
AR-TCP: Actively Replicated TCP Connections for Cluster of Workstations

Zhiyuan Shao1, Hai Jin1, and Jie Wu2
1Huazhong University of Science and Technology, Wuhan, 430074, China

Email: {zyshao, hjin}@mail.hust.edu.cn
2Florida Atlantic University, Boca Raton, FL 33431

Email: jie@cse.fau.edu

Abstract

In this paper, we propose a novel scheme, called
Actively Replicated TCP (AR-TCP), which
transparently improves the service and data
availability of cluster systems at TCP connection level.
In this scheme, TCP connections are replicated and
synchronized among all workstations of a cluster and
can failover to healthy parts during failures.
Moreover, request messages resulting in data exchang
are delivered by the workstations atomically to
guarantee data consistency. Read-only request
messages are extracted and executed on only one of the
replicas to improve the performance of simultaneous
access. As an application, we build a fully replicated
MySQL cluster based on our proposed scheme. The
experimental results of the prototype implementation
show that the cluster has small performance penalty on
communication, high simultaneous read-only query
performance and a small performance penalty on
update operations.

1. Introduction

As a reliable point-to-point transport level protocol,
TCP has been gaining more and more users on the
Internet. Years of enhancement and fine-tuning have
made it very efficient and robust. However, when one
of the two peers crash, it is still not reliable enough to
keep connections alive on-the-fly so as to mask server
failure from the client.

Unfortunately, fault-tolerance of the TCP protocol
is becoming increasingly important for many
applications. For example, many organizations and
enterprises (e.g., Google) enhance their throughput by
clusters whose availability is usually guaranteed by
using a front-end approach. This approach employs
software packages (e.g., LVS [10]) or industry
solutions (e.g., Cisco LocalDirector) as dispatchers to

direct TCP connections towards the back end real
servers, and guarantees service availability by avoiding
new connections being directed to crashed nodes.
However, the existing connections processed by the
failed server will simply be lost, and thus expose
clients to connection failures.

In order to solve this problem, many researches
[2][9][11][16][18] have been conducted in the past few
years. FT-TCP [2] uses a logger to record the on-going
connections and reincarnates the connections of the
crashed server by replaying the log on a new server.
However, this solution introduces another single point
of failure (i.e., the logger), and it is also time-costly
during failover. To overcome the shortcomings of FT-
TCP, ST-TCP [11], HARTS [9] and LW-HARTS [7]
adopt the primary-backup approach, which replicates
the TCP connections on-the-fly on multiple replicas.
However, ST-TCP tolerates only single failure and
requires identical processing speed in the replicas
(which is unrealistic in the real world). HARTS and
LW-HARTS, which are our previous research works,
usually greatly sacrifice performance in
communication when there are more than two replicas.
Furthermore, almost all of these approaches are
proposed to enhance service availability while the data
availability, which is the prerequisite of the former,
always remains unaddressed.

In this paper, we propose a novel scheme, named
AR-TCP, which extends the research on fault-tolerant
TCP to allow atomic multicasting at the transport layer
of communication, and employs active replication
techniques to realize data availability in clusters. By
conducting experiments on a MySQL server cluster by
using AR-TCP, we observe almost linear improvement
in the performance of simultaneous read-only queries
and a small penalty on the update operations.

The rest of this paper is organized as follows.
Section 2 briefly surveys the related works. Section 3
introduces the system architecture of our research and
states the problems studied in this paper. Section 4

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

explains our method. Section 5 addresses two unique
problems in AR-TCP, i.e., the TCP sequence number
translation and failover. Section 6 presents the
experimental results of the prototype implementation.
Section 7 concludes this paper.

2. Related Works

Atomic multicasting [1][3][8] and view
synchronous communication [13][14] are two
important communication abstractions that have been
extensively studied in the context of fault-tolerant
distributed systems. However, besides the
disadvantages for practical applications such as heavy
weight at the processors, prolonged delivery time, and
complexity, both of these two abstractions take UDP as
their basis. This inevitably jeopardizes the
transparency if they are applied on legacy applications
which employ TCP.

Active and semi-active replication techniques [17]
provide strong data consistency among copies. The
techniques from the former class require the replicas to
deliver request messages atomically, and the responses
of the replicas are sent directly towards clients.
Techniques belonging to the latter class require the
replicas to deliver request messages atomically, and
use view synchronous communication to gather the
responses so as to form a unique response back. Both
classes of replication techniques require atomic
multicasting as their prerequisite to distribute the
request messages, thus suffer the compatibility
problems mentioned above.

