transition graph.

these works highlight the versatility of ML in this domain. The research
in [18] by Boukerche and Wang offers a detailed analysis of ML-based
traffic prediction models, crucial for the development of Intelligent
Transportation Systems. In [19], the research on IoV-based vehicular
networks and the application of tree-based ML strategies for traffic
management demonstrate the practical implications of ML in improving
the efficiency and safety of vehicular networks.

Traffic flow prediction in vehicular networks: MEC provides
omputational resources at the edge of the network, close to the vehi-
les. Traffic flow prediction models can utilize these edge resources to
rocess real-time data, such as vehicle positions, speeds, and routes, to
redict future traffic conditions. This enables dynamic traffic manage-
ent strategies, such as adjusting traffic signals or providing alternate

oute suggestions to drivers. Peng Sun et al. in [20] investigate the
ffectiveness of various machine learning based prediction models by
onsidering both prediction accuracy and computational time cost, and
resent rigorous quantitative analysis to identify the important factors
hat may restrict the use of ML-based prediction models to support real-
ime services in the IoV environment. Hani M. Alnami et al. in [21]
ropose a system for predicting traffic flow in a VANET environment
here vehicles on a highway segment form a cluster with a lead vehicle

erving as the cluster head. The cluster head uses beacon information
eceived from the vehicles in its cluster to determine the occupancy
nd the average speed in the corresponding segment and sends this
nformation to the Roadside Unit (RSU) to be used in the prediction of
bnormal traffic flow. Azzedine F. M. Boukerche et al. in [22] develop
traffic flow prediction solution consisting of three parts: a hybrid

rediction model based on a Graph Convolutional Network (GCN) and
Recurrent Neural Network (RNN), which can extract spatial–temporal

eatures from a dataset, a prediction strategy for multi-step prediction
nd an efficient training strategy for prediction on large-scale networks.
ian Chen et al. in [23] propose a graph convolution network based
n node connection strength matrix to predict the traffic flow of the
ode, and a dynamics extractor for learning the various characteristics
f traffic flow.

. Spatio-temporal similarities of mobile edge computing in vehic-
lar networks

In this section, we first introduce the scenario of mobile edge
omputing (MEC) in vehicular networks, and then discuss the spatio-
emporal similarities of traffic flows among MEC servers. Last, we
onstruct a dynamic similarity graph and a dynamic transition graph
o model these spatio-temporal similarities. The main notations used in
his paper are listed in Table 1.

.1. Scenario

Mobile Edge Computing (MEC) is a key technology that has emerged
o address the increasing computational demands and communication
equirements of vehicular networks. It is a form of edge computing
hat brings cloud computing capabilities closer to end-users, specifically
3
within the context of vehicular networks, which are part of the broader
Internet of Vehicles (IoV) ecosystem. In vehicular networks, MEC en-
hances the performance of various applications by reducing latency,
saving bandwidth, and improving the overall quality of service (QoS).
MEC servers are deployed at the edge of the network, often in close
proximity to vehicles, such as at road-side units (RSUs) or base stations.
In the scenario of edge computing in vehicular networks, we have a
network of 𝑛 mobile vehicles equipped with wireless communication
capabilities with a transmission range denoted by 𝑅 which is set to
500 meters in our experiments [24,25]. These vehicles are constantly
traveling and interacting with each other, forming a dynamic network
topology. Additionally, we have 𝑚 MEC servers strategically distributed
throughout the network, which act as compute and storage resources.

Each vehicle in the network has a unique identifier, typically a
Vehicle ID (VID). This ID is used to track the vehicle’s interactions with
the MEC servers. The MEC servers should be configured to capture and
store access records. This includes setting up the necessary software
and hardware components to handle the incoming data from vehicles.
When a vehicle interacts with an MEC server, the server captures the
Vehicle ID along with relevant metadata. This metadata may include
the time of interaction, the type of service requested, the duration of the
interaction, and any data transmitted. Each interaction is timestamped
to record the exact time the vehicle accessed the MEC server. This
is crucial for analyzing traffic patterns and ensuring that records are
accurate. As shown in Fig. 2, the visiting sets of the two MEC servers
are {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and {𝑣1, 𝑣2}, respectively. The visiting set of MEC
server 𝑠𝑖 during the day 𝑡 is the set of mobile vehicles which have
accessed to 𝑠𝑖 during the day 𝑡, and is denoted by 𝑉 𝑡

𝑖 .

3.2. Motivation

For the purpose of investigating the interconnectivity among edge
service nodes within vehicular networks leveraging edge computing,
we have the CRAWDAD roma/taxi dataset1 for our analysis. This
dataset meticulously records the movement patterns of taxis within
the city of Rome, providing a rich source of real-world data for our
study. Each entry in the dataset corresponds to a taxi’s location at a
specific timestamp. The trajectories are sorted by timestamp, offering
a temporal sequence of the taxis’ positions. Fig. 3(a) shows the records
of these taxis’ locations. We randomly select 𝑚 taxis’ positions as the
locations of MEC servers. This dataset serves as a valuable resource
for our research, as it allows us to analyze the spatial and temporal
dynamics of vehicular movement in a dense urban environment.

3.2.1. Spatial similarity
Spatial similarity between MEC servers refers to the geographical

proximity of these servers in the network. Two MEC servers are consid-
ered spatially similar if they are located physically close to each other.
It is assumed that neighboring servers may have similar characteristics
due to shared environmental factors and similar user behaviors. Thus,
spatial similarity can be valuable in predicting accessing frequency.

In our study, we conducted an analysis to explore the correlation
between the distance of edge service nodes and the similarity of vehi-
cles visiting them daily. Utilizing the dataset, we aggregated the visiting
sets of MEC servers on a daily basis and calculated the Jaccard index
or Jaccard similarity [26] among them. Additionally, we measured
the pairwise distances between edge service nodes. By compiling these
records over 30 days, we categorized the distances into several intervals
and analyzed the distribution of similarity across these intervals, with
distance as the 𝑥-axis and similarity as the 𝑦-axis. The results under
20 MEC servers and 50 MEC servers are visualized using a box-plot
as shown in Figs. 3(b) and 3(d), respectively. Each box represents the
distribution of similarity within a specific distance interval. The black

1 https://ieee-dataport.org/open-access/crawdad-romataxi

https://ieee-dataport.org/open-access/crawdad-romataxi

C. Song et al. Computer Networks 252 (2024) 110676
Fig. 2. The scenario of a vehicular network with edge computing.
Fig. 3. Spatio-temporal similarities of traffic flows at MEC.
dots within the boxes indicate outliers, which are instances of unusually
high similarity. The bottom and top of each box correspond to the
first (Q1) and third (Q3) quartiles of the data, respectively, while the
whiskers extend to the maximum and minimum values. The median is
represented by the red line, and the mean is indicated by the blue line.

According to the results under 20 and 50 MEC servers, we notice
that as the distance between MEC servers increases, the similarity of
the vehicles visiting them tends to decrease. This trend suggests that
vehicles are more likely to visit MEC servers that are geographically
closer to each other, which is consistent with the expectation that prox-
imity facilitates easier and more frequent interactions. This insight is
valuable for network planners and service providers, as it can guide the
strategic placement of MEC servers to optimize network efficiency and
enhance the user experience in vehicular networks. By understanding
the relationship between distance and similarity, we can better predict
vehicle movement and edge services according to the needs of the
vehicular ecosystem.

