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Graph Convolutional Networks (GCNs) have shown great potential in skeleton-based human action recognition.
However, due to the diversity and complexity, modeling human actions as general graphs and capturing
discriminative spatial-temporal motion patterns is challenging. Besides, the inevitable interference, especially
occlusion, impairs the robustness of existing methods that depend on complete skeletons. To solve these
problems, we propose a Multi-Granular Spatial-Temporal Synchronous Graph Convolutional Network (MSS-
GCN). Firstly, we investigate three partition strategies: attribute, activity, and mixed partition strategy to
optimize the weight-sharing mechanism of GCNs, which facilitates the novel Extended Adaptive Graph
Convolution (EAGC) module. Secondly, we elaborate on a Multi-sliced Spatial-temporal Graph (MSTG) for
multi-granular action modeling. Thirdly, we present a Synchronized Slice Encoder (Syn-STE) to simultaneously
embed spatial and temporal action patterns. Then, we design Multi-granular Spatial-temporal Encoders (Multi-
STE) with multi-branch Syn-STE to generate multi-granular context. The extensive experiments verified that
MSS-GCN is more robust and outperforms benchmarks on NTU-RGB+D, NTU-RGB+D 120, and NW-UCLA
datasets.

1. Introduction et al., 2020; Hou, Li, Wang, & Li, 2018; Xia, Li, & Luo, 2022; Zhang

et al.,, 2018). To sum up, the commonality of the above methods is

Human action recognition is an active topic in computer vision,
which has been widely applied in medical monitoring, elderly health-
care, smart home, and intelligent human—computer interaction. Human
action recognition aims to automatically interpret the action semantics
conveyed by multi-modal data, such as RGB videos, depth videos, and
skeleton sequences. Among them, skeleton-based action recognition has
drawn increasing attention due to its compactness of representation
and robustness to distractions, including appearances, illuminations,
viewpoints, and surroundings.

Human skeleton sequences can be collected by sensors, e.g., Kinect
(Deng, He, Zhang, & Wang, 2022) or pose estimation algorithms (Li,
Zhang, Zhang, & Xiao, 2023), where each skeleton consists of 2D/3D
coordinates of several joints. Early skeleton-based methods always rely
on hand-crafted descriptors classified as geometric descriptors (Evan-
gelidis, Singh, & Horaud, 2014), kinetic descriptors (Yang & Tian,
2014), and statistical descriptors (Tang, Li, Wang, & Wang, 2018).
With deep learning development, end-to-end networks like RNN, CNN,
and their variants are introduced for human action recognition (Avola
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that the joints are simply stacked into time series or pseudo images
in Euclidean space. As a result, they neglect the irregular topological
structure inherent in human skeletons, limiting the capability of action
modeling.

Skeleton sequences can be treated as isomorphic spatial-temporal
graphs in non-Euclidean space, where bones in skeletons are considered
as spatial edges and the same joints in consecutive frames are connected
as temporal edges. Therefore, Graph Convolutional Networks (GCNs)
have reflected a growing prospect due to their advantages of processing
graph-type data like skeletons. Yan et al. (Yan, Xiong, & Lin, 2018) first
proposed the ST-GCN for skeleton-based action recognition, which is
effective and lays a foundation for GCN-based approaches. Shi et al.
(Shi, Zhang, Cheng, & Lu, 2019a) investigated the kinematic depen-
dency between joints and proposed a directed acyclic graph (DAG) for
skeleton modeling. Liu et al. (Liu, Zhang, Chen, Wang, & Ouyang, 2020)
focused on aggregating the information from multi-range neighbors and
alleviated the domination of near joints. However, these GCNs with
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(c) throwing

Fig. 1. Example of skeleton sequences for various actions. (a) Jumping is a significant motion that involves a wide range of spatial changes. (b) Writing, on the other hand, is a
subtle movement. (¢) Throwing is decomposable and can be intuitively divided into sub-actions (c,-c4).

predefined graphs fail to picture action-specific dependencies between
joints, thus impairing their generality for action recognition.

Motivated by this, some GCNs with dynamic structures are ex-
ploited. Shi et al. (Shi, Zhang, Cheng, & Lu, 2019b) embedded the
Gaussian function to calculate the relationship of joints. Li et al. (Li,
Mao, Huang, Zhu, & Wu, 2023) refined the topology by part-wise cor-
relation modeling and mapping functions. In addition, some researchers
further designed multi-stream ensembled networks to improve the
action representation ability of GCNs through decision-level fusion of
various flows (Cheng, Zhang, He, Cheng, & Lu, 2021). This way can
effectively enhance motion information, but it is undeniable that too
many streams will create a computational burden. Therefore, design-
ing a general model to analyze disparate actions effectively is still
challenging because human movements involve complicated and di-
verse spatial-temporal concurrency between joints. As shown in Fig. 1,
jumping involves a wide range of spatial-temporal changes throughout
the body, but writing is mainly influenced by the subtle movements
of hands. Besides, some motions are decomposable, such as throwing,
which can be divided into holding, lifting, hurling, and putting hands
down. However, existing GCN-based methods ignore this diversity in
action representation, compromising their performance and robust-
ness. The specific manifestation is that existing approaches are tricky
to recognize actions from incomplete skeletons caused by external
disturbances, especially occlusion.

Upon analysis, we conclude that the following reasons contribute
to the above defects. (1) GCN-based approaches always utilize spa-
tial configuration partition strategy coined in ST-GCN to learn the
weights for various neighborhoods. This strategy only involves the
simple physical structure but disregards joint kinematic dependency
restricted by skeletons, limiting the representation capability of GCNs.
(2) Most existing methods first perform Spatial Graph Convolution
(SGQ) to extract spatial features and then feed them into a Temporal
Graph Convolution (TGC) module to capture degraded spatial-temporal
patterns. This factorized paradigm hinders the synchronous transfer of
spatial-temporal information between joints, thus failing to capture the
complex spatial-temporal dynamics for human action recognition. (3)
Both SGC and TGC are onefold fixed-size local operations that fail to
capture discriminative features for multi-range actions, such as writing
and jumping, which is exacerbated in the case of occlusion.

To overcome these limitations, we propose the Multi-Granular
Spatial-Temporal Synchronous Graph Convolutional Network (MSS-
GCN) for human action recognition. The pipeline is shown in Fig. 2.
Firstly, we suggest three partition strategies: attribute, activity, and
mixed partition strategy according to the hinged kinematics constraints
in skeletons to enrich the weight-sharing mechanism of SGC. Secondly,
we endow joints with different diffusion intensities, i.e., different
affinity fields, through flexible sliced spatial-temporal graphs. Then,
we present a Synchronized Slice Encoder (Syn-STE) to simultane-
ously embed spatial and temporal action patterns. Thirdly, we design
Multi-granular Spatial-temporal Encoders (Multi-STE) to capture the
spatial-temporal motion patterns with multiple ranges. By coupling
the above effort, MSS-GCN can yield general action representation
and multi-granular features, thus showing superior performance and
robustness on three public datasets.

