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Abstract 
 

In this paper, we propose a novel scheme, called 
Actively Replicated TCP (AR-TCP), which 
transparently improves the service and data 
availability of cluster systems at TCP connection level. 
In this scheme, TCP connections are replicated and 
synchronized among all workstations of a cluster and 
can failover to healthy parts during failures. 
Moreover, request messages resulting in data exchang 
are delivered by the workstations atomically to 
guarantee data consistency. Read-only request 
messages are extracted and executed on only one of the 
replicas to improve the performance of simultaneous 
access. As an application, we build a fully replicated 
MySQL cluster based on our proposed scheme. The 
experimental results of the prototype implementation 
show that the cluster has small performance penalty on 
communication, high simultaneous read-only query 
performance and a small performance penalty on 
update operations. 
 
 
1. Introduction 
 

As a reliable point-to-point transport level protocol, 
TCP has been gaining more and more users on the 
Internet. Years of enhancement and fine-tuning have 
made it very efficient and robust. However, when one 
of the two peers crash, it is still not reliable enough to 
keep connections alive on-the-fly so as to mask server 
failure from the client. 

Unfortunately, fault-tolerance of the TCP protocol 
is becoming increasingly important for many 
applications. For example, many organizations and 
enterprises (e.g., Google) enhance their throughput by 
clusters whose availability is usually guaranteed by 
using a front-end approach. This approach employs 
software packages (e.g., LVS [10]) or industry 
solutions (e.g., Cisco LocalDirector) as dispatchers to 

direct TCP connections towards the back end real 
servers, and guarantees service availability by avoiding 
new connections being directed to crashed nodes. 
However, the existing connections processed by the 
failed server will simply be lost, and thus expose 
clients to connection failures. 

In order to solve this problem, many researches 
[2][9][11][16][18] have been conducted in the past few 
years. FT-TCP [2] uses a logger to record the on-going 
connections and reincarnates the connections of the 
crashed server by replaying the log on a new server. 
However, this solution introduces another single point 
of failure (i.e., the logger), and it is also time-costly 
during failover. To overcome the shortcomings of FT-
TCP, ST-TCP [11], HARTS [9] and LW-HARTS [7] 
adopt the primary-backup approach, which replicates 
the TCP connections on-the-fly on multiple replicas. 
However, ST-TCP tolerates only single failure and 
requires identical processing speed in the replicas 
(which is unrealistic in the real world). HARTS and 
LW-HARTS, which are our previous research works, 
usually greatly sacrifice performance in 
communication when there are more than two replicas. 
Furthermore, almost all of these approaches are 
proposed to enhance service availability while the data 
availability, which is the prerequisite of the former, 
always remains unaddressed. 

In this paper, we propose a novel scheme, named 
AR-TCP, which extends the research on fault-tolerant 
TCP to allow atomic multicasting at the transport layer 
of communication, and employs active replication 
techniques to realize data availability in clusters. By 
conducting experiments on a MySQL server cluster by 
using AR-TCP, we observe almost linear improvement 
in the performance of simultaneous read-only queries 
and a small penalty on the update operations. 

The rest of this paper is organized as follows. 
Section 2 briefly surveys the related works. Section 3 
introduces the system architecture of our research and 
states the problems studied in this paper. Section 4 
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explains our method. Section 5 addresses two unique 
problems in AR-TCP, i.e., the TCP sequence number 
translation and failover. Section 6 presents the 
experimental results of the prototype implementation. 
Section 7 concludes this paper. 
 
2. Related Works 
 

Atomic multicasting [1][3][8] and view 
synchronous communication [13][14] are two 
important communication abstractions that have been 
extensively studied in the context of fault-tolerant 
distributed systems. However, besides the 
disadvantages for practical applications such as heavy 
weight at the processors, prolonged delivery time, and 
complexity, both of these two abstractions take UDP as 
their basis. This inevitably jeopardizes the 
transparency if they are applied on legacy applications 
which employ TCP. 

Active and semi-active replication techniques [17] 
provide strong data consistency among copies. The 
techniques from the former class require the replicas to 
deliver request messages atomically, and the responses 
of the replicas are sent directly towards clients. 
Techniques belonging to the latter class require the 
replicas to deliver request messages atomically, and 
use view synchronous communication to gather the 
responses so as to form a unique response back. Both 
classes of replication techniques require atomic 
multicasting as their prerequisite to distribute the 
request messages, thus suffer the compatibility 
problems mentioned above. 