Many TCP fault-tolerance schemes
[2][9][11][16][18] have been proposed in the past few
years. Most of them are implemented by providing a
primary server that actually handles the connections
with one or several active and fully replicated backups.
However, these schemes suffer some common
drawbacks. For example, long failover time [2],
unreasonable assumption on the processing speed of
replicas [11], and much sacrifice on communication [9].
Moreover, the backup servers within these schemes are

simple followers and thus waste their potential
processing capacities.

3. System Architecture

AR-TCP adopts the cluster architecture with share
nothing semantics shown in Figure 1. Among the
server nodes, there is a unique primary server and
multiple backup servers. The primary server possesses
the portal IP address of the cluster. All server nodes in
the cluster have their own IP addresses (IP1, IP2,…,
IPn), which belong to the same subnet as the portal IP.

In this paper, we only consider the legacy
client/server mode applications that adopt the event-
driven model for serving connections, by which
request messages are delivered in the order of
receiving.

For convenience of discussion, we make the
following assumptions. First, we assume the
executions of an application on the server nodes are
deterministic and all copies of this application respond
identically to the same request. In AR-TCP, all the
requests are delivered in order, and uncertainties due to
concurrency are precluded to make this assumption
reasonable. Second, we assume the application
protocol is interactive. That is, the client must wait
until obtaining the response from the preceding request
from the server before sending a new one. Third, we
assume that a request message received by a server
node will be delivered if no crash failure happens, and
the delivered request will be processed. Finally, as our
scheme can adopt any independent failure detector, in
order to simplify the discussion, we assume the failure
detector used in our scheme is perfect [5].

In this paper, we consider only crash failures, and
assume the network is always available and will not be
partitioned. Messages sent from one server node to
another will eventually arrive at its destination if a
time-out based retransmission mechanism is adopted.

Primary Server Backup Server1 Backup Server2 Backup Server n

......

Clients
Internet

Portal IP
IP1 IP2 IP3 IPn

Switch/ Router

Figure 1. System architecture

…

s y n
s y n & a c k

a c k

f i n
a c k & f in

f i n

C l i e n t S e rv e r

u p d a te re q u e s t

a c k & f in

re s p o n s e

re a d -o n ly r e q u e s t

re s p o n s e

a c k

c 1

c 2

c 3

c 4

c 5

c 6

c 7

s 1

s 2

s 3

s 4

s 5

a c k

s 6

Tim
e

Figure 2. The message exchange flow of a
typical TCP connection

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

4. Proposed Methods

We start the discussion by classifying the incoming
requests. A typical message exchange flow of a TCP
connection used by legacy applications is illustrated in
Fig. 2. We regard all the messages sent from the client
to the server as requests, and catalog them into four
classes: connection related request, update request,
read-only request and pure ACK. Connection related
requests are TCP control messages (e.g., SYN, FIN
etc.). Packets c1, c6, c7 in Fig. 2 belong to this class.
Update requests are the messages sent by the clients in
order to change the data or status of the server. In Fig.
2, packet c3 is an update request. Read-only requests
are the data access messages, which do not change the
data of the server, e.g., packet c4 in Fig. 2 is a read-
only request. Pure ACKs are simple
acknowledgements or keep-alive messages that have
no payload. Packets c2 and c5 in Fig. 2 belong to this
class. AR-TCP differentiates update requests from
read-only requests by parsing the message content. In
real applications, the request may be large and thus
fragmented into pieces to be transmitted via the
network. In this case, we call the request as a whole a
request message, and the individual pieces request
packets. For convenience, we call both connection
related and update requests causal requests.

In order to replicate the connections, the server
nodes should receive all of the incoming packets.
Although this objective can be easily achieved by
programming the switch [11], it is difficult to
guarantee the atomicity of delivery. AR-TCP adopts a
new communication paradigm for TCP connection
shown in Fig. 3. In this paradigm, each server node
consists of a Connection Management (CM) module, a
Message Ordering (MO) module and a Response
Control (RC) module.