In general, the contributions of this work are summarized as follows:

» We investigate three partition strategies: activity, attribute, and
mixed partition, according to joint kinematic dependency re-
stricted by skeletons. On this basis, we derive the EAGC mod-
ule, which has the optimal weight-sharing mechanism and is
compatible with other GCN-based approaches.

We construct the Multi-sliced Spatial-temporal Graph (MSTG)
according to the local action semantics to model skeleton se-
quences more fine-grained and flexible, considering the diversity
and complexity of human movements.

We propose the Multi-STE module to capture and fuse multi-
granular motion patterns, which can extract comprehensive and
discriminative features even for occluded skeletons.

We design a Multi-Granular Spatial-Temporal Synchronous Graph
Convolutional Network (MSS-GCN), and its effectiveness and ro-
bustness have been validated by extensive experiments on three
public datasets: NTU-RGB+D, NTU-RGB+D 120, and NW-UCLA.

The remainder of the paper is organized as follows: Section 2
introduces existing studies related to this work. Section 3 details the
proposed MSS-GCN and its vital modules. The extensive experimental
results are presented in Section 4. In addition, we visualize the features
in Section 5 and discuss the partitioning strategy and robustness of
MSS-GCN. Finally, the conclusion of our work is described in Section 6.
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Fig. 2. The pipeline of the proposed MSS-GCN. It stacks nine MSS-GC layers, each containing EAGC and Multi-STE modules. The Multi-STE module has a multi-branch structure
composed of Syn-STE modules followed by feature fusion. After the latest MSS-GC layer, the Global average pooling (GAP) and Fully connected (FC) layer with SoftMax is settled.

Then, the action with the highest value in the score vector is outputted as the final result.

2. Related work
2.1. GCN-based action recognition

Unlike the RNN-based methods that regard the skeleton data as a
sequence of time series (Avola et al., 2020; Zhang et al., 2018) or the
CNN-based methods that consider the skeleton data as pseudo-images
(Hou et al., 2018; Xia et al., 2022), GCN-based approaches construct
the spatial-temporal graph for action modeling. In the skeleton graph,
the spatial edges connect the joints like human bones and temporal
edges link the identical joints in the consecutive frames. Compared with
images or time series, operating convolution on graphs is challenging
due to its non-Euclidean nature and lack of rigid arrangement. Yan
et al. (2018) solved this problem and proposed Spatial Temporal Graph
Convolutional Networks (ST-GCN). At this point, GCN is extended to
skeleton-based action recognition.

Single-stream methods. According to the characteristics of skele-
tons, Yan et al. (2018) investigated the sampling function and partition
strategies and proved to be effective for performing convolution on
skeleton graphs. To exploit higher-order dependencies, Li et al. (2019)
introduced actional-structural graph convolution to capture actional
links and structural links between joints. Considering the complemen-
tarity between the graph node and edge, Zhang et al. (Zhang, Xu, Tian,
& Tao, 2020) devised a graph edge convolutional neural network as a
complement to existing GCNs. Besides, Song et al. (Song, Zhang, Shan,
& Wang, 2021) cascaded temporal difference and relative coordinate of
joints to improve the robustness, and measured the activation degrees
of skeleton joints by the class activation maps (CAM). However, their
action representation ability is limited by the monotonous input data
stream.

Ensembled-stream methods. Unlike the above single-stream
approaches, ensembled-stream methods have multiple streams, each
adopting diverse action information as input and ensembled for de-
cision fusion. Shi et al. (2019b) generated the lengths and directions
of bones as the second-order information of the skeleton data. They
proposed a two-stream framework to model both the first-order and the
second-order information simultaneously, showing notable improve-
ment in the recognition accuracy. Liu et al. (Liu, Gao, Khan, Qi, & Guan,
2021) devised a multi-stream network including two static feature
streams, i.e., the relative coordinate of the joints and bone direction,
and the dynamic feature stream, i.e., temporal displacements between
two consecutive frames. In addition, Cheng et al. (2021) utilized four
streams as input data and proposed the ShiftGCN++, where the joint
stream is the original coordinates, the bone stream represents the
difference between adjacent joints, the joint motion stream and bone
motion stream indicates the joint and bone difference between adjacent
frames, respectively.

Topology optimization. On the basis of ensembled-stream frame-
work, many researchers further improve the representation ability of
each stream by optimizing the graph topology in GCNs. Shi et al.
(2019a) designed the directed acyclic GCN based on the kinematic de-
pendency between the joints and bones, in which joints are directed to

each other by incoming and outgoing edges. Due to the fixed topology,
the predefined models like this lack the generality to new samples. To
capture action-specific topology, Huang et al. (Huang, Huang, Ouyang,
Wang, & Assoc Advancement Artificial, Intelligence, 2020) devised the
part relation block with graph pooling operators to get the body parts
relationship. Li et al. (Li, Huang, & Mao, 2023) constructed the directed
diffusion graph to emphasize spatial-temporal information fusion be-
tween joints. To refine the topology, Chen et al. (Chen, Zhang, et al.,
2021) exploited the channel-specific topologies through a channel-wise
modeling function as a generic prior and refined it in an end-to-end
way. Considering that the pairwise topology above ignores the high-
order correlation between joints, Zhou et al. (2022) constructed a
hypergraph and designed a hypergraph self-attention module for action
representation. Nonetheless, the above methods ignore the potential
temporal correlation between joints, thus limiting the action represen-
tation capability of GCNs. To solve this issue, Plizzari et al. (Plizzari,
Cannici, & Matteucci, 2021) designed a Temporal Self-Attention mod-
ule (TSA) to model inter-frame joint correlations, supplementing spatial
body parts dependency. Wu et al. (2024) built multiple hypergraphs
and updated the weights of joints for salient regions of the actions.
However, the above disassembled spatial-temporal methods hinder the
transmission of spatial-temporal synchronized information, making it
intractable to capture comprehensive action concurrences, and their
universality to depict diverse actions is limited.

2.2. Multi-granular analysis in action recognition

Human behavior involves complex contexts and various manifes-
tations. To improve the representation capability of GCNs, many re-
searchers tend to employ multi-granular tricks in human action recog-
nition. Li et al. (2016) modeled frame and video stream as different
granularities and boosted action recognition by generating the hierar-
chical multi-granular motion representations. Pan et al. (Pan, Chen, &
He, 2023) treated the supernodes as critical nodes for graph pooling
and then used the 3-clique algorithm to coarsen the aggregated features
repeatedly. Zhang et al. (2019) introduced pose-guided interactions as
the fine-grained semantics of senses and regional cues to capture social
relations in human activity. Chen et al. (Chen, Zhou, et al., 2021) pro-
posed a DualHead-Net that jointly pictures the coarse- and fine-grained
skeleton motion patterns by high- and low-temporal resolutions. Shu
et al. (Shu, Xu, Zhang, & Tang, 2022) defined local and context granu-
larity, which represents one-joint and partial-joint skeleton sequences.
Besides, Huang et al. (Huang, Guo, Peng, & Xia, 2023) proposed the
Hypergraph-convolution Transformer to capture fine-grained motion
patterns that appear on the human face and body. In addtion, Liu
et al. (Liu, Zhang, et al., 2020) achieved multi-granular with respect
to space, and Chen et al. (Chen, Zhang, et al., 2021) obtained multiple
granularities from the view of time. However, the previous methods
only capture a single time or space granularity and fail to extract multi-
granular spatial-temporal features, which deteriorates their robustness.
In this paper, we extend the granularity at the spatial-temporal level
and perform feature fusion through a multi-branch network structure,
allowing for a more comprehensive and robust representation of human
actions.
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3. Methods
3.1. Preliminaries

