
Extended Multipoint Relays to Determine
Connected Dominating Sets in MANETs

Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, Florida 33431

U.S.A.
Email: jie@cse.fau.edu

Wei Lou
Department of Computing

Hong Kong Polytechnic University
Hung Hom, Kowloon

Hong Kong
Email: cswlou@comp.polyu.edu.hk

Abstract— MPR (multipoint relays) [1] provides a localized
and optimized way of broadcasting messages in a mobile ad
hoc network (MANET). Using 2-hop neighborhood information,
each node determines a small set of forward neighbors to relay
messages. Selected forward nodes form a connected dominating
set (CDS) to ensure full coverage. Adjih, Jacquet, and Viennot
[2] later proposed a novel localized algorithm to construct a
small CDS based on the original MPR without any broadcast
information. Such an approach is called source-independent
or broadcast-independent. In this paper, we provide several
extensions of the source-independent MPR to generate a smaller
CDS using 3-hop neighborhood information to cover each node’s
2-hop neighbor set. In addition, we extend the notion of coverage
in the original MPR. We show that the extended MPR has a
constant local approximation ratio compared with a logarithmic
local ratio in the original MPR. The effectiveness of our approach
is confirmed through a simulation study.

Keywords: Broadcasting, connected dominating set (CDS), mo-
bile ad hoc networks (MANETs), multipoint relays.

I. INTRODUCTION

Wireless interfaces pose a unique challenge in designing
efficient broadcasting in mobile ad hoc networks (MANETs).
When a node sends a message, the message can reach all
adjacent nodes and, therefore, only a subset of nodes is needed
to relay a broadcast message in MANETs.

Efficient broadcasting in MANETs can be formulated by
identifying a small connected dominating set (CDS) in the
network where nodes in the set and only nodes in the set
relay the message. A dominating set (DS) is a subset of nodes
in the network where every node is either in the subset or a
neighbor of a node in the subset. A DS is called a CDS if
the subgraph induced by the DS is connected. Many existing
works on finding a small CDS are not suitable for MANETs,
since they rely on either global information (such as a global
network topology) or global infrastructure (such as a spanning
tree). In a MANET, network topology changes frequently and,
hence, a global information/infrastructure approach may not
be combinatorially stable. In a combinatorially stable system,
the propagation of all topology updates is sufficiently fast to
reflect the topology changes.

The k-hop localized approach is a solution to ensure that the
combinatorially stable property in MANETs works for small

k. In this approach, each node determines its status and/or
the status of neighbors (forward or non-forward) based on
its k-hop neighborhood information (such as local network
topology within k hops). In general, k-hop neighbor set of
node v, represented as Nk(v), is a set of nodes that are at most
k hops away from node v. If the neighborhood information
is collected via periodically exchanging “Hello” messages, it
takes k rounds for each node to collect its k-hop neighbor set.
It is clearly impossible to collect up-to-date network topology
information for large k; therefore, k is usually a small integer
such as 2 or 3 in MANETs. A generic broadcast scheme based
on different ways of using neighborhood information is given
in [3]. MPR (multipoint relays) [1] is a special 2-hop localized
approach, where each forward node determines the status of
its neighbors based on its 2-hop neighbor set through node
coverage. It should be stressed that in the MPR each node does
not determine its forward status. Instead, each forward node
(selected by its neighbors following certain rules discussed
later) determines forward status for each of its neighbors.
Specifically, each forward node selects a subset of its 1-hop
neighbors to cover its 2-hop neighbor set. That is, each 2-
hop neighbor is a neighbor of the selected subset of 1-hop
neighbors.