3.2.2. Temporal similarity
Temporal similarity among MEC servers refers to the similarity of

their services pattern over time. In other words, two MEC servers are
considered to have temporal similarity if their pattern of providing
services to mobile vehicles follows a similar trend over time. In our
4
research, we have delved into the temporal correlations between edge
service nodes within vehicular networks by analyzing the dataset pro-
vided. We focused on the probability distribution of vehicle transitions
from one edge service node to the next, aggregating the data on a
daily basis to observe the distribution of traffic flow between these
nodes. To visualize this data, we employed a Sankey diagram shown in
Figs. 3(c) and 3(e), which illustrates the flow of traffic between nodes
over a period of six consecutive days with 20 and 50 MEC servers,
respectively. The diagram arranges the 𝑚 MEC servers in a columnar
format, with each server represented by a distinct color. The lines con-
necting the nodes across columns signify the traffic flow on a given day,
thus providing a comprehensive view of the transition patterns over
the six-day period. The Sankey diagram reveals a consistent pattern
in the traffic flow between edge service nodes on a daily basis. This
consistency suggests that there are predictable and recurring traffic
patterns within the vehicular network, which could be attributed to
factors such as regular commuting routes, event-driven traffic, or the
inherent structure of the road network.

Moreover, we calculate the Kullback–Leibler (KL) divergence [27]
to analyze the transition probabilities between edge service nodes over
time. For each day, a transition probability matrix is constructed to
represent the likelihood of vehicles moving from one edge service node
to another. This is done by calculating the probability of transition for

C. Song et al.

S

u
c
𝑠

S

l
e
t
d
e
i
s
f
t
s
o
a
n
a
c
a
𝐺
A
t
T
f
r
t
T
v
s
t

Computer Networks 252 (2024) 110676
each pair of nodes, considering the traffic data collected for that day.
The resulting matrix for day 𝑡 is denoted as 𝑃𝑡. The KL divergence,
a measure of the difference between two probability distributions, is
computed between consecutive days’ transition probability matrices.
Specifically, the KL divergence between 𝑃𝑡 and 𝑃𝑡+1 is calculated as
𝐷𝐾𝐿(𝑃𝑡 ∥ 𝑃𝑡+1). This value quantifies how much one distribution
diverges from the other, which in this context, reflects the change
in traffic patterns from one day to the next. A line graph is then
created to visualize the KL divergence over time. The horizontal axis
(𝑥-axis) represents the days, and the vertical axis (𝑦-axis) represents
the Kullback–Leibler Divergence values. Each point on the graph cor-
responds to the KL divergence for a specific day, providing a visual
representation of the changes in traffic transitions. The results of the
KL divergence over time are shown in Fig. 3(f). The average KL di-
vergences under 10, 20 and 50 MEC servers are 0.096, 0.062 and
0.068, respectively. We notice that the low values of KL divergences
imply similar distributions of transition probabilities over time, which
reveal the temporal similarities of traffic flows at the MEC servers over
multiple days.

3.3. Dynamic similarity graph

To model the similarity between edge service nodes, we construct
a dynamic similarity graph, denoted as 𝐺𝑆 = (𝑆,𝐸𝑆), where 𝑆 and
𝐸𝑆 represent the sets of vertexes and edges. The dynamic similarity
graph is composed of daily similarity subgraphs, where the 𝑡th day’s
subgraph is represented by 𝐺𝑡

𝑆 . The collection of these subgraphs over
multiple days forms the dynamic similarity graph, expressed as 𝐺𝑆 =
{𝐺1

𝑆 , 𝐺
2
𝑆 ,…}. For each subgraph 𝐺𝑡

𝑆 , the vertexes represent the MEC
servers, and the value associated with each vertex 𝑠𝑖 is the frequency
of visits by vehicles to that MEC server on day 𝑡, i.e., |𝑉 𝑡

𝑖 |. The Jaccard
imilarity 𝐽 𝑡

𝑖𝑗 between any two vertexes 𝑠𝑖 and 𝑠𝑗 on day 𝑡 is computed

sing the following formula: 𝐽 𝑡
𝑖𝑗 =

|𝑉 𝑡
𝑖 ∩𝑉

𝑡
𝑗 |

|𝑉 𝑡
𝑖 ∪𝑉

𝑡
𝑗 |

. Here, | ⋅ | denotes the
ardinality of a set. An edge 𝑒𝑡𝑖𝑗 is established between nodes 𝑠𝑖 and
𝑗 in 𝐺𝑡

𝑆 if their Jaccard Similarity exceeds a predefined threshold 𝜏𝑆 :
𝑒𝑡𝑖𝑗 ∈ 𝐸𝑡

𝑆 if 𝐽 𝑡
𝑖𝑗 > 𝜏𝑆 . The weight 𝑤𝑡

𝑖𝑗 of the edge 𝑒𝑡𝑖𝑗 is set to the Jaccard
imilarity value: 𝑤𝑡

𝑖𝑗 = 𝐽 𝑡
𝑖𝑗 .

By aggregating these daily subgraphs, we create the dynamic simi-
arity graph 𝐺𝑆 , which encapsulates the evolving relationships between
dge service nodes based on vehicle visitation patterns. The algorithm
hat builds the dynamic similarity graph is a step-by-step process
esigned to construct a graph that represents the similarity between
dge service nodes in a vehicular network over multiple days. As shown
n Algorithm 1, the algorithm begins by initializing an empty dynamic
imilarity graph 𝐺𝑆 , which will accumulate the similarity subgraphs
or each day. The algorithm iterates over each day 𝑡 from 1 to the
otal number of days. For each day, it initializes an empty similarity
ubgraph 𝐺𝑡

𝑆 . For the current day 𝑡, the algorithm retrieves the set
f edge service nodes 𝑆 that were active or had vehicle visits. The
lgorithm then calculates the Jaccard Similarity 𝐽 𝑡

𝑖𝑗 for each pair of
odes 𝑠𝑖 and 𝑠𝑗 . This similarity measure is based on the intersection
nd union of the sets of vehicles that visited each pair of nodes. If the
alculated Jaccard Similarity exceeds a predefined threshold 𝜏𝑆 , the
lgorithm adds a directed edge between the two nodes in the subgraph
𝑡
𝑆 . The weight of this edge is set to the calculated similarity value.
fter processing all pairs of nodes for a given day, the algorithm adds

he daily subgraph 𝐺𝑡
𝑆 to the overall dynamic similarity graph 𝐺𝑆 .

he algorithm increments the day counter 𝑡 and repeats the process
or each day until all days have been processed. Finally, the algorithm
eturns the complete dynamic similarity graph 𝐺𝑆 , which now contains
he similarity relationships between edge service nodes across all days.
his constructed dynamic graph is useful for analyzing the patterns of
ehicle visits to edge service nodes and can help in understanding the
tructure and dynamics of vehicular networks, which is essential for
raffic prediction, resource allocation, and network optimization. Fig. 4
5
shows the constructed dynamic similarity graph of the dataset with
50 MEC servers in 5 days, where the threshold 𝜏𝑆 is set to 0.01. The
distribution of edge weights for each subgraph is also shown in Fig. 4
with PDF (Probability Density Function), and the distribution observed
also appears to be similar to a power-law distribution. Moreover, the
curve decays more rapidly than dynamic similarity graph.