Notations. A skeleton sequence can be represented as a spatial-
temporal graph defined as = (V, &), where ¥ = {v,0,,...,0p} is
the joint set, and £ is the spatial-temporal edge set. The spatial edges
are human bones reflected by adjacency matrix A € R"*Y, where
A;; reflects the edge that exists between v; and v;. Therefore, the
spatial neighborhood of v; can be defined as N (v;) = {v; | 4;; #0}.
The corresponding joints in two consecutive frames are connected as
temporal edges. Given the time interval I', the temporal neighborhood
of v,; is represented as Ny (v,;) = {v,;llg—1|< [I/2]}. The input
of GCN is X € RE*T*V where C, T, and V denote the number of
channels, frames, and joints, respectively. T and V are determined by
the particular dataset. Since the original joints are represented by 2D
or 3D coordinates, C is initialized to 2 or 3. The above notations apply
throughout.

Spatial graph convolution. As shown in Fig. 1, the skeleton graph
lacks the inherent rigid arrangement that exists in images, which
poses a significant hurdle to establishing the correspondence between
neighboring joints and weights. To solve this problem, ST-GCN et al.
Yan et al. (2018) designed the partition strategy and mapping function
to realize the weight-sharing mechanism and then extend classical
convolution to skeleton data. Specifically, they partitioned joints into K
subsets and associated each joint with a unique weight vector according
to its subset index. On this basis, the spatial graph convolution can be
formulated as:

four ()= Z %fin (P (vis0;)) - W (M (v1,0;)) M

). LJ
v EN,

where Z; ; denotes the cardinality of subset S;, that contains v;. It
equilibrates the contribution of each subset. f;, is the input feature
map. The partition function P and the mapping function M serves to
assign an appropriate subset index of v;. W is the K weight vector
associated with K subsets. Therefore, the partition strategy is crucial, as
it determines the convolution kernel size and information aggregation
of joints.

Temporal graph convolution. The temporal edges can be inter-
preted as the trajectories of the joints during time intervals intuitively.
Specifically, each trajectory records the essential dynamics of the iden-
tical joint. The temporal graph convolution, a special convolution
operation in CNNs, is introduced to capture this information, which
can be written as

X$Y = convap(rx1] (xP) )

where I'x1 is the kernel size of the 2D convolution. X is the input to
the /,, hidden layer. Typically, the cross-spacetime motion patterns are
captured by stacking the SGC module and TGC module, i.e., alternately
executing Eq. (1) followed by Eq. (2).

3.2. Partition strategies for GCNs

How to effectively help GCNs extract discriminative information
from spatial-temporal skeletal graphs is a crucial issue for skeleton-
based human action recognition. Xu et al. (Xu, Ye, Zhong, & Xie,
2022) has provided theoretical evidence that GCNs are essentially an
extension of CNNs. From this perspective, we revisit graph convolution
operation and find that it is effective to optimize the partition strategy
to enhance the representative capability of GCNs. In CNNs, the local
connectivity is directly established through the natural grid structure of
images, and each pixel has the same number of neighbors. The learned
weight matrix is element-wise multiplied with the corresponding regu-
larly arranged pixel values. Then, the convolutional kernel slides from
the top-left to the bottom-right to update pixel values and eventually
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obtain the output feature map. In other words, the relation between
pixels and weights is determined by the grid structure of the image
itself.

On the contrary, the skeletal graph is flexible, with each joint
having varying neighbors arranged irregularly, and thus the pertinence
between joints and weights is absent. To solve this problem, partition
strategies are introduced, which not only define the kernel size of SGC,
i.e., the length of the weight vector but also establishes the correspon-
dence between joints and weights. Therefore, just as the importance of
the convolutional kernel in CNNs, the partition strategy is crucial for
GCNs. However, most existing methods rely on the limited partition
strategy (Figure 3(a-c)) coined in ST-GCN (Yan et al., 2018), which
only counts on the physical distance of joints and underutilizes the
articulated nature of human skeletons. In this paper, we present three
novel partition strategies and introduce the EAGC module to enhance
the representation capacity of GCNs.

Attribute partition strategy. The human skeleton is a hinge struc-
ture in that one joint moves around another joint with bone. On this
basis, the human skeleton can be constructed as a directed graph, where
the directed edge means the dependency between joints, i.e., v; — v;
indicates that v ; Moves around node v;. As shown in Fig. 3(d), the joints
are divided into source and target sets, i.e., K = 2. Mathematically, the
mapping function M is defined as:

0, if v; > v;

— J
M(vi,vj)—{ 1L if vy - 0 ©)

Activity partition strategy. Each joint has a unique function in
action execution, and its activity affects its contribution to actions. As
depicted in Fig. 3(e), hands and feet are the most active, and their
commonality is that they are both leaf nodes. Inspired by this, we
employ out-degree as a measure and divide the joints into three subsets:
active subset, medium subset, and silent subset. Formally,

0, ifD(Uj) =0
1, if D (v;)

M(Ui’u/'): =1
2, ifD(Uj) >2

G

where D (v j) is the out-degree of v;. According to the activity partition
strategy, the optimized graph convolution kernel can assign weights
to joints based on their contribution to the action, bringing better
modeling capacity and recognition performance.

Mixed partition strategy. Adjacent joints are strongly coupled,
and the distance between joints is proportional to their dependence.
Therefore, neighbors should assign weights based on the number of
hops, which can be regarded as the connection strength. To this end, we
propose a mixed partition strategy, as drawn in Fig. 3(f). Specifically,

2d, if H (v;,v;) =d.0>d <6, v, > v,

Lv:) = = J
M(opvy) { 2d+1, if H (0,0;) =d,02d <0, v; > v, ®)

where H (v;,v;) is the least hop from v; to v;. 6 is the maximum
distance of the sampling function, which determines the receptive field.
When 6 = 1, the mixed partition strategy is equivalent to the attribute
partition strategy. After executing the mapping function, each joint is
assigned a value representing the group index to which it belongs.
Taking the activity partition strategy as an example, the group number
of joint D is M (E, D) = 0, meaning that D belongs to the 0,, group.
The grouping results of all the joints have been annotated in Fig. 3.