The original MPR is source-dependent (also called
broadcast-dependent), that is, the forward node set is de-
termined during a broadcast process and is dependent on
the source of the broadcast and on communication latency.
Adjih, Jacquet, and Viennot [2] later proposed a novel source-
independent (also called broadcast-independent) MPR. Specif-
ically, the forward node set is determined before any broadcast
process and is constructed based on the MPR following two
simple rules. In [4], Wu enhanced the source-independent
MPR through several modifications. In this paper, we provide
several extensions of the source-independent MPR to generate
a smaller forward node set using 3-hop neighborhood informa-
tion to cover each node’s 2-hop neighbor set. In addition, we
extend the notion of coverage in the original MPR. We show
that the extended MPR has a constant local approximation
ratio compared with a logarithmic local ratio in the original
MPR. The effectiveness of our approach is confirmed through
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a simulation study.
The rest of the paper is organized as follows. Section 2 pro-

vides preliminaries on general broadcasting in MANETs. Also,
the MPR algorithm and its extensions are briefly reviewed.
Section 3 proposes the enhanced MPR. In Section 4, we prove
the upper bound of the proposed algorithm. Section 5 provides
some simulation results. The related work is discussed in
Section 6 and the conclusion is drawn in Section 7.

II. PRELIMINARIES

The simplest way to perform a broadcasting is based on the
following rule:

• Blind flooding rule: a node re-transmits the message
once and only once.

The blind flooding may cause excessive redundancy and
results in channel contention and message collision (also called
broadcast storm problem [5]). In Figure 1 (a), when node u
broadcasts, every other node relays once. In reality, either w
or x is sufficient.

Broadcasting can also be fulfilled by requiring only the
source node and nodes in the CDS (i.e. forward node set)
to transmit the message. Therefore, limited broadcast relay is
based on the following rule:

• CDS rule: a node retransmits the message once and only
once if it belongs to the CDS.

In Figure 1 (a), node w forms a CDS and, hence, only w
forwards the message (except for the source). The problem is
now reduced to finding a small CDS in a localized way.

A. MPR (Multipoint Relays)

A MANET is represented by a unit disk graph G = (V,E),
where the node set V represents a set of wireless mobile
nodes and the edge set E represents a set of bi-directional
links between the neighboring nodes. Each node has a distinct
ID. Two nodes are considered neighbors if and only if their
geographic distance is no more than a given transmission range
r.

In general, the k-hop subgraph Gk(v), induced from k-hop
information of v, is (Nk(v), Ek(v)). Nk(v) denotes the k-
hop neighbor set of node v which includes all nodes within
k hops from v (also includes v itself). Hk(v) denotes the k-
hop node set of v which includes all nodes that are exactly k
hops away from v; that is, N0(v) = H0(v) = {v}, Nk(v) =
Nk−1(v) ∪ Hk(v), Hk(v) = Nk(v) − Nk−1(v), for k ≥ 1.
For convenience, 1-hop neighbor set N1(v) and 1-hop node
set H1(v) are represented as N(v) and H(v), respectively.
Ek(v) denotes the set of links between Nk(v), excluding those
links between Hk(v). That is, Ek(v) = Nk−1(v)×Nk(v). For
example, if v has 1-hop neighbor information, then it knows
all its neighbors, but not the links between these neighbors. If
V is a node set, N(V ) is the union of the neighbor sets of
every node in V , that is, N(V ) = ∪∀w∈V N(w). V covers U
if U ⊂ N1(V ).

In the MPR (multipoint relays) [1], each node v maintains
2-hop subgraph G2(v) = (N2(v), E2(v)). Node v selects a

small forward node set, C(v), from its 1-hop neighbor set
N1(v) to cover its 2-hop neighbor set N2(v); that is, C(v)∪v
is a CDS for N2(v). C(v) is also called the coverage set for
v. When u is selected by v as a forward node, v is called
the selector of u. Note that several selectors may exist for
a particular node. A forward node may or may not actually
retransmit the message; its actual status is determined by the
following MPR rule [1]:

• MPR rule: a node retransmits the message once and only
once if the first message received is from a selector.

The collection of nodes that have retransmitted the message
plus the source node of the broadcasting form a CDS. The
original MPR is also called source-dependent MPR. The
source-dependent (or broadcast-dependent) approach depends
on the source of a specific broadcast operation. When a
specific broadcast starts, after receiving a broadcast packet,
the node determines both its own and/or some of its neigh-
bors’ forward/non-forward statuses under a local view of its
neighbor set. The local view of its neighbor set can be updated
by the neighborhood information contained in the “Hello”
message or by the broadcast history information piggybacked
in the broadcast packet. As the broadcast packet traverses the
network, the forward nodes eventually form a “dynamic” CDS
of the given network.