Algorithm 1: Algorithm for constructing dynamic similarity graph
Input: Set of MEC servers 𝑆, total number of days 𝑇 , threshold 𝜏𝑆
Output: Dynamic similarity graph 𝐺𝑆
while 𝑡 ≤ 𝑇 do

𝐺𝑡
𝑆 ← ∅

𝑉𝑡 ← 𝐺𝑒𝑡𝑁𝑜𝑑𝑒𝑠𝐹𝑜𝑟𝐷𝑎𝑦(𝑆, 𝑡) for 𝑖 ∈ [1, |𝑆|] do
for 𝑗 ∈ [𝑖 + 1, |𝑆|] do

𝐽𝑖𝑗 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠𝑖, 𝑠𝑗)
if 𝐽𝑖𝑗 > 𝜏𝑆 then

𝐺𝑡
𝑆 ← 𝐺𝑡

𝑆 ∪ {(𝑠𝑖, 𝑠𝑗 , 𝐽𝑖𝑗)}
end

end
end
𝐺𝑆 ← 𝐺𝑆 ∪ 𝐺𝑡

𝑆
𝑡 ← 𝑡 + 1

end

3.4. Dynamic transition graph

To illustrate the temporal correlation between MEC servers, a dy-
namic transition graph 𝐺𝑇 = (𝑆,𝐸𝑇) is constructed, where 𝑆 and 𝐸𝑇 are
the sets of vertexes and edges. The dynamic transition graph captures
the sequential interactions between nodes, representing the flow of
vehicles from one edge service node to another over time.

The dynamic transition graph is composed of daily transition sub-
graphs, where the 𝑡th day’s subgraph is denoted as 𝐺𝑡

𝑇 . The collection
of these subgraphs forms the dynamic transition graph, expressed as
𝐺𝑇 = {𝐺1

𝑇 , 𝐺
2
𝑇 ,…}. For each subgraph 𝐺𝑡

𝑇 , the vertexes represent the
MEC servers. A directed edge 𝑒𝑡𝑖𝑗 from vertex 𝑠𝑖 to vertex 𝑠𝑗 indicates
that vehicles have consecutively visited node 𝑣𝑖 and then node 𝑣𝑗 , and
the number of visited vehicles should be larger than a threshold 𝜏𝑇 . The
weight 𝑤𝑡

𝑖𝑗 of this directed edge represents the number of vehicles that
have made this transition.

The algorithm for building a dynamic transition graph is designed
to capture the temporal relationships between edge service nodes in a
vehicular network by tracking the sequence of visits made by vehicles.
This algorithm is particularly useful for understanding how traffic flows
from one service node to another over time, which can inform network
planning and optimization. As shown in Algorithm 2, the algorithm
starts by initializing an empty dynamic transition graph 𝐺𝑇 , which
will be composed of daily transition subgraphs. The algorithm loops
through each day 𝑡 from 1 to the total number of days. For each
day, it initializes an empty subgraph 𝐺𝑡

𝑇 and a set to track vehicle
transitions. For the current day 𝑡, the algorithm retrieves the set of edge
service nodes 𝑆 that are active or have been visited by vehicles. The
algorithm tracks the transitions between edge service nodes, recording
the pairs of nodes (𝑠𝑖, 𝑠𝑗) where vehicles have moved from 𝑠𝑖 to 𝑠𝑗 .
For each observed transition, the algorithm checks if a directed edge
from 𝑠𝑖 to 𝑠𝑗 already exists in the subgraph 𝐺𝑡

𝑇 . If not, it adds the
edge with an initial weight of 1. If the edge exists, it increments
the weight by 1 to reflect the additional transition. It checks all the
edges in the subgraph 𝐺𝑡

𝑇 and deletes any edges with weights lower
than the threshold 𝜏𝑇 . After processing the transitions for a day, the
algorithm adds the daily subgraph 𝐺𝑡

𝑇 to the overall dynamic transition
graph 𝐺𝑇 . The algorithm increments the day counter 𝑡 and repeats the
process for each day until all days have been processed. Finally, the
algorithm returns the complete dynamic transition graph 𝐺𝑇 , which

now contains the directed edges and their weights, representing the

C. Song et al. Computer Networks 252 (2024) 110676
Fig. 4. An example of a dynamic similarity graph with 50 MEC servers over 5 days (𝜏𝑆 = 0.01).
flow of vehicles between edge service nodes across all days. Fig. 5
shows the constructed dynamic transition graph of the dataset with
50 MEC servers over 5 days, where the threshold 𝜏𝑇 is set to 5. The
distribution of edge weights for each subgraph is also shown in the
figure with PDF (Probability Density Function), and the distribution
observed appears to be similar to a Power-Law Distribution.

Algorithm 2: Algorithm for constructing dynamic transition graph
Input: Set of MEC servers 𝑆, total number of days 𝑇 , threshold 𝜏𝑇
Output: Dynamic transition graph 𝐺𝑇
while 𝑡 ≤ 𝑇 do

𝐺𝑡
𝑇 ← ∅

𝑆𝑡 ← 𝐺𝑒𝑡𝑁𝑜𝑑𝑒𝑠𝐹𝑜𝑟𝐷𝑎𝑦(𝑆, 𝑡)
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ← ∅
𝑇 𝑟𝑎𝑐𝑘𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑆𝑡, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠) for (𝑠𝑖, 𝑠𝑗) ∈ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 do

if (𝑠𝑖, 𝑠𝑗) ∉ 𝐸𝑡
𝑇 then

𝐸𝑡
𝑇 ← 𝐸𝑡

𝑇 ∪ {(𝑠𝑖, 𝑠𝑗)}
end
𝑈𝑝𝑑𝑎𝑡𝑒𝐸𝑑𝑔𝑒𝑊 𝑒𝑖𝑔ℎ𝑡𝑠((𝑠𝑖, 𝑠𝑗), 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠)

end
for (𝑠𝑖, 𝑠𝑗) ∈ 𝐸𝑡

𝑇 do
if 𝑊 𝑒𝑖𝑔ℎ𝑡(𝑠𝑖, 𝑠𝑗) < 𝜏𝑇 then

Delete (𝑠𝑖, 𝑠𝑗) ∈ 𝐸𝑡
𝑇

end
end
𝐺𝑇 ← 𝐺𝑇 ∪ 𝐺𝑡

𝑇
𝑡 ← 𝑡 + 1

end

4. Traffic flow prediction algorithm with dynamic graphs

In this section, we first present the proposed traffic flow prediction
algorithm with dynamic graphs. Then, we introduce the details of graph
learning with GAT and a Transformer-based prediction model. Finally,
we discuss the interpretability of the proposed models.