3.3. Extended adaptive graph convolution

As depicted in Fig. 3, joints are divided into fixed groups according
to the partitioning strategy, and joints in the same group share identical
weights in the graph convolution, resolving the different number of
neighbors and weight assignment problems in the graph structure. To
this end, Eq. (1) is transformed into

K L 1
Sout =5<Zfin (Dszka2>ka> (6)
k
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Group:[B,F,J,N] Group,:[D,M,N]
Feature;| Feature;|

Weight: Weight:

Groupg:[E,L] Groups:[D,M]
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(d ) attribute partition strategy

( e ) activity partition strategy

( f) mixed partition strategy

Fig. 3. Illustration of partition strategies. The first row shows the strategies presented in ST-GCN (Yan et al., 2018), and the second row illustrates our proposed strategies. The
red dashed line indicates the corresponding neighborhood of the specific root joint E and L. The number marked on a joint indicates its group index obtained by the mapping

function M, and joints belonging to the same group share identical learned weights.

where A= A+1, A, € R" and I is the identity matrix which means
self-connection. The element of A, ; ; denotes whether v; is in the k,,
subset of v;. D, is the diagonal degree matrix of A;. W, is the weight
vector similar to W in Eq. (1) and k = M(v;, v;)-

The manually defined topology fails to model intrinsic dependency
between unnaturally connected joints (Liu, Zhang, et al., 2020). There-
fore, we propose the EAGC module to enhance GCNs’ representation
capability. As shown in Fig. 4(b), we adopt channel-wise correlation
modeling to generate an adaptive adjacency matrix A. Given two joints
v; and v; with their corresponding C" channel features x; and x;, the
channel-specific relationships A € RV*Y*C" is defined as

Ay =0 (MLP (o () 16 (x,))) @

where ¢ and ¢ is the linear transformation function to reduce feature
dimension. || is denoted as a cascade operation. MLP is the multilayer
perceptron. ¢ is the activation function by which the more relevant
joints are emphasized. Then adaptive channel-refined topology can be
learned through backpropagation. Specifically,

A=TA) +aA 8)

where 7 is a transformation function to conform A and A has the
same dimension. « is a trainable parameter. A can capture distant
joint correlations and automatically construct the semantically-based
topology. By combining the above partition strategies and dynamic
topology, we devise EAGC modules including EAGC-attr, EAGC-act,
and EAGC-mix, respectively. They are compatible with other GCNs and
can effectively improve their performance. The analysis is detailed in
Sections 4.4 and 5.3.

3.4. Multi-sliced spatial-temporal graph

Human movements are varied and intricate in nature. Some ac-
tions are obvious, such as “fall down”, while some actions are subtle,
such as “writing”, and some are decomposable, such as “pick up and
throw”. Therefore, it is challenging to design a general graph to model
and analyze disparate actions effectively. In this paper, we propose

the MSTG to enhance the generalization of GCN-based action model-
ing. Intuitively, an action can be decomposed into different phases,
which convey multi-level action semantics. For example, the action
such as “throwing” can be decomposed into holding, lifting, hurling,
and putting hands down, as illustrated in Fig. 1(c). Therefore, we
crop the skeleton sequence along the time dimension to model sub-
actions. In addition, the spatial configuration of joints is significant
for action recognition, especially subtle movements. To capture more
fine-grained motion patterns, we also segment the skeleton to charac-
terize the actions more pertinently. Considering that actions have high
spatial-temporal parallelism, we perform these two slicing operations
simultaneously to obtain spatial-temporal action slices and model them
as spatial-temporal sliced graphs. For clarity, the MSTG for “running”
is as sketched in Fig. 4(c).

Mathematically, given a skeleton sequence X € ROV that is mod-
eled as G = (V, &), the multi-sliced spatial-temporal graph ¢’ containing
n graph slices is defined as ¢’ = {g, Ug, U U g, }, with g, = {v.e}, vC
V and £C £. In other words, X = {x, ||x,]|,....x,}, x; € RT/PXV/0xC,
where P and Q is the temporal step and spatial size of slices, respec-
tively. For each slice g;, we treat bones as spatial edges depicted as
Al e RVY/@¥V/Q_ Unlike the original G, we establish fully connected
local temporal edges within each slice. These extended edges serve two
purposes: on the one hand, they can capture the temporal changes of
individual joints (trajectories); on the other hand, they can capture dis-
tant spatial-temporal dependencies between different joints. Drawing
upon this foundation, the spatial neighborhood of the m,, slice graph
is N7 (v;) = {v; | A", ; #0,v; € g, }, and the temporal neighborhood
of v,; is represented as N7 (v,;) = {v,;lla—11< |T/2P).v; € g, }-
To reduce computing complexity and redundant relations, we split
the skeleton sequence by non-overlapping windows. The proposed
MSTG is more flexible for multi-range action modeling, thus boosting
recognition performance.

3.5. Multi-granular spatial-temporal encoders

Synchronized spatial-temporal modeling. Human movements
contain highly concurrent spatial-temporal dynamics of joints. This
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Fig. 4. The detailed structure of the proposed MSS-GC layer. MSS-GC contains EAGC(b) and Multi-STE(e) modules. EAGC is an adaptive GC combined with the proposed strategies.
The MSTG for running (a) is illustrated in (e), including multi-granular sliced graphs from multiple branches and then encoded by relevant Syn-STE modules. Feature fusion is

designed for extracting multi-granular motion features.

property is particularly obvious at the local scale. For example, an
action consists of multiple sub-actions in which joints are highly
spatial-temporal correlated. However, such critical synchronous in-
formation between joints is disregarded by factorized paradigms of
existing GCNs. The proposed MSTG facilitates localizing these highly
concurrent joints. Based on this, we design the Syn-STE module to
encode their synchronized spatial-temporal motion patterns, as shown
in Fig. 4(d). For each sliced graph, we rearranged all the joints as
a sequence by flattening the slice in the order of spatial and then
temporal dimension. After that, each joint can be regarded as the token
in Transformer (Vaswani et al., 2017). Then, we apply the Multi-Head
Attention (MHA) mechanism to estimate the global spatial-temporal
dependency between the sliced joints, which re-encodes the joints
and facilitates spatial-temporal information diffusion across the MSTG
simultaneously. Particularly, the linear embedded joint sequences are
denoted as O, K, and V, and then the scaled dot-production is con-
ducted to compute dependency. For each attention head, the attention
is conducted as follows

C/
where B is the relative position bias (Liu, Lin, et al., 2021) to preserve
the original structure. V/C’ is the scaled factor, and C’ is the dimension
of O, K, V. The h-head attention weight W of i, sliced graph is
obtained by

T
W(Q, K, V) = Softmax < oK + B> \% 9

W; =y (concat (wy,w;, ..., w;)) (o

where w; is the attention vector of i,, head. y is the linear mapping
function. MHA allows the model to extract discriminative features from
different representation subspaces. To this end, each MSTG is encoded
as x;/, and x;/ = x; - W,. Then, every head attention is concatenated and
encoded for final embedding of x,’. That is

X' = ¢ (concat (x;,x’z,...,x’)) an

n

where ¢ is the linear transformation employed for channel consistency.
The Syn-STE module exploits the spatiotemporal synchronous charac-
teristics of actions, thus effectively extracting discriminative features
for human action recognition.

Multi-Granular analysis. To endow the model with general repre-
sent capability for various actions, many researchers tend to introduce
multi-granular analysis into GCNs (Chen, Zhang, et al., 2021; Liu,

Zhang, et al., 2020). However, these methods are limited because they
only focus on one aspect, overlooking the fact that human motion is the
collection of skeletons with various spatial transformations over time.
In biomechanics, the human body can be represented as an articulated
system of rigid segments connected by joints, and human motion can be
considered a continuous evolution of the spatial configuration of these
rigid segments (Vemulapalli, Arrate, & Chellappa, 2014). Therefore, the
key point of multi-granular action analysis is to describe spatial and
temporal dynamics at different semantic levels simultaneously.