A simple greedy algorithm for computing C(v) (initially
empty) at v in the MPR is shown as Algorithm 1 [1]. Note
that in the MPR, when v transmits, N(v) is covered; therefore,
H2(v) (= N2(v) − N(v)) is used instead of N2(v).

Algorithm 1 Greedy algorithm at node v

1. Add u ∈ H1(v) to C(v), if there is a node in H2(v)
covered only by u. Any node in H2(v) that is not covered
by C(v) is called an uncovered node.

2. Add u ∈ H1(v) to C(v), if u covers the largest number
of uncovered nodes in H2(v). Use node ID to break a
tie when two nodes cover the same number of uncovered
nodes.

In Figure 1 (b), suppose the following coverage sets are
selected based on the above greedy algorithm: C(u) = {v, y},
C(v) = {x}, C(w) = {y}, C(x) = {v}, and C(y) = {w}.
Collectively nodes v, w, x, and y form a CDS. As specified
in the MPR, the actual set of forward nodes for a particular
broadcast uses only a subset, and it depends on the location
of the source and communication latency. For example, if v
is the source and node x receives the first message from v,
then x is a forward node. Also, if nodes w and y receive their
first message from x and v, respectively, none of them will
forward the message. Therefore, {v, x} forms a CDS for this
case. However, if node y receives the first message from u,
then {v, x, y} forms a CDS.

B. Source-independent MPR

The original MPR is source-dependent. Adjih, Jacquet,
and Viennot [2] later proposed a novel localized algorithm
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Fig. 1. Three sample networks.

to construct a CDS based on the MPR, and it is source-
independent. The source-dependent approach depends on a
particular broadcast. Therefore, the resultant forward node set
depends on many factors, such as the location information of
neighbors, node priority, message propagation delay, back-off
delay, etc. The source-independent approach does not depend
on a particular broadcast, and therefore, the resultant forward
node set forms a “static” CDS of the network that depends only
on local topology and node priority. In addition, the forward
node set is generic and can be used for any broadcast.

A node belongs to a CDS if
• Rule 1: the node has a smaller ID than all its neighbors.
• Rule 2: the node is a forward node selected by its

neighbor with the smallest ID.
Applying Rule 1 and Rule 2 to Figure 1 (b), {x, y, v, u}

forms a CDS. Compared with the set derived from the original
MPR, node w is not in the final CDS since it is selected by y
(which does not have the smallest ID among w’s neighbors).
In addition, node u is included since it has a smaller ID than
all its neighbors. The correctness of source-independent MPR
is given in [2].

C. Existing extensions

Wu [4] observed two potential drawbacks in the source-
independent MPR:

1. Rule 1 is “useless” in many instances; that is, the node
selected based on Rule 1 is not essential for a CDS.

2. The original MPR forward node selection (Algorithm 1)
does not take advantage of Rule 2.

In Figure 1(a), u and v are selected based on Rule 1;
however, they are useless. In fact, node w alone is sufficient
for a CDS. Similarly, u selected by Rule 1 (in Figure 1(b))
is useless. On the other hand, we might have to include some
smallest ID nodes even if they are not selected by any of their
neighbors as forward nodes. In Figure 1(c), suppose node u is
not selected by any of its neighbors. u has to be included (as
it is selected by Rule 1), because any forward node selected
by a node other than u will be ignored based on Rule 2.

In Figure 1(b), we assume that v selects x as its forward
node. Based on Rule 2, since v is the smallest ID neighbor of
x, x cannot ignore v’s choice. On the other hand, if v chooses
y, since v is not the smallest ID neighbor of y, v’s choice will
be ignored by y. Therefore, forward node y comes for “free”

for v. That is, the inclusion of y does not increase the size of
the forward node set.

Wu [4] then proposed two extensions to the source-
independent MPR: one is on Rule 1 and the other is on the
greedy algorithm (Algorithm 1).