Many TCP fault-tolerance schemes 
[2][9][11][16][18] have been proposed in the past few 
years. Most of them are implemented by providing a 
primary server that actually handles the connections 
with one or several active and fully replicated backups. 
However, these schemes suffer some common 
drawbacks. For example, long failover time [2], 
unreasonable assumption on the processing speed of 
replicas [11], and much sacrifice on communication [9]. 
Moreover, the backup servers within these schemes are 

simple followers and thus waste their potential 
processing capacities. 
 
3. System Architecture 
 

AR-TCP adopts the cluster architecture with share 
nothing semantics shown in Figure 1. Among the 
server nodes, there is a unique primary server and 
multiple backup servers. The primary server possesses 
the portal IP address of the cluster. All server nodes in 
the cluster have their own IP addresses (IP1, IP2,…, 
IPn), which belong to the same subnet as the portal IP. 

In this paper, we only consider the legacy 
client/server mode applications that adopt the event-
driven model for serving connections, by which 
request messages are delivered in the order of 
receiving. 

For convenience of discussion, we make the 
following assumptions. First, we assume the 
executions of an application on the server nodes are 
deterministic and all copies of this application respond 
identically to the same request. In AR-TCP, all the 
requests are delivered in order, and uncertainties due to 
concurrency are precluded to make this assumption 
reasonable. Second, we assume the application 
protocol is interactive. That is, the client must wait 
until obtaining the response from the preceding request 
from the server before sending a new one. Third, we 
assume that a request message received by a server 
node will be delivered if no crash failure happens, and 
the delivered request will be processed. Finally, as our 
scheme can adopt any independent failure detector, in 
order to simplify the discussion, we assume the failure 
detector used in our scheme is perfect [5]. 

In this paper, we consider only crash failures, and 
assume the network is always available and will not be 
partitioned. Messages sent from one server node to 
another will eventually arrive at its destination if a 
time-out based retransmission mechanism is adopted. 
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Figure 1. System architecture 
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4. Proposed Methods 
 

We start the discussion by classifying the incoming 
requests. A typical message exchange flow of a TCP 
connection used by legacy applications is illustrated in 
Fig. 2. We regard all the messages sent from the client 
to the server as requests, and catalog them into four 
classes: connection related request, update request, 
read-only request and pure ACK. Connection related 
requests are TCP control messages (e.g., SYN, FIN 
etc.). Packets c1, c6, c7 in Fig. 2 belong to this class. 
Update requests are the messages sent by the clients in 
order to change the data or status of the server. In Fig. 
2, packet c3 is an update request. Read-only requests 
are the data access messages, which do not change the 
data of the server, e.g., packet c4 in Fig. 2 is a read-
only request. Pure ACKs are simple 
acknowledgements or keep-alive messages that have 
no payload. Packets c2 and c5 in Fig. 2 belong to this 
class. AR-TCP differentiates update requests from 
read-only requests by parsing the message content. In 
real applications, the request may be large and thus 
fragmented into pieces to be transmitted via the 
network. In this case, we call the request as a whole a 
request message, and the individual pieces request 
packets. For convenience, we call both connection 
related and update requests causal requests. 

In order to replicate the connections, the server 
nodes should receive all of the incoming packets. 
Although this objective can be easily achieved by 
programming the switch [11], it is difficult to 
guarantee the atomicity of delivery. AR-TCP adopts a 
new communication paradigm for TCP connection 
shown in Fig. 3. In this paradigm, each server node 
consists of a Connection Management (CM) module, a 
Message Ordering (MO) module and a Response 
Control (RC) module. 

The incoming request messages will arrive first at 
the primary server. The CM module of the primary 
server will conduct a legal check on the individual 
packets of these messages. A request packet will pass 

the check provided it belongs to an established 
connection (or a SYN packet that initiates a 
connection), and its sequence and ACK numbers are 
correct. After that, the message will be parsed and 
handled according to their style. We will discuss the 
mechanisms used to process different kinds of requests 
in the following. Before discussion, we assume the 
initial sequence numbers (ISNs) of the TCP 
connections are synchronized during establishment, 
which has been implemented in our previous research 
work [9]. 
 