In this study, we regard the size of the spatial-temporal sliced graph
as the granularity factor, which controls the transmission scope and
strength of spatial-temporal synchronization information. As displayed
in Fig. 4(e), we propose the Multi-STE with a multi-branch structure,
and each Syn-STE branch has specific granularity for feature embed-
ding and fusion. On this basis, each branch provides granular-specific
action semantics combined for a more comprehensive representation of
actions.

Multi-Granular Feature Fusion. After considering that certain oc-
clusion situations can result in the degradation of spatial-temporal
slices and that the action semantics communicated by different slices
are complementary, we explored four distinct fusion strategies outlined
in Fig. 5. Specifically, we introduce the SE block (Hu, Shen, & Sun,
2018) for feature selection, where the added features are augmented,
as shown in Fig. 5(a). In addition, we try to add SE for every branch to
fuse granularity-specific semantics. We proposed Multi-SE-Add fusion
(Fig. 5(b)) which firstly performs attention encoding separately and
then conducts add fusion. Besides, as drawn in Fig. 5(c), e-Add fusion
dynamically adjusts the importance of different branches by construct-
ing a learnable vector b, but it does not work well. Vary to the above
methods, SE-W-Add fusion (Fig. 5(d)) only retains the channel-wise
attention of each branch obtained by SE and adds them to derive the
global weight matrix W. Then the feature fusion is implemented by
conducting element-wise multiplication between W and the primary
input X. Considering the continuity of spatial-temporal information,
we employ group convolution followed by a ReLU layer to realize
cross-slice feature aggregation and sparse multi-granular motion repre-
sentation. In addition, the residual connection is employed to mitigate
the vanishing gradient problem. See Section 4.4 for the evaluation of
the above fusion strategies.
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Fig. 5. The illustration of multi-granular feature fusion strategies. We propose four fusion strategies and classify them into two categories: intermediate fusion (a), and semantic

fusion (b, c, d).
4. Experiments and discussions
4.1. Datasets

NTU-RGB+D. NTU-RGB+D (Shahroudy, Liu, Ng, & Wang, 2016)
contains 56,880 action samples categorized into 60 classes. The actions
are conducted by 40 volunteers. The skeleton sequences are captured
by three Microsoft Kinect v2 cameras from three views. There are two
popular benchmarks: (1) cross-subject (C-Sub): training data comes
from half of the subjects, and testing data comes from the other. (2)
cross-view (C-View): the training set comes from camera IDs 2 and 3,
and the testing set comes from camera ID 1.

NTU-RGB+D 120. NTU-RGB+D 120 (Liu, Shahroudy, et al., 2020)
is an extension of NTU-RGB+D, which has 120 action classes and
114,480 samples. The samples are collected in various locations and
backgrounds denoted as 32 setups. In addition to the original cross-
subject (C-Sub), the cross-setup (C-Set) evaluation is introduced, where
the training set comes from samples with odd setup IDs, and the testing
set comes from the rest.

NW-UCLA. NW-UCLA (Wang, Nie, Xia, Wu, & Zhu, 2014) is a multi-
view dataset captured by three Kinect cameras. It contains 1494 video
clips and covers 10 action labels. Each action is performed by 10
subjects. We follow the same evaluation protocol in Chen, Zhang, et al.
(2021): the samples captured by the first two cameras are grouped as
a training set, and the residual makes a testing set.

4.2. Training details

Unless otherwise stated, the model MSS-GCN and its variants are
trained by the Stochastic Gradient Descent (SGD) with 0.9 momentums
for a total of 80 epochs under the PyTorch deep learning framework.
The standard cross-entropy loss is employed. We apply a warmup
strategy in the first 5 epochs for training stability. The global param-
eters, such as weight decay, initial learning rate, and learning rate
decay is set to 0.0004, 0.1, and 0.1, respectively. The learning rate is
linearly scaled down at specific steps. For NTU-RGB+D and & NTU-
RGB+D 120 dataset, the step is 30, 40, 50, and the batch size is set to
64. For the NW-UCLA dataset, the step is 50, 70, and the batch size

Table 1
The accuracy (%) of MSS-GCN embedded single Syn-STE with various slices and head
numbers.

Parameter ([P, Q]) Head (H) Accuracy (%)
[4, 5] 4 89.49
[4, 25] 4 90.52
[8, 25] 4 90.08
[16, 25] 4 88.88
[32, 25] 4 88.60
[4, 25] 2 88.52
[4, 25] 8 88.34

equals 16. In addition, inputs are preprocessed with normalization and
translation following Chen, Zhang, et al. (2021). We adopt a two-stream
framework to train models using joint and bone data and ensemble
their results literately.

4.3. Parameter selection

The granularity of MSTG. For MSS-GCN, the size of the spatial-
temporal slice is critical, which not only determines the intensity of
the spatial-temporal information diffusion but also the granularity of
motion features. As the decisive factors affecting the slices, P and
Q in Section 3.4 are essential. In this work, we conduct incremental
experiments to obtain the optimal configuration. Firstly, we explore
the influence of [P,Q] on MSS-GCN with a single Syn-STE branch.
As shown in Table 1, the slice size can significantly affect the model
accuracy, reflecting the importance of fine-grained analysis of hu-
man actions. The highest accuracy of 90.52% is achieved when [P, Q]
matches [4,25]. In addition, the number of heads (H) in MHA also
impacts the performance. Considering the trade-off between complexity
and accuracy, we set H to 4.

Then, we fix the above parameters and explore the Multi-STE with
various combinations. Specifically, we design a two-branch structure
where the window of one branch is settled to [4, 25], which is the
optimal setting in the single-branch regime. And then, we explore
several window combinations of various parameters [P, Q]. As shown in
Table 2, when [P, Q] of the two branches is the same, i.e., they all equal
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Table 2 Table 5
The accuracy (%) of two-branch MSS-GCN with various combinations of MSTGs. Comparison of various models under different component configurations.
[P, 0] [4, 5] [4, 25] [8, 25] [1, 25] [64, 1] [64, 5] Methods Layers Accuracy(%)
[4, 25] 89.57 89.46 89.71 90.28 90.62 90.04 ST-GCN* w/ EAGC 10 85.55 1 1.90
AGCN* w/ EAGC 10 89.39 1 0.55
ST-GCN* w/ Syn-STE 10 87.85 1 4.20
Table 3 AGCN* w/ Syn-STE 10 89.53 1 0.69
The accuracy (%) of models with different partition strategies. ST-GCN* w/ Multi-STE 10 88.75 1 5.10
Methods Uniform Distance Spatial Activity Attribute Mixed AGCN* w/ Multi-STE 10 90.01 t 1.17
ST-GCN (Yan et al, 2018)* 80.84 8333  83.65 84.89 8219  85.01 MSS-GCN w/o Multl-STE ? 8973 1 0.89
AGCN (Shi et al. 2’019]))"‘ 88.29 88.51 88.84 89.00 88.94 89.83 MSS-GCN w/o Multi-STE 10 89.81 | 0.81
DD-GCN (Li et al, 2023) 8971  90.04 9013 9052 9010  90.18 M5S-GCN w/o 1 Syn-STE ? 0111 0.51
MSS-GCN : 89.96 90.10 90.25 90.62 90.06 90.30 MSS-GCN w/o 1 Syn-STE 10 90.52 1 0.10
. . . . . MSS-GCN w/o EAGC 9 90.25 | 0.37
Those marked with * are methods we reproduced. MSS-GCN 9 90.62

Table 4
Comparison of feature fusion strategies.