• Enhanced Rule 1: the node has a smaller ID than all its
neighbors, and it has two unconnected neighbors.

The Enhanced Rule 1 together with the original Rule 2 will
generate a CDS under all cases except complete graphs. Note
that when the network is complete, there is no need of a CDS,
because each source forms a CDS. Wu [4] showed that the
Enhanced Rule 1 is effective when the network is dense.

Wu [4] also introduced the notion of free neighbor. Node u
is a free neighbor of v if v is not the smallest ID neighbor of
u. In the enhanced forward node selection, we first include all
free neighbors, then nodes with higher degrees (i.e., covering
more uncovered 2-hop neighbors) are selected and use node ID
to break a tie if needed until H2(v) is covered. The modified
greedy algorithm is shown in Algorithm 2. Simulation results
in [4] show that this extension is effective when the network
is sparse. Combining the Enhanced Rule 1 and the modified
greedy algorithm (Algorithm 2) at each node v, the result is
effective for both sparse and dense networks.

Algorithm 2 Modified greedy algorithm at node v

1. Add all free neighbors to C(v).
2. Follow steps 1. and 2. of Algorithm 1.

III. PROPOSED APPROACH

The proposed source-independent approach is motivated by
the case of Figure 1 (b). Suppose the current node is u. In
the original MPR or its extensions, both y and v need to be
selected to cover u’s 2-hop neighbors w and x. However, w
falls into the 2-hop neighbor set of v. That is, w can be covered
by v via x when v calculates its forward node set. Motivated
by this example, our proposed approach selects a pair of nodes
at each step. We first give an extended notion of coverage:

Definition 1: A node u is covered by v if it is a 1-hop neighbor
in H1(v) (directly covered) or it is a 2-hop neighbor in H2(v)
(indirectly covered).
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In the example of Figure 1 (b), among 2-hop neighbors of
u, x is directly covered by v and w is indirectly covered by
v via x. In this case, when u selects node pair (v, x), u is a
direct selector for v (to cover x) and u is an indirect selector
for x (to cover w).

In the proposed approach, each node u still covers its 2-
hop neighbor set, but uses 3-hop information. In fact, the only
additional information used is about connections between any
two 2-hop neighbors. We have then the following Enhanced
Rule 2:

• Enhanced Rule 2: node u is a forward node if u is

1. directly selected by a node in H1(u) that has the
smallest ID in H1(u).

2. indirectly selected by a node in H2(u) that has a
smaller ID than all nodes in H1(u).

With the Enhanced Rule 2, we extend the notion of free
neighbor to 1-hop free neighbor and 2-hop free neighbor as
follows:

Definition 2: Node u is a 1-hop free neighbor of v if u is in
H1(v) and v’s ID is not the smallest ID in H1(u). Node u
is a 2-hop free neighbor of v if u is in H2(v) and u’s ID is
larger than at least one node ID in H1(u).

The greedy algorithm can then use these free neighbors for
neighbor coverage without any “cost”. In the extended greedy
algorithm (Algorithm 3), two nodes, u and w, as a pair are
selected at each selection operation performed by current node
v, where u is a 1-hop neighbor of v and w is a 2-hop neighbor
of v which is also a 1-hop neighbor of u. We introduce the
concepts of “cost” and “yield” to measure the quality of each
selection.

Definition 3: A “cost” of a selection operation is the number
of selected nodes that are not free neighbors in the selection.
A “yield” of a selection operation is the total number of the
uncovered nodes that are covered by the selection divided by
the cost of the selection.

Note that each node v knows its 1-hop and 2-hop free
neighbors because v has 3-hop neighbor set information,
which also includes the neighbor set of each of its 2-hop
neighbors.

Algorithm 3 Extended greedy algorithm at node v

1. Add all pairs of 1-hop free neighbor u and 2-hop free
neighbor w to C(v) and remove all their covered nodes
from H2(v).

2. Add a pair of nodes u ∈ H1(v) and w ∈ H1(u) ∩ H2(v)
to C(v) that gives the highest yield in H2(v). Use node
ID to break a tie if two selections give the same yield.