4.1. The Causal Requests 
 

Before relaying this kind of request messages, the 
MO module of the primary server will assign them an 
ordering number, which grows monotonically and re-
folds at a bound. Packets of the same request message 
will be given the same number. IP multicast tunneling 
is used to propagate the request messages so as to 
improve efficiency. After having received these request 
messages, the CM module of the backup server will 
assert legality of these request packets, and the MO 
module will check the ordering number. Request 
messages will eventually be delivered to the upper 
layer application at each server node. In AR-TCP, we 
defined two strategies to control the delivery of request 
messages, namely Best-effort and Safe. 

In the best-effort delivery strategy, all the server 
nodes of the group deliver the request message 
immediately after the received message has passed the 
legality and ordering check. The requests are delivered 
in the monotonically increasing order. Missing 
requests are discovered by detecting the gaps on 
ordering numbers, and NAK messages are used to ask 
the primary server for retransmission. As other 
sequencer-based protocols [3][8], this delivery strategy 
achieves short broadcast delivery time. 

Safe delivery strategy requires all backup servers to 
send out positive ACKs containing the ordering 
number of every request message they have received. 
The reliability of these positive ACK messages is 
guaranteed by a time-out mechanism. Like the best-
effort delivery strategy, the incoming request messages 
are delivered by strictly increasing order at all server 
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nodes. The difference is that any server node can only 
deliver a request message after it has gathered the 
positive ACKs from all backup servers in safe delivery 
strategy (i.e., it is stable). 

With this strategy, if a request message is lost at 
some server nodes, the rest of the server nodes can 
only delivery this message after the message is 
eventually received by those who missed it. If one of 
the server nodes crashes, the failure detector will 
confirm the failure and exclude the server node from 
the cluster, then awake the remaining server nodes. 
Hence, the all-or-nothing property of communication is 
satisfied. It is easy to prove that safe strategy 
guarantees the atomicity of message delivery for the 
causal requests. 

Responses to these causal request messages will 
first be intercepted by the CM modules and then given 
to the RC modules for processing at each server node. 
After accepted of the response packets at the RC 
module of the server nodes, their response numbers 
will be obtained. AR-TCP computes the response 
number by comparing the ACK number of the 
response packets with the sequence numbers of the 
causal request packets in history. In this way, the 
response numbers s1, s2, s3, s4, s5 and s6 in Fig. 2 
corresponds to the ordering numbers of c1, c3, c4, c4, 
c6 and c6, respectively. Pure ACK responses (e.g, s3 in 
Fig. 2) are simply ignored by the server node to help 
the aggregator to identify the real responses. These 
response messages will converge (the dash line in Fig. 
3) at a functionally chosen backup server (e.g., backup 
server1 in Fig. 3.), which is named as aggregator, in 
the form of a UDP packet. The latter will decide the 
final version after having gathered all response 
messages of the same response number, and then send 
it back to the client directly by socket rewriting [4]. 

Consider the N-nodes cluster configuration with N-1 
backup servers. AR-TCP makes all the backup servers 
in the cluster work as the aggregator in a round-robin 
fashion shown in Fig. 4. Each server node has an 
individual rank number of k. Rank numbers of the 
backups can be sorted in an increasing order, which 
falls in the range of [1, N-1] and is named as response 
rank number. AR-TCP designates the server node with 
response rank number of (x%(N-1))+1 for the response 
messages, whose response numbers are x. As response 
numbers increase roughly continuously, the duty of 
aggregator will be distributed among the backup server 
nodes evenly. 
 
4.2. The Read-Only Requests 
 

AR-TCP processes read-only requests on different 
replicas in parallel to improve the performance. After 
receiving the read-only requests, the primary server 

will select one server node from the cluster in round-
robin style to serve. The choosing of server nodes 
include the primary server (RR-P) or not (RR-NP). 
After choosing a server node, whose rank number is k, 
the primary server will append the read-only request 
message with a scheduling header including k. In order 
to avoid retrieving stale data, the most recent ordering 
number of the causal requests is also stored in the 
scheduling header. 