4.1. Overview of the proposed traffic flow prediction algorithm

The traffic prediction algorithm for 5G/6G vehicular networks uti-
lizes two dynamically constructed graphs to capture the complex in-
teractions between edge service nodes: a dynamic similarity graph and
a dynamic transition graph. These graphs are instrumental in under-
standing the network’s structure and the flow of vehicles. As shown
in Fig. 6, the algorithm begins by building the dynamic similarity
graph, which represents how similar the traffic patterns are between
different edge service nodes. This is achieved by calculating the Jaccard
Similarity based on the vehicles that visit each node daily. A dynamic
6
transition graph is also constructed to reflect the temporal transitions
of vehicles from one edge service node to another, indicating the
direction and frequency of these movements. Using Graph Attention
Networks (GAT) [28], the algorithm computes node embedding for
both graphs. These embedding are essentially feature representations
of each node that capture its importance and relationships within the
graph. The GAT assigns different attention weights to the neighboring
nodes, allowing the model to focus on the most relevant connections.

Once the node embeddings are obtained, they are concatenated to
form a comprehensive feature vector for each edge service node. The
final step involves using a Transformer model [29] to predict the traffic
for the next day. The Transformer, known for its ability to handle
long sequences and capture dependencies, processes the feature vectors
to forecast the number of vehicles that will visit each edge service
node. Therefore, the algorithm combines graph-based features with the
power of the Transformer to create a robust traffic prediction model for
vehicular networks.

4.2. Graph learning with GAT

Graph Attention Networks (GATs) [28] are a class of Graph Neu-
ral Networks (GNNs) designed to operate on graph-structured data.
They leverage attention mechanisms to weigh the importance of each
node’s neighbors, allowing the model to focus on the most relevant
information.

Each node 𝑠𝑖 in the graph is represented by a feature vector 𝐡𝑖 ∈ R𝐹 ,
where 𝐹 is the dimensionality of the feature space. A shared linear
transformation is applied to the input features. This is done using a
weight matrix 𝐖 ∈ R𝐹 ′×𝐹 , where 𝐹 ′ is the dimensionality of the output
features. The transformed features are denoted as 𝐖𝐡𝑖. The attention
mechanism computes the importance of each neighbor’s features for a
given node. For node 𝑠𝑖 and its neighbor 𝑠𝑗 , the attention coefficient 𝛼𝑖𝑗
is calculated using a feedforward neural network with a single hidden
layer: 𝛼𝑖𝑗 = softmax

(

exp(𝐚𝑇 [𝐖𝐡𝑖⊕𝐖𝐡𝑗])
∑

𝑘∈ (𝑖) exp(𝐚𝑇 [𝐖𝐡𝑖⊕𝐖𝐡𝑘])

)

. Here, 𝐚 is a learnable

weight vector, ⊕ denotes concatenation, and  (𝑖) is the neighborhood
of node 𝑠𝑖. The softmax function ensures that the attention coefficients
sum to 1.

Multi-head attention is an extension of the basic attention mech-
anism where the input is processed through multiple attention layers
(heads) in parallel. Each head learns to focus on different aspects
or representations of the input data. The node embedding for 𝑠𝑖 is
computed as a weighted sum of its neighbors’ features, using the
attention coefficients: 𝐞𝑖 = 𝜎

(

∑

𝑗∈ (𝑖) 𝛼𝑖𝑗𝐖𝐡𝑗
)

. The function 𝜎 is
an activation function, such as the LeakyReLU. GATs often employ
multi-head attention, where multiple attention mechanisms are ap-
plied independently, and their outputs are concatenated or averaged.

C. Song et al. Computer Networks 252 (2024) 110676
Fig. 5. An example of a dynamic transition graph with 50 MEC servers over 5 days (𝜏𝑇 = 5).
Fig. 6. Flowchart of traffic flow prediction algorithm.
This allows the model to learn multiple representations of the graph:
𝐞𝑖 = concat

(

{𝜎
(

∑

𝑗∈ (𝑖) 𝛼
(𝑘)
𝑖𝑗 𝐖(𝑘)𝐡𝑗

)

}𝐾𝑘=1
)

. Here, 𝐾 is the number of
attention heads, and 𝛼(𝑘)𝑖𝑗 and 𝐖(𝑘) are the attention coefficients and
weight matrices for the 𝑘th head. Multiple GAT layers can be stacked
to learn deeper representations. The output of one layer becomes the
input to the next: 𝐡′𝑖 = GATLayer(𝐡𝑖,𝐀). Here, 𝐀 is the adjacency matrix
of the graph. The attention heads allow the network to learn multiple
attention functions over the nodes of a graph. This means that for
each node, the GAT can learn to weigh the importance of its neighbors
differently depending on the head.

By applying GAT to both the dynamic similarity graph and the dy-
namic transition graph, we can obtain two different node embeddings
that capture the spatio-temporal relationships within the vehicular
network. These embedding can then be used as input to a Transformer
model for traffic prediction tasks.

4.3. Transformer-based prediction model

The Transformer model [29], originally designed for natural lan-
guage processing tasks, has been adapted for various sequence model-
ing problems, including traffic prediction in vehicular networks. The
input to the Transformer model is structured as a tensor with di-
mensions [𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑖𝑧𝑒] representing the his-
torical traffic data for each edge service node. As shown in Fig. 6,
this tensor with dimensions [1, 𝑘, 2𝑚] is organized with a concatenate
node embedding learning from the dynamic similarity graph and the
dynamic transition graph, where 𝑘 is number of days in historical data
and 𝑚 is the number of MEC servers. 𝐱 represents the feature vector
𝑖

7
for node 𝑠𝑖 at day 𝑡, which includes the node’s embedding from the
dynamic similarity graph and dynamic transition graph, as well as addi-
tional features such as historical visit frequency. Since the Transformer
does not have a built-in notion of order, positional encodings are added
to the input feature vectors to provide information about the position of
each node in the sequence. The positional encoding is typically a fixed
function of the position index, which can be learned or determined by
a predefined function, such as a sine or cosine function.

The input feature vectors 𝐱𝑖 are passed through an embedding
layer to obtain the input embedding 𝐞𝑖. This layer can be shared
across all positions. The Transformer model applies self-attention to the
input embedding. The self-attention mechanism computes the attention
scores for each pair of positions in the sequence, allowing the model
to weigh the importance of each input vector relative to the others:
Attention(𝑄,𝐾, 𝑉) = softmax

(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 . Here, 𝑄, 𝐾, and 𝑉 are the
query, key, and value matrices derived from the input embedding. 𝑑𝑘
is the dimensionality of the key vectors. The Query 𝑄 represents the
current element that the model is focusing on. The Key 𝐾 corresponds
to the elements that the Query is compared against to calculate the
attention scores. The Value 𝑉 represents the elements that contribute to
the construction of the final output after the attention scores have been
computed and applied. After the self-attention step, layer normalization
and residual connections are applied to stabilize the training process
and allow the model to learn more effectively: 𝐞′𝑖 = LayerNorm(𝐞𝑖 +
Attention(𝐞𝑖, 𝐞𝑖, 𝐞𝑖)).