Fusion strategy Accuracy Parameter
Concat fusion 89.86% 3.04M
Add fusion 89.46% 2.65M
SE-Add fusion 89.89% 2.75M
a-SE-Add-fusion 90.06% 2.85M
SE-W-Add fusion 90.10% 2.85M
Multi-SE-Add fusion 90.62% 2.85M
Multi-SE-Add w/o GroupConv 87.60% 2.62M

to [4, 25], the accuracy is only 89.46%, which illustrates that extracting
multi-granular features stimulates performance. We find that too small
slices may neglect global information. That is why the supplement
branch with [P, O] =[4, 5] fails to refine recognition results. Therefore,
the integrity of action semantics should be emphasized while consid-
ering the complementarity of multi-branch structures. When the [P, O]
in the extra branch is [64, 1], the accuracy is the highest, reaching
90.62%. The possible reason is that these two branches capture the
global information in both time and space dimensions, thus extracting
multi-granular spatial-temporal details simultaneously. We also tried
to design a three-branch structure and set [P, Q] to [4, 25], [64, 1],
and [1, 25], respectively. However, the accuracy is only 89.82%, and
the additional branch leads to a computational burden. Therefore,
it is worth studying the appropriate grade for multi-granular action
analysis.

4.4. Ablation study

Comparison of partition strategies. We compare the proposed
three partition strategies against other strategies in ST-GCN (Yan et al.,
2018). Table 3 demonstrated that our strategies are competitive and
compatible with other GCNs. The SGC (Yan et al., 2018) incorporated
activity, attribute, and mixed strategy can enhance the accuracy up to
4.05%, 1.35%, and 4.17%, respectively. For AGCN (Shi et al., 2019b),
our three partition strategies are all optimal, among which the mixed
partition strategy raises the result by nearly 1% compared with the
spatial partition strategy. Overall, the activity and mixed strategies
work better, and we apply the activity partition policy by default
considering its advantage. The above results confirm our hypothesis:
optimizing partition strategies can effectively improve the performance
of GCN-based methods. It is worth noting that the three partition
strategies we proposed are general and can be embedded in existing
GCN-based methods to improve the accuracy effectively. We discuss
the properties of these partitioning strategies in detail in Section 5.3.

Evaluation of feature fusion strategies. We compare several
multi-granular feature fusion strategies, and the experimental results
are shown in Table 4. It can be seen that the fusion strategy with the
SE module is generally better than simple fusion strategies, i.e., Con-
cat fusion and Add fusion. Further, we divide other strategies into
intermediate fusion strategies, i.e., SE-Add and semantic fusion, as

depicted in Fig. 5. The fusion strategy combined with the SE block
is preferable to the intermediate fusion strategy because each branch
captures the action features from different granularities, and multiple
SE blocks corresponding to each branch can emphasize the action
semantics related to granularities, extracting more discriminative fea-
tures. Among them, the accuracy of the Multi-SE-Add fusion strategy is
the best, reaching 90.62%. Compared with Multi-SE-Add, the a-SE-Add
strategy with weight vector and the SE-W-Add strategy with the global
attention weight are 0.56% and 0.52% lower, respectively, and bring
computational burden. Furthermore, by analyzing the parameters of
these strategies in Table 4, we prove that Multi-SE-Add can balance the
accuracy and complexity and outperform other strategies. In addition,
we find that it is necessary to fuse the multi-granular temporal informa-
tion through the GroupConv module. Otherwise, the performance will
be reduced by 3.02% for MSS-GCN.

Effectiveness of components. Table 5. displays the results of the
ablation experiments on the proposed components. Based on these
results, we can conclude that (1) the EAGC, Syn-STE, and Multi-STE
modules are practical and can be transferred to existing GCN-based
approaches to stimulate their performance. Replacing the SGC and AGC
modules in ST-GCN and AGCN with EAGC can increase the accuracy
by 1.99% and 0.55%, respectively. The performance of ST-GCN and
AGCN is boosted regardless of whether Syn-STE or Multi-STE is em-
bedded. (2) Experiments on ST-GCN, AGCN, and MSS-GCN show that
the accuracy of Multi-STE is better than that of single Syn-STE. As
expected, capturing multi-granular action features benefits for better
performance. (3) MSS-GCN only needs to stack nine MSS-GC layers to
achieve the optimal recognition effect. Therefore, embedding EAGC and
Multi-STE is computationally cost-effective and efficient for GCN-based
action recognition.

4.5. Comparison with the state-of-the-art

To prove the advantages of the proposed MSS-GCN, we compare
it with existing methods on the NTU-RGB+D, NTU-RGB+D 120, and
NW-UCLA. The experimental results are reported in Tables 6-7. We
classify the listed methods into four types according to their backbones,
i.e., RNN-based, CNN-based, Transformer-based, and GCN-based meth-
ods. It can be seen that our method not only outperforms GCN-based
methods but also outperforms other types, especially RNN-based meth-
ods like AGC-LSTM (Si, Chen, Wang, Wang, & Tan, 2019) and AMCGC-
LSTM (Xu et al., 2021). As shown in Table 6, MSS-GCN achieves the
highest performance on the NW-UCLA dataset, which indicates that it
can effectively model daily actions and abnormal behaviors. In Table 7,
MSS-GCN exceeds many competitive GCN-based methods on NTU-
RGB+D and NTU-RGB+D 120 datasets. To be fair, the self-supervised
methods based on contrastive learning (e.g., AImCLR (Guo et al., 2022),
ConGT (Pang, Lu, & Lyu, 2023), ActCLR (Lin, Zhang, & Liu, 2023)
and HiCLR (Zhang, Lin, & Liu, 2023)) we report are the results after
finetune. As we can see, MSS-GCN not only outperforms STHG-DAN
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Comparisons of the number of ensembled streams (E-S), FLOPs (G) and number of parameters (M) and the top-1 accuracy (%) with

the methods on the NW-UCLA dataset.