Having received the relayed read-only requests 
from the tunnel, server nodes will look into the 
scheduling header to obtain the rank number, and 
compare that with theirs. If they match, the server node 
will continue to deliver the request after delivering the 
causal request with higher or equal ordering number 
than that in the scheduling header. We call this kind of 
read-only requests as duty read-only request messages 
for that server node. The response packets for such 
requests can be sent back directly to the client without 
aggregation. On the contrary, we call the read-only 
request messages that do not need to be processed 
negligible read-only request messages. If a server node 
receives such request packets, it will use the 
information (i.e., sequence and ACK number in TCP 
header) of the packets to keep track of the connection 
and then have them discarded. 
 
4.3. Pure ACK Requests 
 

In most cases, the pure ACK request packets are the 
last phase of TCP handshake (e.g., c2 in Fig. 2), 
confirmation of acceptance (e.g., c5 in Fig.2), or 
simple keep-alive messages of the connection. If they 
are not propagated to all the server nodes, the 
connections will malfunction. 

Although pure ACK request packets should be 
received by all the server nodes (different from the 
read-only request), the reliability of the propagation is 
not mandatory (different from the causal requests), 
since the built-in retransmission nature of the original 
TCP is enough, even though some server nodes may 
receive the same ACK request packet several times or 
out of order. In AR-TCP, the primary server will give a 
special ordering number to the intercepted pure ACK 
request packets, and then have them relayed to the 
backups even though they are retransmitted from the 
view point of connection. 
 
5. Unique Problems 
 

With the introduction of ROWA strategy in AR-
TCP, server nodes are required to serve the incoming 
requests selectively, and thus the TCP sequence-hole 
problem is an inevitable result. In the following 
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section, we will discuss this problem and give a 
solution. The methods used to address the possible 
failures of server nodes are also discussed in this 
section. 
 
5.1. TCP Sequence Number Translation 
 

Before being delivered by the server nodes, a 
request packet should undergo proper translation to 
make it legal for the local TCP stack. A response 
packet should also be translated so as to make it 
acceptable by the clients. Fig. 5 shows the typical 
procedure of translation at one of the server nodes. We 
will discuss the translation mechanism according to 
these two naturally separated stages. 
 
5.1.1. Stage one: from receiving to delivery. We 
denote the request packet as <Req_CSN, Req_CAN, 
Req_LEN>, where Req_CSN is the client sequence 
number, Req_CAN is the client ACK number and 
Req_LEN is the length of the request packet. We 
denote the packet after translation as <Req_LSN, 
Req_LAN, Req_LEN>, where Req_LSN is the local 
sequence number and Req_LAN is local ACK number. 

Translating the TCP sequence number of the 
request packet is relatively easy. Let ∑Req_LEN_NRO 
be the sum of the length of negligible read-only request 
packets received by the server node. Since negligible 
read-only request packets are extracted from the stream 
of the connection and processed by other server nodes 
of the cluster, their length should be subtracted, we 
have: 

Req_LSN = Req_CSN − ∑Req_LEN_NRO (1) 
If the request packet is a new duty read-only request 

packet or a new causal request packet, and CURR_SEQ 
is the current sequence number of the node. Since the 
communication is interactive, if the server node 
receives a later request, the client must have received 
all the responses for the preceding requests, and 
Req_LAN should equal to CURR_SEQ. 

However, if the server node receives a pure ACK, 
duplicated duty read-only or causal request packet, 
computing the local ACK number of the request packet 
is a little complicated. In this case, if the server node is 
processing a duty read-only or causal request packet 
when receiving the request packet, we call the packet 
under processing the base request packet, and denote it 
as <Req_CSNbase, Req_CANbase, Req_LEN>. The local 
ACK number for delivering the base request packet is 
denoted as Req_LANbase. The local ACK number of 
current request packet can be computed by the 
following equation: 
Req_LAN=Req_LANbase+(Req_CAN−Req_CANbase)  (2) 

Since having received such request packets does not 
necessarily mean that the client has received all the 
response packets for the base request packet before that, 
Req_LAN should be computed by adding Req_LANbase 
to the increment of the client ACK number. However, 
if the pure ACK or duplicated duty read-only or causal 
request is received when processing a negligible read-
only request message, the local ACK number still 
equals to CURR_SEQ. 

 
5.1.2. Stage two: from responding to sending out. 
We represent the response packet of the server node as 
<Rsp_LSN, Rsp_LAN, Rsp_LEN>, where Rsp_LSN is 
the local sequence number, Rsp_LAN is the local ACK 
number and Rsp_LEN is the length. We denote the 
packet to be sent out as <Rsp_CSN, Rsp_CAN, 
Rsp_LEN>, where Rsp_CSN is the sequence number, 
and Rsp_CAN is the ACK number. 