Each attention output is passed through a feed-forward network,
which consists of two linear layers with a ReLU activation function
in between: 𝐞′′ = ReLU

(

𝐖 ReLU
(

𝐖 𝐞′ + 𝐛
)

+ 𝐛
)

. Here, 𝐖 , 𝐖 , 𝐛 ,
𝑖 2 1 𝑖 1 2 1 2 1

C. Song et al.

n
t

5

m
p

5

5

v
p
t
d
n
s
r
f
t
M
p
e
M
d
c

5

f
r

Computer Networks 252 (2024) 110676
Table 2
Parameters of models.

Model Parameter Value Description

GAT

in_feats 1 Size of each input sample.
h_feats 64 Size of each hidden sample.
out_feats 1 Size of each output sample.
layers 2 Number of message passing layers.

LSTM

input_size 20/50/100 The number of expected features in the input.
output_size 1 The size of output features from the last layer of the LSTM.
hidden_size 128 The number of features in the hidden state.
num_layers 3 Number of recurrent layers.

Transformer

input_size 20/50/100 The size of each input sample.
d_model 64 The number of expected features in the encoder/decoder inputs.
output_size 20/50/100 The size of each output sample.
seq_len 7/14 The length of time sequence.
nhead(encoder) 8 The number of heads in the multi-head-attention models.
layers(encoder) 5 The number of sub-encoder-layers in the encoder.
m
t

and 𝐛2 are learnable parameters. The final output of the Transformer
model is a sequence of embeddings that represents the input data in a
compressed form. For traffic prediction, a linear layer is applied to the
output embedding to generate the predicted traffic flow for each node:
𝑦̂𝑖 = 𝐖𝑦𝐞′′𝑖 + 𝑏𝑦. Here, 𝐖𝑦 and 𝑏𝑦 are the weight matrix and bias for the
output layer, and 𝑦̂𝑖 is the predicted traffic flow for node 𝑣𝑖. The model’s
predictions are compared to the actual traffic data using a loss function,
such as mean squared error (MSE), to measure the performance of the
model during training:  = 1

𝑚
∑𝑚

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2. Here, 𝑚 is the number of
odes (MEC servers), 𝑦𝑖 is the actual traffic flow, and 𝑦̂𝑖 is the predicted
raffic flow.

. Experimental evaluations

In this section, we first introduce the experimental setup, compared
ethods and metrics. Then, we discuss the results for the impact of the
arameter learning rate, and ablation study of different methods.

.1. Experimental setup

.1.1. Dataset
The experimental setup for traffic flow prediction at MEC in 5G/6G

ehicular networks utilizes the CRAWDAD roma/taxi dataset, which
rovides a rich source of real-world taxi trip data. Here’s an overview of
he dataset configuration for the experiment: The CRAWDAD roma/taxi
ataset is chosen for its comprehensiveness and relevance to vehicular
etwork traffic patterns. This dataset typically includes information
uch as taxi pickup and drop-off locations, timestamps, and trip du-
ations. The dataset spans a total of 30 days, offering a sufficient time
rame to capture the dynamics of vehicular traffic and to train and test
he prediction model. Within the dataset’s time range, 20 or 50 or 100
EC servers are randomly generated. These nodes represent potential

oints of interest or service areas within the vehicular network. To
nsure that the model is not biased by the scale of the input features,
in–Max normalization is applied to both the training and testing

atasets. This process scales the data to a range between 0 and 1, which
an improve the convergence of the model during training.

.2. Compared methods

In the experimental evaluation of our traffic prediction algorithm
or 5G/6G vehicular networks, we compare the proposed Transformer-
elated models with the Long Short-Term Memory (LSTM) related
8
odel. We provide an overview of the comparative methods used in
he study:

• LSTM: This method utilizes the LSTM model alone to predict the
traffic flow at edge service nodes [30,31].

• Transformer: Similarly, this approach employs the Transformer
model exclusively for traffic flow prediction [32,33].

• GAT+LSTM (𝐺𝑆) or G+L (𝐺𝑆): This method combines the GAT
model with the LSTM model, using the dynamic similarity graph
as input to predict traffic flow. The GAT provides node embed-
dings that capture the similarity between nodes, which are then
processed by the LSTM for temporal prediction.

• GAT+LSTM (𝐺𝑇) or G+L (𝐺𝑇): Similar to the previous method,
but this time the dynamic transition graph is used as input.
This graph represents the temporal transitions between nodes,
providing a different perspective on the network’s structure.

• GAT+Transformer (𝐺𝑆) or G+T (𝐺𝑆): The GAT model is paired
with the Transformer model, feeding the dynamic similarity
graph’s node embeddings into the Transformer for sequence-
based prediction.

• GAT+Transformer (𝐺𝑇) or G+L (𝐺𝑆+𝐺𝑇): This approach uses
the dynamic transition graph’s node embeddings as input to
the Transformer model, focusing on the temporal transitions for
prediction.

• GAT+LSTM (𝐺𝑆+𝐺𝑇) or G+L (𝐺𝑆+𝐺𝑇): This method leverages
both the dynamic similarity graph and the dynamic transition
graph by combining them into input for the LSTM model. This
dual-input approach aims to capture both the similarity and
transition aspects of the network.

• GAT+Transformer (𝐺𝑆+𝐺𝑇) or G+T (𝐺𝑆+𝐺𝑇): The final method
in our comparison combines the strengths of both GAT-generated
graphs by using them together as input to the Transformer model.
This comprehensive approach seeks to integrate multiple facets of
the network’s structure for improved predictive accuracy.

5.2.1. Parameters of models
All models adopt the random seed setting of torch.manual_

seed(12345). The division ratio for all training sets, validation sets, and
test sets is 6:2:2. The parameters of models are listed in Table 2.

The GAT model consists of two layers. The input feature dimension
(𝑖𝑛_𝑓𝑒𝑎𝑡𝑠) is set to 1, and the output feature dimension (𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑠) is set
to 1. The dimensions of the features in the hidden layers (ℎ_𝑓𝑒𝑎𝑡𝑠) is
set to 64. The GAT model employs a multi-head attention mechanism
with four heads.

The number of layers in the LSTM prediction model is 3. The num-
ber of expected features in the input data for each time step (𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒)
is set to 20/50/100. The number of output features produced by the
LSTM at each time step (𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒) is set to 1. The number of features
in the hidden state of the LSTM (ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒) is set to 128. The model
is trained to minimize the Mean Squared Error (MSE) loss function.

C. Song et al. Computer Networks 252 (2024) 110676
Fig. 7. Errors of the compared models under 20 MEC servers for 7+1 prediction, 𝑙𝑟 ∈ [0.001, 0.01].
Fig. 8. Errors of the compared models under 20 MEC servers for 14+1 prediction, 𝑙𝑟 ∈ [0.001, 0.01].
Fig. 9. Errors of the compared models under 100 MEC servers for 7+1 prediction, 𝑙𝑟 ∈ [0.001, 0.01].
The transformer prediction model parameters are as follows: The
dimensionality of the input embeddings (𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒) is set to 20/50/100.
The dimensionality of the output from the transformer model
(𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒) is set to 20/50/100. The dimensionality of the output
space of the embedding layers, as well as the input and output of the
encoder and decoder layers, is set to 64. The number of attention heads
(𝑛ℎ𝑒𝑎𝑑) is 8, and the number of layers (𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠) is 5. Similar to the
LSTM model, the transformer model is trained to minimize the MSE
loss function.