Type Methods E-S FLOPs Para. Accuracy (%) Venue
RNN AGC-LSTM (Si et al., 2019) 2 - - 93.3 CVPR’'19
AMCGC-LSTM (Xu et al., 2021) 1 - - 87.9 JIOT’21
CNN SLnL+rFA+ML (Hu, Cui, & Yu, 2020) 2 - - 93.5 TMM’20
Transformer ConGT (Pang et al., 2023) 2 - - 85.3 TMM’23
Shift-GCN (Cheng, Zhang, He, et al., 2020) 4 0.7 1.23 94.6 CVPR’20
DC-GCN+ADG (Cheng, Zhang, Cao, et al., 2020) 4 3.6 9.8 95.3 ECCV’20
RGCA (Yao, Zhao, Xie, Ye, & Liang, 2021) 1 - - 85.3 ICME’21
CTR-GCN (Chen, Zhang, et al., 2021) 4 2.3 5.7 96.5 ICCV’21
ShiftGCN++(Li et al., 2023) 4 0.1 0.4 95.0 TIP’21
GCN GCN-HCRF (Liu, Gao, et al., 2021) 3 - - 91.5 TMM’21
FGCN (Yang, Yan, et al., 2022) 2 - - 95.3 TIP’22
Graph2Net (Wu, Wu, & Kittler, 2022) 2 0.6 1.6 95.3 TCSVT’22
CrossMoCo (Zeng, Liu, Liu, & Chen, 2023) 2 - - 87.6 TMM’23
DD-GCN (Li et al., 2023) 2 5.7 2.8 96.7 ICME’23
SaPR-GCN (Li, Mao, et al., 2023) 4 1.3 2.1 96.6 TCSVT’23
MSS-GCN (ours) 2 3.9 2.2 96.8 -

(Wu et al., 2024) introduces multiple spatial-temporal hypergraphs
constructed of multi-view human body joints but also exceeds ACE-ens
(Qin et al., 2024) that fuses higher-order features in the form of angular
encoding. Besides, our method can make a good trade-off between
accuracy and computational burden. On the NTU-RGB+D 60 dataset,
the FLOPs of our method is 6% and 20% of that of ST-TR (Plizzari
et al.,, 2021) and ACE-ens (Qin et al., 2024), respectively, even that
we utilize multi-stream ensemble that inevitably increases the compu-
tational burden. Besides, the overall parameters of our method is 26%
and 35% of that of the single-stream methods PL-GCN (Huang et al.,
2020) and MTT-AGCN (Kong, Bian, & Jiang, 2022), respectively. To
summarize, the extensive experiments fully demonstrate the superiority
of MSS-GCN thanks to its components: EAGC and Multi-STE modules.
In addition, these components are compatible with existing GCN-based
methods and can be easily ported to obtain accuracy gains.

5. Discussion

In this section, we further discuss the number of layers, the ro-
bustness of MSS-GCN, and the properties of partition strategies. Ex-
periments are all conducted on the NTU-RGB+D dataset with the
cross-subject setup.

5.1. Number of layers

Most existing GCN-based methods adopt a ten-layer network struc-
ture, and each layer includes spatial and temporal graph convolution.
We find that when using multi-granular tricks to enrich the motion
representation, only nine layers are needed to extract enough dis-
criminative features for action recognition, which shows the powerful
representation ability of MSS-GCN. We further illustrate feature differ-
ences of various layers by t-SNE dimensionality reduction. As shown
in Fig. 6, the original input data is projected into three clusters, each
containing a mix of samples from different classes. The middle fifth
layer extracts the shallow unified feature space.

Although the sample distribution is still chaotic, the distribution is
relatively uniform. It is worth noting that, compared with the features
obtained in the tenth layer, the features in the ninth layer have a more
considerable inter-class distance and a more precise decision boundary.
In other words, increasing the depth of neural networks is not always
beneficial because the network may learn the noise in the training data
rather than the underlying data structure. Therefore, the ideal depth of
the network should be determined experimentally to ensure that it can
learn valuable features while avoiding overfitting.

5.2. Results on the occluded data

To illustrate the robustness of MSS-GCN, we report its performance
on the occluded data in Table 8. To be fair, all the listed methods follow
the same experimental setup of Song et al. (2021) as default. Fig. 7
depicts the corresponding occlusion strategy, taking cheer-up action
of NTU-RGB+D dataset as an example. Specifically, we evaluate the
robustness from two perspectives: body occlusion and time occlusion.
(1) Body occlusion is the joint-level data degradation, which occludes
joints with the same index for all action samples. We adopt the joint
index officially given by NTU-RGB+D dataset, as shown in Fig. 7(b),
and divide the human body into five parts, namely the left arm(5, 6, 7,
8, 22, 23), right arm(9, 10, 11, 12, 24, 25), two hands(22, 23, 24, 25),
two legs(13, 14, 15, 16, 17, 18, 19, 20), and trunk(1, 2, 3, 4, 21). After
that, we select one of the parts at a time and set the coordinates of the
covered joints to O to simulate the scene where the part is occluded.
On this basis, we can ensure that the missing joints are the same when
all action samples occlude the same part, which guarantees fairness in
all cases. Figure 7 (c) illustrates the occlusion of the left arm.

From Table 8(top half), our method achieves optimal accuracy
except for the case of trunk occlusion, where MSS-GCN is 0.7% lower
than our previous method SaPR-GCN (Li, Mao, et al., 2023). It indicates
that part-based methods can effectively cope with trunk occlusion
interference. In addition, it is worth noting that the robustness of MSS-
GCN is significantly improved compared to ST-GCN (Yan et al., 2018).
In the case of left-arm occlusion, the accuracy is improved dramatically
by 35.4%, which benefits from multi-granular action modeling and
feature fusion. (2) Time occlusion is skeleton-level data degradation
where all samples occlude with the same proportion of skeletons. As
there may be instances where the human body is entirely occluded,
we use frame occlusion to simulate this scenario. We normalize action
samples to time series with the same length to ensure that a fair number
of frames will be degraded for all actions at the same occlusion ratio.
Given a sequence with 7 frames and p proportion of occluded frames,
we zero out skeleton data for T'xp/2 frames before and after the middle
frame. Fig. 7 (d) and (e) provide examples of occluded 10% and 20%
frames of cheering up. We report the experimental results under various
proportions of frame occlusion in Table 8(bottom half), where it can
be seen that MSS-GCN achieves the best performance. The reason is
that multi-granular spatial-temporal slices cover behavior information
of varying time intervals, and the multi-granular features extracted
based on these can dispair the impact caused by frame loss. In gen-
eral, improving the fine-grained modeling of skeletons and extracting
multi-granular features can effectively enhance the robustness of action
recognition.
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Comparisons of number of ensembled streams (E-S), FLOPs (G) and number of parameters (M) and the top-1 accuracy (%) with the methods on the NTU-RGB+D 60 and NTU-RGB+D

120 datasets.