As the response of a server node will be sent back 
to the client when it is processing a duty read-only or 
causal request, i.e., base request, let ∑Rsp_LEN be the 
sum of the length of all response packets for the base 
request packet sent out before, Rsp_CSN and Rsp_CAN 
can be computed by the following equations: 

Rsp_CSN = Req_CANbase + ∑Rsp_LEN (3) 
Rsp_CAN = Req_CSNbase + Req_LEN (4) 

Since the server node has already delivered the 
request, it is reasonable to confirm with the client by 
using ACK number. 

A TCP sequence number translation mechanism is 
designed to work in the CM module shown in Fig. 3. 
All request packets will be processed by the MO 
module after the translation, and all response packets 
are to be processed by the RC module without 
translation. By this way, standard TCP connections are 
imitated from the viewpoints of MO and RC. This 
implies the employed translation mechanism does not 
affect the message ordering system and satisfies all the 
three requirements. 

Figure 5. Typical Procedure of Packet 
Processing at the Server Node 
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5.2. Failover 
 

We consider two typical types of failures in this 
paper: the failure of a backup server and that of the 
primary. Crash failure of one of the backups will make 
the cluster stop working temporarily, since the rest of 
the healthy server nodes cannot receive the positive 
ACKs or the response packets from the failed backup. 
The system continues to work until diagnosing the 
result of the failure detector wakes up the waiting 
nodes. The backup server immediately after the failed 
one in the round-robin ring (see Fig. 4) will be chosen 
to ensure roles for aggregating of the failed one. The 
retransmission mechanism of TCP assures that the 
response packets will eventually reach the new 
aggregator. The rank number of the failed node will be 
reclaimed and a new ring will be formed. Allocating 
the duties of aggregator for the communications after 
the failure should comply with the new ring. 

Our scheme handles the failure of the primary by 
electing a new primary server among the healthy 
backups. The one with highest ordering number will be 
chosen as the new primary so as to keep the existing 
ordering number of causal request messages. If more 
than one backup satisfies this criterion, the one with 
the smallest rank number will be elected. 
 
6. Performance Evaluation 
 

To evaluate the scheme discussed in this paper, we 
implement a prototype system on a cluster of up to four 
server nodes, and conduct experiments on that. In the 
first subsection, we will present and analyze the 
experimental results to discuss the penalty on 
communication. In the second subsection and as an 
application, we discuss the performance of the MySQL 
server cluster built by using our scheme. 

The server nodes of the cluster are PCs running on 
Redhat Linux kernel version 2.4.7-10 with hardware of 
Intel Pentium III 1GHz CPU, 512MB Memory and 
100Mbps Intel EEPro NIC. The client machines are 
PCs running on Windows 2000 Professional (service 
pack 4) with hardware of Intel Celeron 1.7GHz CPU, 
512MB Memory and RTL8139A NIC. We use 3COM 
100Mbps switch to connect the clients and the server 
nodes. The PCs run our programs almost exclusively. 
We use MySQL server 3.23.41 in the experiments. 
MySQL server of higher versions (e.g., 4.0 or later) is 
not used, since they have huge query cache, which 

favors repetitive queries, and may affect the 
simulations made in our experiments. 
 
6.1. Communication Penalty 
 

In Fig. 6, we compare the performance of TCP 
connections of AR-TCP with that of standard TCP. 
The performance is evaluated by Netpipe-2.4 [15] with 
different numbers of server nodes. The round trip time 
(RTT) between the client and the cluster is used to 
demonstrate the latency of communication. In the 
experiments, a best-effort delivery strategy is used. 

From Fig. 6, we observe that the latency of a two-
node cluster increases about 15% more than the 
standard TCP. This latency increase is due to the extra 
time used in ordering and relaying the incoming 
packets. However, the latency of communication does 
not increase significantly as the replica number 
increases from 2 to 4. Since IP multicast tunneling is 
used in AR-TCP, each incoming packet needs to be 
relayed once in most cases. Furthermore, round-robin 
response mechanism distributes the load for 
responding evenly among the backups. 
 