The major modification here is that a 2-hop neighbor w of
v can be indirectly selected to cover other 2-hop neighbors.
That is, a 1-hop neighbor u directly covers H1(u) ∩ H2(v)
and u indirectly covers H1(w)∩H2(v) via w. Also, w always

exists as long as H2(v) is not empty and is included even if
it does not “contribute” additional coverage beyond what v
covers. The extended greedy algorithm weighs the following
considerations when selecting node pair (u,w) at v:

1) Both 1-hop free neighbor u and 2-hop free neighbor
w can contribute additional coverage without any cost.
Therefore, a pair of free neighbors should be included
first.

2) Either 1-hop free neighbor u or 2-hop free neighbor
w can decrease the total cost by half which leads to
a higher yield.

3) Nodes u and w have equal cost and their contributions
(in terms of coverage) are treated equally. Therefore,
whichever covers a larger of number of uncovered nodes
will give a higher yield.

The following theorem guarantees that the extended greedy
algorithm generates a CDS for a given connected graph.

Theorem 1: If the given connected graph is not a complete
graph, the set of forward nodes selected by the Enhanced Rule
1 and Enhanced Rule 2 forms a CDS.

Proof: Assume that the graph is not a complete graph; we first
show that there exists at least one node in the forward node
set. Let c be the node with the smallest ID in the network.
If all other nodes are neighbors, at least two neighbors are
not directly connected. Based on the Enhanced Rule 1, c is
selected. If there exists another node that is not a neighbor of
c, c will designate a neighbor c

′
for relaying. Since c is the

smallest ID node, c
′

is selected based on the Enhanced Rule
2. Let C be the connected component in the forward node
set that contains the smallest ID node c and/or its designated
neighbor c

′
. We prove that C itself is a dominating set (DS).

We prove by contradiction. If C is not a DS, there must exist
some nodes that are not in N(C), i.e., N(C) is not empty.
Let V be the set of nodes that have at least one neighbor in
C and at least one neighbor in N(C). V cannot be empty,
since the network is connected. Also, V ∩ C = φ. Consider
the smallest ID node s in N(V ).

• Assume s is in N(C) (which implies s /∈ V ). Since
s ∈ N(V ) and s /∈ V , there exists a neighbor v of s in
V . Note that in general when s ∈ N(V ), s may not have
a neighbor in V . Let u be a neighbor of v in C. Consider
now the relay set for s. As u is a 2-hop neighbor of s,
based on Algorithm 3, s has the following three choices
to cover u:

1) s → v(∈ V ) → u
2) s → v(∈ V ) → u

′
(∈ N(V )) → u

3) s → s
′
(∈ N(V )) → v(∈ V ) → u

In the first case, s covers v ∈ V directly; in the second
case, s covers v ∈ V directly; and in the third case, s
covers v ∈ V indirectly (via s′). In all these cases, s
has the smallest ID among N(V ) which includes N(v).
Next we show that the second and third cases include all
possible 3-hop paths connecting s ∈ N(C) and u ∈ C.
Suppose the path is (s, x, y, u), clearly y connects to a
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Fig. 2. A sample network with 8 nodes. The double-circled nodes are selected as forward nodes by (a) the MPR, (b) the EMPR, and (c) the EEMPR.

node in C and s connects to a node N(C). If x also
connects to a node in C, then x belongs to V ; otherwise,
x belongs to N(C) which makes y ∈ V . It is also
possible that both x and y belong to V . This case is
included in both second and third cases since V ⊂ N(V ).
In all cases, v is selected which contradicts V ∩ C = φ.

• Assume s is in N(C) which can be partitioned into V and
N(C)−V . (a) Suppose s is in V , based on the Enhanced
Rule 1, s is selected since its ID is smaller than that
of all its neighbors. In addition, s has two unconnected
neighbors, one in N(C) and one in C. (b) Suppose s is
in N(C) − V . Let v be a neighbor of s in V , and let u
be a neighbor of v in N(C). Consider now the relay set
for s. As u is a 2-hop neighbor of s, s has the following
three choices to cover u:

1) s → v(∈ V ) → u
2) s → v(∈ V ) → u

′
(∈ N(V )) → u

3) s → s
′
(∈ N(V )) → v(∈ V ) → u

The rest of the proof is similar to the previous case.