Type Methods E-S FLOPs Para. NTU-RGB+D NTU-RGB+D 120 Venue
X-sub X-view X-sub X-set

RNN AGC-LSTM (Si et al., 2019) 2 - - 89.2 95.0 - - CVPR’19
AMCGC-LSTM (Xu et al., 2021) 1 - - 80.1 87.6 71.7 72.4 JIOT’21

CNN LDT-NET (Yin, He, Soomro, & Yuan, 2023) 1 - 0.4 82.3 89.1 - - ESWA’23
RGB+D+DFN (Li, Hou, Li, Ding, & Wang, 2024) 2 - - 91.8 96.5 - - ESWA’24
DSTA-Net (Shi, Zhang, Cheng, & Lu, 2020) 4 64.7 4.1 91.5 96.4 86.6 89.0 ACCV’20

Trans- former ST-TR (Plizzari et al., 2021) 2 259.4 12.1 90.3 96.3 84.3 86.7 CVIU’21
ConGT (Pang et al., 2023) 2 - - 84.6 91.6 79.4 80.5 TMM’23
ST-GCN (Yan et al., 2018) 1 16.3 3.1 81.5 88.3 70.7 73.2 AAAT'18
2s-AGCN (Shi et al., 2019b) 2 37.3 6.9 88.5 95.1 82.9 84.9 CVPR’19
AS-GCN (Li et al., 2019) 1 26.8 9.5 86.8 94.2 77.9 78.5 CVPR’'19
NAS-GCN (Peng, Hong, Chen, & Zhao, 2020) 2 72.3 13.0 89.4 95.7 - - AAAT'20
MS-G3D (Liu, Zhang, et al., 2020) 2 48.9 6.4 91.5 96.2 86.9 88.4 CVPR’20
Shift-GCN (Cheng, Zhang, He, et al., 2020) 4 10.0 2.8 89.7 96.0 85.9 87.6 CVPR’20
PL-GCN (Huang et al., 2020) 1 - 20.7 89.2 95.2 - - AAAT20
RA-GCN (Song et al., 2021) 3 32.8 6.2 87.3 93.6 81.1 82.7 TCSVT’21
ShiftGCN++(Cheng et al., 2021) 4 1.7 1.8 90.5 96.3 85.6 87.2 TIP’21
CTR-GCN (Chen, Zhang, et al., 2021) 4 7.9 5.8 92.4 96.8 88.7 90.1 ICCv’21
Graph2Net (Wu et al., 2022) 2 9.9 1.6 90.1 96.0 86.0 87.6 TCSVT’22
MKE-GCN (Yang, Wang, Gao, & Song, 2022) 3 - - 91.8 96.2 89.0 90.3 ICME’22
MTT-AGCN (Kong et al., 2022) 1 32.4 15.6 89.3 95.8 82.0 83.8 LSP22
FGCN (Yang, Yan, et al., 2022) 2 - - 90.2 96.3 85.4 87.4 TIP’22

GCN SMotif-GCN (Wen et al., 2022) 1 - - 90.5 96.1 87.1 87.7 TPAMI'22
AimCLR (Guo et al., 2022) 3 1.7 2.5 88.2 93.9 82.1 84.6 AAAT'22
ML-STGNET (Zhu, Shuai, Liu, & Liu, 2023) 2 - - 91.9 96.2 88.6 90.0 TIP’23
TA-HGCN-FC (Huang, Qin, et al., 2023) 2 - - 90.8 96.4 87.0 88.4 TCSVT’23
ActCLR (Lin et al., 2023) 3 1.7 2.5 88.2 93.9 82.1 84.6 CVPR’23
DD-GCN (Li et al., 2023) 2 17.4 5.7 92.6 96.9 88.9 90.2 ICME’23
HiCLR (Zhang et al., 2023) 3 3.5 4.7 90.4 95.7 85.6 87.5 AAAT23
SaPR-GCN (Li, Mao, et al., 2023) 4 6.6 8.3 92.4 96.4 88.7 90.3 TCSVT’23
EfficientGCN(B4)(Song, Zhang, Shan, & Wang, 2023) 1 15.24 2.0 91.7 95.7 88.3 89.1 TPAMI'23
SkeAttnCLR (Hua et al., 2023) 3 10.4 9.2 89.4 94.5 83.4 92.7 1JCAI'23
STHG-DAN (Wu et al., 2024) 3 5.2 2.7 91.2 96.5 88.7 89.8 PR’24
ACE-ens (Qin et al., 2024) 2 78.0 5.8 91.6 96.3 88.2 89.2 TNNLS’24
Bs-MSS-GCN(ours) 1 7.9 2.7 90.6 95.7 86.9 87.6 -
Js-MSS-GCN(ours) 1 7.9 2.7 90.2 95.3 86.2 87.1 -
MSS-GCN(ours) 2 15.8 5.4 92.9 97.0 89.1 90.5 -

Js is the raw joint stream, and Bs is the bone stream.

5.3. Characteristics of the partition strategy

The partition strategy directly influences the weight-sharing mech-
anism in graph convolution, determining how the neighborhoods ag-
gregate their information. Hence, the partition strategy plays a crucial
role in GCNs. We derive several variants of MSS-GCN by keeping
other network structures unchanged and solely modifying the partition
strategy. Building upon this, we further explore the characteristics of
different partition strategies mentioned in Section 3.2, as depicted in
Fig. 8. We discover that the activity, attribute, and mixed partition
strategies exhibit superior performance in recognizing actions with
limited motion information, like sneezing, with the activity partition
strategy being optimal (see Fig. 8(a)). Besides, Fig. 8(b-c) illustrates
that distance, activity, and spatial partition strategies outperform others
when distinguishing highly identical movements such as headache and
neck pain. After conducting extensive analysis, we have concluded
that optimizing partitioning strategies based on the inherent skeleton
structure of the human body can significantly enhance the performance
of GCN-based action recognition methods. Integrating joint attributes
into the partition strategy can provide additional prior knowledge for
instantaneous action recognition. Additionally, factoring in the relative
distances between joints in the partition strategy can highlight spatial
configuration, enabling a more in-depth analysis of subtle actions.
Researchers can select GCNs with suitable partitioning strategies for
specific applications to achieve better performance. Here are the guide-
lines. (1) Graph Convolutional Networks (GCNs) that incorporate a
partition strategy optimized by joint properties (e.g. mixed and activ-
ity strategy) have shown improved ability to recognize transient and
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abnormal actions. These methods can be utilized in public security,
intelligent elderly care, and similar fields. (2) GCNs with partitioning
strategies that emphasize relative distance between joints (e.g., distance
and spatial strategy) are often effective for fine-grained and similar
action analysis. We suggest that these methods can be applied to human
resource management, behavioral psychology, and related areas.

6. Conclusion

In this work, we modeled human skeleton sequences as multi-sliced
spatial-temporal graphs to represent diverse actions and mitigate occlu-
sion interference. We presented two practical components compatible
with GCNs, i.e., EAGC and Multi-STE, for capturing discriminative mo-
tion patterns. EAGC optimized the weight-sharing mechanism of graph
convolution by extended partition strategies and enhanced the repre-
sentation capability of GCNs. Multi-STE emphasized spatial-temporal
synchronization and multi-granular analysis with various motion slices.
On this basis, we proposed MSS-GCN, a robust framework that gen-
erates multi-granular and synchronized spatial-temporal features im-
paired by previous factorized paradigms. The extensive experiments
on the NTU-RGB+D, NTU-RGB+D 120, and NW-UCLA datasets demon-
strated that MSS-GCN outperforms existing methods. In future work,
we will focus on fine-grained action analysis via guiding deep learning
models to emphasize subtle patterns in specific body parts, such as
hands and heads.
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Fig. 8. Results of variants of MSS-GCN with various partition strategies. We analyze the characteristics of six partition strategies on specific action classes, including instantaneous
and similar actions, and report the three cases above.

Table 8

Performance in the case of occlusion.
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