6.2. Performance of MySQL Cluster 
 

As an open source database management system, 
MySQL [12] has been gaining more and more users 
around the world, most of which are web sites. In 
common installations, it is used as a backend server, 
which provides data to the real server nodes of the 
cluster. However, when the visit rate of the web site 
continues to increase, the load of MySQL server soars. 
Single servers cannot always handle the load. Crash 
failure of the MySQL server will result in a disaster 
within these installations. Built-in fault tolerant 
schemes (e.g., cluster) of the MySQL cannot prevent 
connections from being lost. 
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We deploy AR-TCP in the OS kernel of the server 
nodes on which MySQL server is installed and the 
clients connect to the cluster with MySQL ODBC 
driver version 3.51.10. In this experiment, “SHOW”, 
“SELECT”, “EXPLAIN SELECT” queries are 
cataloged as read-only requests, while the other query 
requests are regarded as update operations. 
 
6.2.1. Performance of update operations. First, we 
conduct experiments to study the impacts of our 
scheme on the performance of MySQL update 
operations. Fig. 7 shows the performance of such 
operations. Performance data of Insert, Delete and 
Update are obtained by conducting such operations on 
a test table, which contains ten integer fields. 

Fig. 7 shows that the creating of a table is the most 
time consuming among the five operations. This is 
because MySQL server creates new files to hold newly 
created tables. The other update operations cost less 
time since the file is always open before operation. A 
smaller sacrifice on performance of update operations, 
which consume less time, than those consuming more 
time (i.e., create table) can be observed from Fig. 7, 
since the communication penalty can be better masked 
by the time consumed on the operations. This further 
means, to the complex operations (e.g., updates on 
multi-table), the sacrifice will be small. 

Fig. 7 also shows that the update performance of the 
best-effort delivery strategy is always better than that 
of the safe strategy. The longer response time of the 
safe delivery strategy is caused by the prolonged 
message delivery time. However, the difference 
between these two strategies is not too much. Since our 
scheme is built in the OS kernel, positive ACKs can be 
sent out faster than by using application level programs. 
This results in smaller performance loss. 
 
6.2.2. Performance of simultaneous read-only 
queries. We invoke multiple threads at the client side 
to evaluate the performance of the MySQL cluster 
when processing simultaneous read-only queries. Each 

thread loops for 1000 times, where each loop is a 
single “SELECT” query statement to retrieve 100 rows 
from a test table. We call such a thread a select thread 
for convenience. The performance of the MySQL 
cluster is evaluated with the workload of 10, 20 and 40 
select threads. In the 10-thread case, all threads are 
invoked at a single client machine. In the 20-thread 
case, two client machines are used and each of them 
simultaneously invokes 10 threads. The 40-thread case 
is similar to the 20-thread case except that each client 
invokes 20 select threads simultaneously. Fig. 8 shows 
the performance of the cluster when processing 
simultaneous read-only queries. In these experiments, a 
safe delivery strategy is used for the causal request 
messages of the communication stream. 

In Fig. 8 the average response time with a given 
number of server nodes increases approximately 
linearly as the number of threads increase. This simply 
fits the common sense that the server turns slower 
under more workload. 

From Fig. 8 we also observe that the simultaneous 
read-only performance can be improved as the number 
of server nodes increases. Consider the 40-thread case, 
average response time decreases to 52.3ms when the 
cluster has two server nodes, and to 25.9ms when it has 
three nodes. The pattern of performance improvement 
is roughly linear. However, when there are four nodes 
in the cluster, the average response time is 15.7ms. 
This is because the contentions at clients block the 
linear increase on performance. The same phenomena 
can also be observed in 10-thread and 20-thread cases. 

However, if there are more clients (i.e., practical 
scenarios), each invokes a few threads simultaneously 
accessing the cluster, contentions at the client 
machines will subside, and the performance 
acceleration on read-only queries will be higher than 
that observed from our experiments. 
 
7. Conclusion 
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In this paper, we propose a scheme, named AR-TCP, 
which transparently improves the service and data 
availability of the legacy applications at TCP 
connection level. By conducting experiments on 
prototype implementation, we find that AR-TCP 
results in small penalty on communication. For the 
application on MySQL cluster, it achieves data 
consistency among the replicas with small sacrifice on 
performance of update operations, while performance 
of simultaneous read-only queries is greatly 
accelerated. 
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