In all cases, we reach a contradiction. Therefore, C has to be
a DS. �

Figure 2 shows a sample network with 8 nodes. The
double-circled nodes are selected as forward nodes by the
source-independent MPR [2] (MPR), the enhanced source-
independent MPR [4] (EMPR), and the proposed extended
source-independent MPR (EEMPR). In Figure 2 (a), nodes
a, b and d are the nodes with the smallest ID within their
corresponding 1-hop neighbors; they are included in the CDS
by Rule 1. Nodes c and f are selected as forward nodes by
node a, which is the node with the smallest ID within c and
f ’s 1-hop neighbors (Rule 2). Also, it is assured that node b,
the smallest ID neighbor of node g, selects {c, f} to cover
H2(b). Therefore, {a, b, c, d, f} are in the CDS for the MPR.
In Figure 2 (b), nodes a and d are removed from the CDS
by the Enhanced Rule 1 because node a’s 1-hop neighbors (c
and f ) are connected and d’s 1-hop neighbors (f, g, and h)
are pairwise connected. Therefore, {b, c, f} are in the CDS
for the EMPR. In Figure 2 (c), node c is removed from the
CDS by the Enhanced Rule 2 because c’s 1-hop neighbor with
the smallest ID, a, selects f and b to indirectly cover e. Thus,
only {b, f} are in the CDS for the EEMPR.

Figure 3 (a) shows a sample network with 80 nodes.
Figures 3 (b - e) show the results with the MPR (Figure 3 (b)),

the EMPR (Figure 3 (c)), the EEMPR (Figure 3 (d)), and the
MCDS (Figure 3 (e)). In these figures, only nodes in the CDS
and their induced subgraphs are shown. The MCDS is a global
method based on [6] which can be used as the lower bound.
The size of the CDS’s for the MPR, EMPR, EEMPR and
MCDS are 32, 29, 27 and 19, respectively.

IV. THE UPPER BOUND OF THE PROPOSED EXTENDED

GREEDY ALGORITHM

In [1], Qayyum, Viennot, and Laouiti proved that the local
upper bound of the ratio of the size of their proposed heuristic
to that of the optimal MPR is O(log n

′
), where n

′
is the

maximum size of the 2-hop neighbor set. Note that this ratio
is with respect to the MPR methods only (i.e., methods where
2-hop nodes are covered by selected 1-hop nodes). In fact,
the approximation ratio is O(n

′
) among all algorithms that

cover 2-hop neighbor sets locally. Consider the example in
Figure 4 (a) where all 1-hop neighbors of v are on the circle
of C (with radius r from center v) and all 2-hop neighbors of
v are on the circle of C ′ (with radius 2r from center v). r is
the uniform transmission range of each node. Clearly, when
u computes its forward nodes, each 2-hop neighbor of v, say
w, on the circle of C ′ can only be covered by exactly one
1-hop neighbor of v, say u, on the circle of C with position
exactly on the line connecting v and w (that is, there is a
one-to-one relation between v and w). When the number of
nodes on C ′ increases, the number of selected forward nodes
on C also increases with the same rate. In fact, as indicated
in Figure 4(a), a constant number of nodes (9 double-circled
nodes) are sufficient to cover all 1-hop and 2-hop neighbors
of v. Therefore, the approximation ratio is O(n

′
).

Next, we prove that for each single node v, the extended
greedy algorithm (Algorithm 3) can provide a constant size of
the forward node set C(v).

Theorem 2: The extended greedy algorithm has a constant
local approximation ratio.