The incoming request messages will arrive first at
the primary server. The CM module of the primary
server will conduct a legal check on the individual
packets of these messages. A request packet will pass

the check provided it belongs to an established
connection (or a SYN packet that initiates a
connection), and its sequence and ACK numbers are
correct. After that, the message will be parsed and
handled according to their style. We will discuss the
mechanisms used to process different kinds of requests
in the following. Before discussion, we assume the
initial sequence numbers (ISNs) of the TCP
connections are synchronized during establishment,
which has been implemented in our previous research
work [9].

4.1. The Causal Requests

Before relaying this kind of request messages, the
MO module of the primary server will assign them an
ordering number, which grows monotonically and re-
folds at a bound. Packets of the same request message
will be given the same number. IP multicast tunneling
is used to propagate the request messages so as to
improve efficiency. After having received these request
messages, the CM module of the backup server will
assert legality of these request packets, and the MO
module will check the ordering number. Request
messages will eventually be delivered to the upper
layer application at each server node. In AR-TCP, we
defined two strategies to control the delivery of request
messages, namely Best-effort and Safe.

In the best-effort delivery strategy, all the server
nodes of the group deliver the request message
immediately after the received message has passed the
legality and ordering check. The requests are delivered
in the monotonically increasing order. Missing
requests are discovered by detecting the gaps on
ordering numbers, and NAK messages are used to ask
the primary server for retransmission. As other
sequencer-based protocols [3][8], this delivery strategy
achieves short broadcast delivery time.

Safe delivery strategy requires all backup servers to
send out positive ACKs containing the ordering
number of every request message they have received.
The reliability of these positive ACK messages is
guaranteed by a time-out mechanism. Like the best-
effort delivery strategy, the incoming request messages
are delivered by strictly increasing order at all server

Primary Server Backup Server1
Incoming Request

Client

IP Multicast Tunnel

Relayed packet

Message
Ordering(MO)

Response
Control(RC)

Outgoing Response

Application

Response

Connection Management(CM)

Relayed packet

Application

Connection Management(CM)

Message
Ordering(MO)

Response
Control(RC)

……

Figure 3. Communication Paradigm of AR-
TCP

Primary Server Backup Server1 Backup Server2 Backup Server N-1

......

Figure 4. Round-Robin Response

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

nodes. The difference is that any server node can only
deliver a request message after it has gathered the
positive ACKs from all backup servers in safe delivery
strategy (i.e., it is stable).

With this strategy, if a request message is lost at
some server nodes, the rest of the server nodes can
only delivery this message after the message is
eventually received by those who missed it. If one of
the server nodes crashes, the failure detector will
confirm the failure and exclude the server node from
the cluster, then awake the remaining server nodes.
Hence, the all-or-nothing property of communication is
satisfied. It is easy to prove that safe strategy
guarantees the atomicity of message delivery for the
causal requests.

Responses to these causal request messages will
first be intercepted by the CM modules and then given
to the RC modules for processing at each server node.
After accepted of the response packets at the RC
module of the server nodes, their response numbers
will be obtained. AR-TCP computes the response
number by comparing the ACK number of the
response packets with the sequence numbers of the
causal request packets in history. In this way, the
response numbers s1, s2, s3, s4, s5 and s6 in Fig. 2
corresponds to the ordering numbers of c1, c3, c4, c4,
c6 and c6, respectively. Pure ACK responses (e.g, s3 in
Fig. 2) are simply ignored by the server node to help
the aggregator to identify the real responses. These
response messages will converge (the dash line in Fig.
3) at a functionally chosen backup server (e.g., backup
server1 in Fig. 3.), which is named as aggregator, in
the form of a UDP packet. The latter will decide the
final version after having gathered all response
messages of the same response number, and then send
it back to the client directly by socket rewriting [4].

Consider the N-nodes cluster configuration with N-1
backup servers. AR-TCP makes all the backup servers
in the cluster work as the aggregator in a round-robin
fashion shown in Fig. 4. Each server node has an
individual rank number of k. Rank numbers of the
backups can be sorted in an increasing order, which
falls in the range of [1, N-1] and is named as response
rank number. AR-TCP designates the server node with
response rank number of (x%(N-1))+1 for the response
messages, whose response numbers are x. As response
numbers increase roughly continuously, the duty of
aggregator will be distributed among the backup server
nodes evenly.

4.2. The Read-Only Requests

AR-TCP processes read-only requests on different
replicas in parallel to improve the performance. After
receiving the read-only requests, the primary server

will select one server node from the cluster in round-
robin style to serve. The choosing of server nodes
include the primary server (RR-P) or not (RR-NP).
After choosing a server node, whose rank number is k,
the primary server will append the read-only request
message with a scheduling header including k. In order
to avoid retrieving stale data, the most recent ordering
number of the causal requests is also stored in the
scheduling header.