After obtaining the predictions from either the Transformer or the
LSTM model, a three-layer Multilayer Perceptron (MLP) with a hidden
size of 64 is used to map the predictions back to the length of the node
feature vector. This step ensures that the predictions are compatible
with the input data structure.

5.2.2. Metrics
In our study, we employed three key metrics to evaluate the perfor-

mance of our models:

• Mean Absolute Error (MAE): MAE is a simpler measure of
error that calculates the average absolute difference between the
predicted and actual values.

• Mean Absolute Percentage Error (MAPE): MAPE is a normal-
ized measure of error that calculates the average absolute per-
centage difference between the predicted and actual values.

• Root Mean Squared Error (RMSE): This metric measures the
average magnitude of the errors between the predicted values
and the actual values, without considering their direction. It
is calculated as the square root of the average of the squared
differences between the predicted and actual values.

5.3. Sensitivity analysis

We conducted experiments on the sensitivity analysis of the learn-
ing rate parameter across different methods, examining the varia-
9
tion in performance metrics including MAE, MAPE, and RMSE. The
experiments were designed to compare the performance of LSTM-
related methods and Transformer-related methods under 20, 50 and
100 MEC servers in vehicular networks, for the task of traffic flow
prediction in the next day with 7 and 14 previous days, which are
denoted by 7+1 and 14+1, respectively. The range of learning rate (𝑙𝑟)
for the LSTM-related methods and Transformer-related methods is in
[0.001, 0.01].

Figs. 7 and 8 present the results for sensitivity analysis of learning
rate in a scenario with 20 MEC servers. The dataset consists of data
from 20 MEC servers over a period of 30 days. The training and test
set data are normalized using MinMax scaling. The learning rate was
varied to observe its effect on the MAE, MAPE, and RMSE metrics. For
each learning rate, the model will be trained 5 times with repetition,
and then the average of three performance metrics will be taken as
the performance representation for that learning rate. The experimental
results indicate that compared to transformer-related methods, LSTM-
related methods are most significantly affected by the learning rate,
exhibiting greater variability. In comparison to the 7+1 prediction, the
14+1 prediction is most significantly affected by the learning rate, with
greater fluctuations.

Figs. 9 and 10 present the results for sensitivity analysis of learning
rate in a scenario with 100 MEC servers. The dataset consists of data
from 100 MEC servers over a period of 30 days. The training and test
set data are normalized using MinMax scaling. The learning rate was
varied to observe its effect on the MAE, MAPE, and RMSE metrics. For
each learning rate, the model will be trained 5 times with repetition,
and then the average of three performance metrics will be taken as
the performance representation for that learning rate. The experimental
results demonstrate that, similarly, LSTM-related methods are most
significantly affected by the learning rate compared to transformer-
related methods, showing greater variability. When comparing the 7+1
prediction to the 14+1 prediction, the latter is most notably influenced
by the learning rate, with more pronounced fluctuations.

C. Song et al. Computer Networks 252 (2024) 110676
Fig. 10. Errors of the compared models under 100 MEC servers for 14+1 prediction, 𝑙𝑟 ∈ [0.001, 0.01].
Fig. 11. Impact of threshold 𝜏𝑆 on errors.
Fig. 12. Validation loss of the compared models for 7+1 prediction.
Compared to the scenario with 20 MEC servers, the Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) show a downward
trend in the scenario with 100 MEC servers. This is because the traffic
flow is more dispersed, leading to a reduction in the absolute prediction
errors for each MEC server. However, the Mean Absolute Percentage
Error (MAPE) calculates the absolute error between the predicted and
actual values as a percentage of the actual values, then takes the
average. Moreover, MAPE is highly sensitive to situations where the
actual values are zero or close to zero, as the errors are magnified.
This results in a higher MAPE for the scenario with 100 MEC servers
compared to that with 20 MEC servers.

Moreover, we conducted experiments regarding the threshold 𝜏𝑆 .
Due to the scarcity of effective edges in the transition graph, 𝜏𝑇 is set to
0. For the similarity graph, based on the GAT+Transformer model, with
all model parameters being identical and only changing the value of 𝜏𝑆 .
We took 𝜏𝑆 to be in the range of [0.001, 0.02], with an interval size
of 0.001. Because if the range is too large, the number of edges within
the interval will decrease sharply. Fig. 11 shows the results under the
metrics of MAE, MAPE and RMSE. The experimental results indicate
that the threshold 𝜏𝑆 has a minimal impact on the model, with the
values of various metrics fluctuating within a relatively small range.

5.4. Validation loss

Validation Loss (val_loss) is the loss computed on the validation
set. It is used to monitor the model’s performance on unseen data
and to make decisions about model selection, hyperparameter tuning,
and to prevent overfitting. The experimental steps for calculating the
10
validation loss (val_loss) are as follows: For each model (predicting
1 day ahead based on the previous 7 days), training begins from
epoch=1. For models related to LSTM, one model is trained for each
epoch from 1 to 50, resulting in a total of 50 models. For models
related to Transformer, one model is trained for each epoch from 1
to 40, resulting in a total of 40 models. The val_loss for each model is
calculated using the validation set after each epoch’s training.

Fig. 12 shows the results of validation loss under 20, 50 and
100 MEC servers. The experimental results indicate that transformer-
related methods converge more quickly, tending to stabilize after ap-
proximately 10 epochs, whereas LSTM-related methods exhibit poorer
convergence, with significant fluctuations throughout the process. On
the other hand, as the number of MEC servers increases, the val loss also
increases. This is because the model may exhibit signs of overfitting
as the number of MEC servers increases, but it demonstrates good
performance in real predictive metrics.

5.5. Ablation study

In the ablation study experiment, Table 3 shows the results of
different models with 50 MEC servers for 14+1 prediction, where
learning rate (𝑙𝑟) is 0.005. Table 4 shows the results of different models
with 100 MEC servers for 7+1 prediction, where learning rate (𝑙𝑟)
is 0.007. The experimental results indicate that the model using the
Transformer performed better than the LSTM model, especially in the
shorter period of historical data (i.e., 7 days). This suggests that the
ability of the proposed method using GAT and Transformer models

captures long-range dependencies and that its attention mechanism

C. Song et al.

W

Computer Networks 252 (2024) 110676
Table 3
Comparison of different models with 50 MEC servers for 14+1 prediction.

Model (Graph) RMSE MAE MAPE

LSTM 2123.15 714.38 891.08%
Transformer 2130.49 724.44 948.69%

GAT+LSTM (𝐺𝑆) 2343.20 790.07 839.67%
GAT+LSTM (𝐺𝑇) 2132.77 723.39 900.14%
GAT+Transformer (𝐺𝑆) 2129.27 721.41 860.39%
GAT+Transformer (𝐺𝑇) 2128.10 720.65 856.98%

GAT+LSTM (𝐺𝑆+𝐺𝑇) 2122.80 713.98 880.23%
GAT+Transformer (𝐺𝑆+𝐺𝑇) 2122.57 712.74 825.65%

Table 4
Comparison of different models with 100 MEC servers for 7+1 prediction.