Proof: Suppose v is the node that selects a forward node set
C(v) to cover H2(v). Based on the algorithm, v selects a pair
of nodes u and w, where u is in H1(v) and w is an uncovered
node in H1(u)∩H2(v); the pair covers the maximum number
of uncovered nodes in H2(v). The selected nodes are put into
C(v) and the nodes covered by C(v) in H2(v) are removed.
Node v continues to select pairs u′ and w′, u′′ and w′′, ...,
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Fig. 3. A sample network with 80 nodes: (a) entire network, (b) MPR, (c) EMPR, (d) EEMPR, and (e) MCDS.

and so on, until H2(v) becomes empty (see Figure 4(b)).
For each selection, the newly selected 2-hop forward node,
say w′, is not adjacent to any already selected 2-hop forward
node, say w, in C(v). In other words, {w,w′, w′′, ...} forms
an independent set 1. This suggests that, within a disk whose
diameter is r (or radius 0.5r), there exists at most one selected
2-hop forward node (of type w). In other words, such disks are
non-overlapped. Notice that the possible location of v’s 2-hop
neighbor is only within the ring between r to 2r. Thus, the
disks with diameter r are confined within the ring between
0.5r to 2.5r (shaded area in Figure 4(b)). The maximum
number of such disks is π(2.5r)2−π(0.5r)2

π(0.5r)2 = 24. Therefore,
the total number of {w,w′, w′′, ...} is no larger than 24 and
the total number of nodes in C(v), which is twice the size of
{w,w′, w′′, ...}, is no larger than 48. Note that the optimal
number of forward nodes selected by each node to cover

1An independent set is a set in which no two nodes are neighbors.

its 2-hop neighbor set is a constant. Therefore, the proposed
approach has a constant local approximation ratio. �

In [7], a disk with radius kr is proved to have an upper-
bounded constant number of nodes lk in an IS, where lk ≤
(2k + 1)2. The extended greedy algorithm provides a special
case when k = 2. Although the extended greedy algorithm
provides each node a constant number of forward nodes, the
upper bound of the CDS of the entire network is still O(n)
where n is the size of the network. The reason is that the
collection of the independent sets that are selected locally does
not correspond to a global IS. One worst case is shown in
Figure 4 (c): all nodes sit along line AD with length of 3r and
the nodes’ IDs monotonously increase along the line from the
left end to the right end. Each node determines its dominator,
which has the smallest ID among its 1-hop neighbor set. Based
on the algorithm, a node will finally become a forward node
if it is selected by its dominator. When the density of the
network becomes infinite, all O(n) nodes on the segment BC
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the worst case where the CDS of the entire network is O(n) for the extended greedy algorithm.

become forward nodes On the other hand, a CDS with only
three nodes at positions A, B and C is sufficient to cover
the entire network. However, this situation corresponds to the
worst case which rarely occurs. The next section will show
the competitive average performance through simulations.

V. SIMULATION

We compare the number of nodes in the CDS for the
proposed extended source-independent MPR (EEMPR), the
source-independent MPR [2] (MPR), and enhanced source-
independent MPR [4] (EMPR) under three scenarios.

In the first scenario, a given number of nodes (ranging from
20 to 100 with a step of 10 and from 100 to 1,000 with a step
of 100, respectively) were randomly distributed in a 100 × 100
2-D space. Each node has a fixed uniform transmission range
r (r is 25 and 50, respectively). There is no consideration of
node movement and channel collision. Thus, a pair of nodes
are neighbors when their distance is smaller than r. If the
generated network is not connected, it is discarded. For each
fixed number of nodes, the results of a sufficient number of
experiments are averaged to make 90% confidence interval
within ± 5%.

Figures 5(a) and 5(b) show the simulation results when the
node’s transmission range is 25. Figure 5(a) shows the trend
when the number of nodes in the network ranges from 20 to
100 (the corresponding graph is sparse), whereas Figure 5(b)
shows the trend when the number of nodes in the network is
from 100 to 1000 (the corresponding graph is dense). We find
that all three curves have a rising trend as the number of nodes
in the network increases. The number of nodes in the CDS
increases because, when more nodes join in the network, the
network density increases and a node may select more 1-hop
neighbors as forward nodes, which increases the size of the
CDS. From the figure, we also notice that the rising trend is
more sensitive to node numbers in the range from 20 to 100
(relatively sparse) than to node numbers in the range from
100 to 1000 (relatively dense). The effect is more remarkable
when the network is sparse because the greedy algorithm is