Having received the relayed read-only requests
from the tunnel, server nodes will look into the
scheduling header to obtain the rank number, and
compare that with theirs. If they match, the server node
will continue to deliver the request after delivering the
causal request with higher or equal ordering number
than that in the scheduling header. We call this kind of
read-only requests as duty read-only request messages
for that server node. The response packets for such
requests can be sent back directly to the client without
aggregation. On the contrary, we call the read-only
request messages that do not need to be processed
negligible read-only request messages. If a server node
receives such request packets, it will use the
information (i.e., sequence and ACK number in TCP
header) of the packets to keep track of the connection
and then have them discarded.

4.3. Pure ACK Requests

In most cases, the pure ACK request packets are the
last phase of TCP handshake (e.g., c2 in Fig. 2),
confirmation of acceptance (e.g., c5 in Fig.2), or
simple keep-alive messages of the connection. If they
are not propagated to all the server nodes, the
connections will malfunction.

Although pure ACK request packets should be
received by all the server nodes (different from the
read-only request), the reliability of the propagation is
not mandatory (different from the causal requests),
since the built-in retransmission nature of the original
TCP is enough, even though some server nodes may
receive the same ACK request packet several times or
out of order. In AR-TCP, the primary server will give a
special ordering number to the intercepted pure ACK
request packets, and then have them relayed to the
backups even though they are retransmitted from the
view point of connection.

5. Unique Problems

With the introduction of ROWA strategy in AR-
TCP, server nodes are required to serve the incoming
requests selectively, and thus the TCP sequence-hole
problem is an inevitable result. In the following

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

section, we will discuss this problem and give a
solution. The methods used to address the possible
failures of server nodes are also discussed in this
section.

5.1. TCP Sequence Number Translation

Before being delivered by the server nodes, a
request packet should undergo proper translation to
make it legal for the local TCP stack. A response
packet should also be translated so as to make it
acceptable by the clients. Fig. 5 shows the typical
procedure of translation at one of the server nodes. We
will discuss the translation mechanism according to
these two naturally separated stages.

5.1.1. Stage one: from receiving to delivery. We
denote the request packet as <Req_CSN, Req_CAN,
Req_LEN>, where Req_CSN is the client sequence
number, Req_CAN is the client ACK number and
Req_LEN is the length of the request packet. We
denote the packet after translation as <Req_LSN,
Req_LAN, Req_LEN>, where Req_LSN is the local
sequence number and Req_LAN is local ACK number.

Translating the TCP sequence number of the
request packet is relatively easy. Let ∑Req_LEN_NRO
be the sum of the length of negligible read-only request
packets received by the server node. Since negligible
read-only request packets are extracted from the stream
of the connection and processed by other server nodes
of the cluster, their length should be subtracted, we
have:

Req_LSN = Req_CSN − ∑Req_LEN_NRO (1)
If the request packet is a new duty read-only request

packet or a new causal request packet, and CURR_SEQ
is the current sequence number of the node. Since the
communication is interactive, if the server node
receives a later request, the client must have received
all the responses for the preceding requests, and
Req_LAN should equal to CURR_SEQ.

However, if the server node receives a pure ACK,
duplicated duty read-only or causal request packet,
computing the local ACK number of the request packet
is a little complicated. In this case, if the server node is
processing a duty read-only or causal request packet
when receiving the request packet, we call the packet
under processing the base request packet, and denote it
as <Req_CSNbase, Req_CANbase, Req_LEN>. The local
ACK number for delivering the base request packet is
denoted as Req_LANbase. The local ACK number of
current request packet can be computed by the
following equation:
Req_LAN=Req_LANbase+(Req_CAN−Req_CANbase) (2)

Since having received such request packets does not
necessarily mean that the client has received all the
response packets for the base request packet before that,
Req_LAN should be computed by adding Req_LANbase
to the increment of the client ACK number. However,
if the pure ACK or duplicated duty read-only or causal
request is received when processing a negligible read-
only request message, the local ACK number still
equals to CURR_SEQ.