Method (Graph) RMSE MAE MAPE

LSTM 1209.45 294.28 540.35%
Transformer 1166.46 278.51 447.57%

GAT+LSTM (𝐺𝑆) 1163.38 277.84 445.19%
GAT+LSTM (𝐺𝑇) 1318.26 312.61 537.30%
GAT+Transformer (𝐺𝑆) 1154.43 275.87 443.39%
GAT+Transformer (𝐺𝑇) 1166.10 278.51 438.13%

GAT+LSTM (𝐺𝑆+𝐺𝑇) 1166.67 278.59 438.41%
GAT+Transformer (𝐺𝑆+𝐺𝑇) 1147.71 275.05 466.28%

may be more effective for the sequential prediction task in the context
of vehicular networks with MEC servers. The results support the choice
of Transformer models for traffic prediction in such environments,
potentially leading to more reliable and efficient network management.

From the experimental results, it can be observed that by incor-
porating the GAT model on top of traditional LSTM and Transformer
models, the error is reduced. This reduction in error is attributed to
the establishment of associations between MEC servers through graph
representation learning, thereby enhancing the accuracy of traffic flow
prediction. Furthermore, after integrating the dynamic similarity graph
and dynamic transition graph, the error is further reduced. This im-
provement is achieved by fusing multi-dimensional feature information
to enhance the precision of traffic flow prediction.

6. Conclusion

For predicting edge service access volumes in 5G/6G vehicular
networks, we propose the Graph Attention Network (GAT) and Trans-
former based model. This model integrates the power of graph-based
learning with the temporal dynamics captured by the Transformer
model, providing a comprehensive and accurate prediction framework
for vehicular network operators. The GAT component of the model
effectively captures the structural and temporal relationships between
edge service nodes, allowing for a nuanced understanding of the vehic-
ular network’s topology and usage patterns. The Transformer model,
on the other hand, leverages this information to predict future traffic
flows, enabling proactive decision-making and efficient network uti-
lization. Our experimental results have shown that the model achieves
high accuracy in predicting edge service access volumes, with low error
metrics across various datasets. This indicates that the model is robust
and can generalize well to different vehicular network scenarios.

CRediT authorship contribution statement

Chao Song:Writing – original draft, Project administration. Jie Wu:
riting – review & editing, Supervision. Kunyang Xian: Validation,

Software. Jianfeng Huang: Formal analysis, Data curation. Li Lu:
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
11
Data availability

The data is open access in the link declared in the manuscript:
https://ieee-dataport.org/open-access/crawdad-romataxi.

Acknowledgments

This work is supported by the National Key R&D Program of
China under Grant 2021YFB3101303; the Natural Science Founda-
tion of Sichuan Province of China No. 2024NSFSC0492; the National
Natural Science Foundation of China under Grant No. 82241060,
62020106013.

References

[1] N. Aljeri, A.F.M. Boukerche, Mobility management in 5G-enabled vehicular
networks, ACM Comput. Surv. 53 (2020) 1–35.

[2] H. Guo, X. Zhou, J. Liu, Y. Zhang, Vehicular intelligence in 6G: Networking,
communications, and computing, Veh. Commun. 33 (2021) 100399.

[3] F. Tang, Y. Kawamoto, N. Kato, J. Liu, Future intelligent and secure vehicu-
lar network toward 6G: Machine-learning approaches, Proc. IEEE 108 (2020)
292–307.

[4] L. Liu, C. Chen, Q. Pei, S. Maharjan, Y. Zhang, Vehicular edge computing and
networking: A survey, Mob. Netw. Appl. 26 (2019) 1145–1168.

[5] Y. Hui, N. Cheng, Z. Su, Y. Huang, P. Zhao, T.H. Luan, C. Li, Secure and
personalized edge computing services in 6G heterogeneous vehicular networks,
IEEE Internet Things J. 9 (2021) 5920–5931.

[6] B.M. Williams, L.A. Hoel, Modeling and forecasting vehicular traffic flow as a
seasonal stochastic time series process, 129, (6) 2003, pp. 664–672,

[7] Y. Xu, H. Chen, Q. Kong, X. Zhai, Y. Liu, Urban traffic flow prediction: a
spatio-temporal variable selection-based approach, J. Adv. Transp. 50 (2016)
489–506.

[8] D. Yang, S. Li, Z. Peng, P. Wang, J. Wang, H. Yang, MF-CNN: Traffic flow
prediction using convolutional neural network and multi-features fusion, IEICE
Trans. Inf. Syst. 102-D (2019) 1526–1536.

[9] S. Hakak, T.R. Gadekallu, P.K.R. Maddikunta, S.P. Ramu, M. Parimala, C. de
Alwis, M. Liyanage, Autonomous vehicles in 5G and beyond: A survey, Veh.
Commun. 39 (2022) 100551.

[10] S.K. Tayyaba, H.A. Khattak, A.S. Almogren, M.A. Shah, I.U. Din, I. Alkhalifa, M.
Guizani, 5G vehicular network resource management for improving radio access
through machine learning, IEEE Access 8 (2020) 6792–6800.

[11] X. Cheng, R. Zhang, S. Chen, J. Li, L. Yang, H. Zhang, 5G-enabled vehicular
communications and networking, Wirel. Netw. (2018).

[12] M. Noor-A.-Rahim, Z. Liu, H. Lee, M.O. Khyam, J. He, D. Pesch, K. Moessner, W.
Saad, H.V. Poor, 6G for vehicle-to-everything (V2X) communications: Enabling
technologies, challenges, and opportunities, Proc. IEEE 110 (2020) 712–734.

[13] W. Qi, Q. Li, Q. Song, L. Guo, A. Jamalipour, Extensive edge intelligence for
future vehicular networks in 6G, IEEE Wirel. Commun. 28 (2021) 128–135.

[14] H. Zhong, L. Wang, J. Cui, J. Zhang, I.P. Bolodurina, Secure edge computing-
assisted video reporting service in 5G-enabled vehicular networks, IEEE Trans.
Inf. Forensics Secur. 18 (2023) 3774–3786.

[15] H.T. Nguyen, M.-T. Nguyen, H.T. Do, H.T. Hua, C.V. Nguyen, DRL-based
intelligent resource allocation for diverse QoS in 5G and toward 6G vehicular
networks: A comprehensive survey, Wirel. Commun. Mob. Comput. 2021 (2021)
5051328:1–5051328:21.

[16] H. Ye, L. Liang, G.Y. Li, J. Kim, L. Lu, M. Wu, Machine learning for vehicular
networks: Recent advances and application examples, IEEE Veh. Technol. Mag.
13 (2017) 94–101.

[17] A. Talpur, M. Gurusamy, Machine learning for security in vehicular networks: A
comprehensive survey, IEEE Commun. Surv. Tutor. 24 (2021) 346–379.

[18] A.F.M. Boukerche, J. Wang, Machine learning-based traffic prediction models for
intelligent transportation systems, Comput. Networks 181 (2020) 107530.