5.1.2. Stage two: from responding to sending out.
We represent the response packet of the server node as
<Rsp_LSN, Rsp_LAN, Rsp_LEN>, where Rsp_LSN is
the local sequence number, Rsp_LAN is the local ACK
number and Rsp_LEN is the length. We denote the
packet to be sent out as <Rsp_CSN, Rsp_CAN,
Rsp_LEN>, where Rsp_CSN is the sequence number,
and Rsp_CAN is the ACK number.

As the response of a server node will be sent back
to the client when it is processing a duty read-only or
causal request, i.e., base request, let ∑Rsp_LEN be the
sum of the length of all response packets for the base
request packet sent out before, Rsp_CSN and Rsp_CAN
can be computed by the following equations:

Rsp_CSN = Req_CANbase + ∑Rsp_LEN (3)
Rsp_CAN = Req_CSNbase + Req_LEN (4)

Since the server node has already delivered the
request, it is reasonable to confirm with the client by
using ACK number.

A TCP sequence number translation mechanism is
designed to work in the CM module shown in Fig. 3.
All request packets will be processed by the MO
module after the translation, and all response packets
are to be processed by the RC module without
translation. By this way, standard TCP connections are
imitated from the viewpoints of MO and RC. This
implies the employed translation mechanism does not
affect the message ordering system and satisfies all the
three requirements.

Figure 5. Typical Procedure of Packet
Processing at the Server Node

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

5.2. Failover

We consider two typical types of failures in this
paper: the failure of a backup server and that of the
primary. Crash failure of one of the backups will make
the cluster stop working temporarily, since the rest of
the healthy server nodes cannot receive the positive
ACKs or the response packets from the failed backup.
The system continues to work until diagnosing the
result of the failure detector wakes up the waiting
nodes. The backup server immediately after the failed
one in the round-robin ring (see Fig. 4) will be chosen
to ensure roles for aggregating of the failed one. The
retransmission mechanism of TCP assures that the
response packets will eventually reach the new
aggregator. The rank number of the failed node will be
reclaimed and a new ring will be formed. Allocating
the duties of aggregator for the communications after
the failure should comply with the new ring.

Our scheme handles the failure of the primary by
electing a new primary server among the healthy
backups. The one with highest ordering number will be
chosen as the new primary so as to keep the existing
ordering number of causal request messages. If more
than one backup satisfies this criterion, the one with
the smallest rank number will be elected.

6. Performance Evaluation

To evaluate the scheme discussed in this paper, we
implement a prototype system on a cluster of up to four
server nodes, and conduct experiments on that. In the
first subsection, we will present and analyze the
experimental results to discuss the penalty on
communication. In the second subsection and as an
application, we discuss the performance of the MySQL
server cluster built by using our scheme.

The server nodes of the cluster are PCs running on
Redhat Linux kernel version 2.4.7-10 with hardware of
Intel Pentium III 1GHz CPU, 512MB Memory and
100Mbps Intel EEPro NIC. The client machines are
PCs running on Windows 2000 Professional (service
pack 4) with hardware of Intel Celeron 1.7GHz CPU,
512MB Memory and RTL8139A NIC. We use 3COM
100Mbps switch to connect the clients and the server
nodes. The PCs run our programs almost exclusively.
We use MySQL server 3.23.41 in the experiments.
MySQL server of higher versions (e.g., 4.0 or later) is
not used, since they have huge query cache, which

favors repetitive queries, and may affect the
simulations made in our experiments.

6.1. Communication Penalty

In Fig. 6, we compare the performance of TCP
connections of AR-TCP with that of standard TCP.
The performance is evaluated by Netpipe-2.4 [15] with
different numbers of server nodes. The round trip time
(RTT) between the client and the cluster is used to
demonstrate the latency of communication. In the
experiments, a best-effort delivery strategy is used.

From Fig. 6, we observe that the latency of a two-
node cluster increases about 15% more than the
standard TCP. This latency increase is due to the extra
time used in ordering and relaying the incoming
packets. However, the latency of communication does
not increase significantly as the replica number
increases from 2 to 4. Since IP multicast tunneling is
used in AR-TCP, each incoming packet needs to be
relayed once in most cases. Furthermore, round-robin
response mechanism distributes the load for
responding evenly among the backups.

6.2. Performance of MySQL Cluster

As an open source database management system,
MySQL [12] has been gaining more and more users
around the world, most of which are web sites. In
common installations, it is used as a backend server,
which provides data to the real server nodes of the
cluster. However, when the visit rate of the web site
continues to increase, the load of MySQL server soars.
Single servers cannot always handle the load. Crash
failure of the MySQL server will result in a disaster
within these installations. Built-in fault tolerant
schemes (e.g., cluster) of the MySQL cannot prevent
connections from being lost.

0 150 300 450 600 750 900 1050 1200 1350
0

0.5

1

1.5

2

PacketSize(Bytes)

R
T

T
(M

ill
iS

ec
)

Single Node
Two Nodes
Three Nodes
Four Nodes

Figure 6. Penalty on Communication
Performance

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

We deploy AR-TCP in the OS kernel of the server
nodes on which MySQL server is installed and the
clients connect to the cluster with MySQL ODBC
driver version 3.51.10. In this experiment, “SHOW”,
“SELECT”, “EXPLAIN SELECT” queries are
cataloged as read-only requests, while the other query
requests are regarded as update operations.

6.2.1. Performance of update operations. First, we
conduct experiments to study the impacts of our
scheme on the performance of MySQL update
operations. Fig. 7 shows the performance of such
operations. Performance data of Insert, Delete and
Update are obtained by conducting such operations on
a test table, which contains ten integer fields.

Fig. 7 shows that the creating of a table is the most
time consuming among the five operations. This is
because MySQL server creates new files to hold newly
created tables. The other update operations cost less
time since the file is always open before operation. A
smaller sacrifice on performance of update operations,
which consume less time, than those consuming more
time (i.e., create table) can be observed from Fig. 7,
since the communication penalty can be better masked
by the time consumed on the operations. This further
means, to the complex operations (e.g., updates on
multi-table), the sacrifice will be small.

Fig. 7 also shows that the update performance of the
best-effort delivery strategy is always better than that
of the safe strategy. The longer response time of the
safe delivery strategy is caused by the prolonged
message delivery time. However, the difference
between these two strategies is not too much. Since our
scheme is built in the OS kernel, positive ACKs can be
sent out faster than by using application level programs.
This results in smaller performance loss.

6.2.2. Performance of simultaneous read-only
queries. We invoke multiple threads at the client side
to evaluate the performance of the MySQL cluster
when processing simultaneous read-only queries. Each

thread loops for 1000 times, where each loop is a
single “SELECT” query statement to retrieve 100 rows
from a test table. We call such a thread a select thread
for convenience. The performance of the MySQL
cluster is evaluated with the workload of 10, 20 and 40
select threads. In the 10-thread case, all threads are
invoked at a single client machine. In the 20-thread
case, two client machines are used and each of them
simultaneously invokes 10 threads. The 40-thread case
is similar to the 20-thread case except that each client
invokes 20 select threads simultaneously. Fig. 8 shows
the performance of the cluster when processing
simultaneous read-only queries. In these experiments, a
safe delivery strategy is used for the causal request
messages of the communication stream.

In Fig. 8 the average response time with a given
number of server nodes increases approximately
linearly as the number of threads increase. This simply
fits the common sense that the server turns slower
under more workload.

From Fig. 8 we also observe that the simultaneous
read-only performance can be improved as the number
of server nodes increases. Consider the 40-thread case,
average response time decreases to 52.3ms when the
cluster has two server nodes, and to 25.9ms when it has
three nodes. The pattern of performance improvement
is roughly linear. However, when there are four nodes
in the cluster, the average response time is 15.7ms.
This is because the contentions at clients block the
linear increase on performance. The same phenomena
can also be observed in 10-thread and 20-thread cases.

However, if there are more clients (i.e., practical
scenarios), each invokes a few threads simultaneously
accessing the cluster, contentions at the client
machines will subside, and the performance
acceleration on read-only queries will be higher than
that observed from our experiments.

7. Conclusion

0

0.5

1

1.5

2

2.5

Creat e table Dro p t able Insert row Delet e row Updat e row

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e(

m
s)

Single Node
2 Nodes(Best-effort)
2 Nodes(Safe)
3 Nodes(Best-effort)
3 Nodes(Safe)
4 Nodes(Best-effort)
4 Nodes(Safe)

Figure 7. Performance of MySQL Cluster
on Update Operations

0

2 0

4 0

6 0

8 0

10 0

12 0

1 0 T h reads 20 T h reads 40 T h reads

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Single Node

2 Nodes

3 Nodes

4 Nodes

Figure 8. Performance of MySQL Cluster on
Simultaneous Read-only Queries

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

In this paper, we propose a scheme, named AR-TCP,
which transparently improves the service and data
availability of the legacy applications at TCP
connection level. By conducting experiments on
prototype implementation, we find that AR-TCP
results in small penalty on communication. For the
application on MySQL cluster, it achieves data
consistency among the replicas with small sacrifice on
performance of update operations, while performance
of simultaneous read-only queries is greatly
accelerated.