[19] J. Prakash, L. Murali, N. Manikandan, N. Nagaprasad, K. Ramaswamy, A
vehicular network based intelligent transport system for smart cities using
machine learning algorithms, Sci. Rep. 14 (2024).

[20] P. Sun, N. Aljeri, A.F.M. Boukerche, Machine learning-based models for real-time
traffic flow prediction in vehicular networks, IEEE Netw. 34 (2020) 178–185.

[21] H.M. Alnami, I. Mahgoub, H.A. Najada, Segment based highway traffic flow
prediction in VANET using big data analysis, in: 2021 IEEE Symposium Series
on Computational Intelligence, SSCI, 2021, pp. 01–08.

[22] A.F.M. Boukerche, J. Wang, Towards the design of smart vehicular traffic
flow prediction, in: Proceedings of the 19th ACM International Symposium on
Mobility Management and Wireless Access, 2021.

[23] J. Chen, W. Wang, K. Yu, X. Hu, M. cheng Cai, M. Guizani, Node connection
strength matrix-based graph convolution network for traffic flow prediction, IEEE
Trans. Veh. Technol. 72 (2023) 12063–12074.

https://ieee-dataport.org/open-access/crawdad-romataxi
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb1
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb1
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb1
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb2
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb2
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb2
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb23

C. Song et al. Computer Networks 252 (2024) 110676
[24] C. Song, J. Wu, W. Yang, M. Liu, I. Jawhar, N. Mohamed, Exploiting opportu-
nities in V2V transmissions with RSU-assisted backward delivery, in: 2017 IEEE
Conference on Computer Communications Workshops, INFOCOM Workshops,
Atlanta, GA, USA, May 1-4, 2017, 2017, pp. 271–276.

[25] C. Song, W. Yang, J. Wu, M. Liu, Red or green: Analyzing the data delivery
with traffic lights in vehicular ad hoc networks, in: IEEE Global Communications
Conference, GLOBECOM 2014, Austin, TX, USA, December 8-12, 2014, 2014, pp.
64–69.

[26] Wikipedia contributors, Jaccard index — Wikipedia, the free encyclo-
pedia, 2024, https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=
1220812875. (Online; Accessed 20 May 2024).

[27] Wikipedia contributors, Kullback–Leibler divergence — Wikipedia, the free ency-
clopedia, 2024, URL https://en.wikipedia.org/w/index.php?title=Kullback%E2%
80%93Leibler_divergence&oldid=1224220926. (Online; Accessed 20 May 2024).

[28] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph
attention networks, in: 6th International Conference on Learning Representations,
ICLR, 2018.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,
I. Polosukhin, Attention is all you need, in: Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS ’17, 2017.

[30] D. Kang, Y. Lv, Y. Chen, Short-term traffic flow prediction with LSTM recurrent
neural network, in: 20th IEEE International Conference on Intelligent Transporta-
tion Systems, ITSC 2017, Yokohama, Japan, October 16-19, 2017, IEEE, 2017,
pp. 1–6.

[31] Z. Zou, P. Gao, C. Yao, City-level traffic flow prediction via LSTM networks,
in: Proceedings of the 2nd International Conference on Advances in Image
Processing, ICAIP 2018, Chengdu, China, June 16-18, 2018, ACM, 2018, pp.
149–153.

[32] H. Xue, F.D. Salim, TRAILER: Transformer-based time-wise long term relation
modeling for citywide traffic flow prediction, 2020, CoRR abs/2011.05554. URL
https://arxiv.org/abs/2011.05554.

[33] Z. Peng, X. Huang, Spatial-temporal transformer network with self-supervised
learning for traffic flow prediction, in: Proceedings of the 1st International
Workshop on Spatio-Temporal Reasoning and Learning (STRL 2022) Co-Located
with the 31st International Joint Conference on Artificial Intelligence and the
25th European Conference on Artificial Intelligence, Vol. 3190, IJCAI 2022, ECAI
2022, Vienna, Austria, July 24, 2022, 2022.

Chao Song received his Ph.D. Degree in Computer Science
from University of Electronic Science and Technology of
China (UESTC), China, in 2009. During 2013, he was a
visiting scholar at Temple University, under the supervision
of Dr. Jie Wu. He is currently an Associate Professor in
the School of Computer Science and Engineering at UESTC.
His main research interests include computer networking,
distributed computing and big data mining.
12
Jie Wu is the Director of the Center for Networked Com-
puting and Laura H. Carnell professor at Temple University.
He also serves as the Director of International Affairs at
College of Science and Technology. He served as Chair of
Department of Computer and Information Sciences from the
summer of 2009 to the summer of 2016 and Associate Vice
Provost for International Affairs from the fall of 2015 to the
summer of 2017. Prior to joining Temple University, he was
a program director at the National Science Foundation and
was a distinguished professor at Florida Atlantic University.
His current research interests include mobile computing
and wireless networks, routing protocols, cloud and green
computing, network trust and security, and social network
applications.

Kunyang Xian received the B.S. Degrees in Computer Sci-
ence from University of Electronic Science and Technology
of China (UESTC), China, in 2023. His current research
interest is in the area of graph learning.

Jianfeng Huang received the B.S. Degrees in Southwestern
University of Finance and Economics, China, in 2022. His
current research interest is in the area of federated learning.

Li Lu received the B.E. and M.S. degrees in automa-
tion control from Zhejiang University, Hangzhou, China,
in 2000 and 2003, respectively, and the Ph.D. degree
from the Key Laboratory of Information Security, Chinese
Academy of Science, Beijing, China, in 2007. He is a
Professor with the School of Computer Science and Engi-
neering, University of Electronic Science and Technology
of China, Chengdu, China. His current research interests
include battery-free systems and RFID technology, wireless
networks, and network security.

http://refhub.elsevier.com/S1389-1286(24)00508-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb25
https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=1220812875
https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=1220812875
https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=1220812875
https://en.wikipedia.org/w/index.php?title=Kullback%E2%80%93Leibler_divergence&oldid=1224220926
https://en.wikipedia.org/w/index.php?title=Kullback%E2%80%93Leibler_divergence&oldid=1224220926
https://en.wikipedia.org/w/index.php?title=Kullback%E2%80%93Leibler_divergence&oldid=1224220926
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb31
https://arxiv.org/abs/2011.05554
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00508-5/sb33

	Spatio-temporal graph learning: Traffic flow prediction of mobile edge computing in 5G/6G vehicular networks
	Introduction
	Related Work
	Spatio-temporal Similarities of Mobile Edge Computing in Vehicular Networks
	Scenario
	Motivation
	Spatial Similarity
	Temporal Similarity

	Dynamic Similarity Graph
	Dynamic Transition Graph

	Traffic Flow Prediction Algorithm with Dynamic Graphs
	Overview of the Proposed Traffic Flow Prediction Algorithm
	Graph Learning with GAT
	Transformer-based Prediction Model

	Experimental Evaluations
	Experimental Setup
	Dataset

	Compared Methods
	Parameters of Models
	Metrics

	Sensitivity Analysis
	Validation Loss
	Ablation Study

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