References

[1] D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and

R. K. Budhia, “The Totem multiple-ring ordering and
topology maintenance protocol”, ACM Transactions on
Computer Systems, 1998, 16(2): 93-132

[2] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo,
and D. Zagorodnov, “Wrapping Server-Side TCP to
Mask Connection Failures”, In Proceedings of
INFOCOM’01, Anchorage, Alaska, USA, 2001,
pp.329-337

[3] K. Birman, A. Schiper, and P. Stephenson,
“Lightweight Causal and Atomic Group Multicast”,
ACM Transactions on Computer Systems, 1991, 9(3):
272–314

[4] A. Bestavros, M. Crovella, J. Liu, and D. Martin,
“Distributed Packet Rewriting and its application to
Scalable Server Architecture”, In Proceedings of the
International Conference on Network Protocols
(ICNP’98), Austin, Texas, USA, 1998, pp.290-297

[5] T. D. Chandra and S. Toueg, “Unreliable failure
detectors for reliable distributed systems”, Journal of
the ACM, 1996, 43(2): 225-267

[6] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group
Communication Specifications: A Comprehensive
Study”, ACM Computing Surveys, 2001, 33(4): 1-43

[7] H. Jin and Z. Shao, “Cluster Architecture with
Lightweight Redundant TCP Stacks”, In Proceedings
of the IEEE International Conference on Cluster
Computing (CLUSTER’03), Hong Kong, China, 2003,
pp.464-467

[8] M. F. Kaashoek, A. Tanenbaum, S. F. Hummel, and H.
Bal, “An efficient reliable broadcast protocol”,
Operating Systems Review, 1989, 23(4): 5-19

[9] Z. Shao, H. Jin and B. Chen, J. Xu, and J. Yue,
“HARTS: High Availability Cluster Architecture with
Redundant TCP Stacks”, In Proceedings of the
International Performance Computing and
Communication Conference (IPCCC’03), Phoenix,
Arizona, USA, 2003, pp.255-262

[10] Linux Virtual Server, http://www.linuxvirtualserver.org
[11] M. Marwah, S. Mishra and C. Fetzer, “TCP Server

Fault Tolerance Using Connection Migration to a
Backup Server”, In Proceedings of the IEEE
International Conference on Dependable Systems and
Networks (DSN’03), San Francisco, CA, 2003, pp.373-
382

[12] MySQL server, http://www.mysql.com
[13] R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman,

“A Dynamic View-Oriented Group Communication
Service”, In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC’98), June
1998, pp.227-236

[14] A. Schiper and A. Sandoz, “Uniform reliable multicast
in a virtually synchronous environment”, In
Proceedings of the IEEE International Conference on
Distributed Computing Systems (ICDCS’93),
Pittsburgh, PA, USA, 1993, pp.561-568

[15] Q. O. Snell, A. Mikler, and J. L. Gustafson, “Netpipe:
A Network Protocol Independent Performace
Evaluator”, In Proceedings of IASTED International
Conference on Intelligent Information Management
and Systems, Washington, DC, USA, 1996, pp.196-204

[16] F. Sultan, K. Srinivasan, D. Iyer and L. Iftode,
“Migratory TCP: Connection migration for service
continuity in the Internet”, In Proceedings of the
International Conference on Distributed Computing
Systems (ICDCS’02), Vienna, Austria, 2002, pp.469-
470

[17] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso, “Understanding replication in databases and
distributed systems”, In Proceedings of the 20th IEEE
International Conference on Distributed Computing
Systems (ICDCS’00), Taipei, Taiwan, 2000, pp.264-
274

[18] R. Zhang, T. F. Abdelzaher and J. A. Stankovic,
“Efficient TCP connection failover in web server
clusters”, In Proceedings of INFOCOM’04, Hong
Kong, China, 2004, pp.1220-1229

Proceedings of the Japan-China Joint Workshop on
Frontier of Computer Science and Technology (FCST'06)
0-7695-2721-3/06 $20.00 © 2006