a node coverage algorithm, that is, it selects 1-hop forward
nodes to cover 2-hop neighbors. When the network is sparse,
the collective coverage of the forward nodes may still leave
some blank areas (i.e. areas with no nodes) within the 2-
hop neighborhood. As more nodes join in, new nodes may
appear in these blank areas thus resulting in the selection
of more forward nodes. As the network density increases,
the number of blank areas decreases as does the number
of newly selected forward nodes. Therefore, the rising trend
slows down as the number of node increases. Among these
three algorithms, the performance of the MPR is the worst
in all ranges. When the network is sparse (n is from 20 to
80), the curves of the EMPR and the EEMPR are almost the
same. But as the number of nodes increases, the gap between
the EMPR and the EEMPR becomes significant. When the
number of nodes in the network is 1000, the number of nodes
in the CDS determined by the EEMPR is only around 70%
of that determined by the EMPR or MPR. The reason that the
EEMPR shows great improvement in dense networks is that
the selection of the forward nodes for one node has an upper
bound that is irrelevant to the network density. Thus, the size
of the CDS is less influenced by the network density.

Figures 6(a) and 6(b) show the results when the node’s
transmission range is 50 and the number of nodes in the
network is from 20 to 100 and from 100 to 1000, respectively.
When the transmission range increases, the graph becomes
denser if the number of nodes is fixed. In this case, the size of
the CDS increases only slightly as the size of the network
increases. This is because, when the transmission range is
50, the corresponding graph is sufficiently dense so that the
number of nodes has little effect on network density. Among
these three algorithms, EEMPR outperforms the other two,
followed by EMPR; MPR is the worst in all the ranges.

Comparing Figures 5(a) and 5(b) with Figures 6(a) and 6(b),
we find that increasing the node’s transmission range can
increase the coverage area of each node and, therefore, reduce
the diameter of the network, which leads to a smaller size of
the CDS.

0-7803-8797-X/04/$20.00 (C) 2004 IEEE

627627



10

15

20

25

30

20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 n

od
es

 in
 th

e 
C

D
S

number of nodes in the network

 (a) transmission range = 25

MPR
EMPR
EEMPR

20

25

30

35

40

45

50

55

60

100 200 300 400 500 600 700 800 900 1000

nu
m

be
r 

of
 n

od
es

 in
 th

e 
C

D
S

number of nodes in the network

(b) transmission range = 25

MPR
EMPR
EEMPR

Fig. 5. The number of nodes in the CDS when r is 25: a) n ranges from 20 to 100, and (b) n ranges from 100 to 1000.

0

2

4

6

8

10

20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 n

od
es

 in
 th

e 
C

D
S

number of nodes in the network

(a) transmission range = 50

MPR
EMPR
EEMPR

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1000

nu
m

be
r 

of
 n

od
es

 in
 th

e 
C

D
S

number of nodes in the network

(b) transmission range = 50

MPR
EMPR
EEMPR

Fig. 6. The number of nodes in the CDS when r is 50: a) n ranges from 20 to 100, and (b) n ranges from 100 to 1000.

In the second scenario, a fixed number of nodes (n = 200
and 1000, respectively) is randomly distributed in the same
2-D space. The network density is determined by the node’s
transmission range r. For each fixed number of nodes, we
run different experiments where the value of r changes from
20 to 75. The results of sufficient numbers of experiments for
each fixed network density are averaged to guarantee the same
confidence interval.

Figures 7(a) and 7(b) show the factor f versus the node’s
transmission range when the number of nodes is 200 and
1000, respectively. When the transmission range r increases,
the factor decreases because the increase of r results in the
decrease of the diameter of the network. Thus, less nodes are
needed to cover the confined area.

From the above simulations, we conclude that the proposed
EEMPR always outperforms the MPR and the EMPR regard-
less of the size of the network and the density of the network.
Also, the factor of the number of nodes in the CDS to that in
the network is more sensitive to the small size of the network
than the large one. The results show localized approaches are
scalable as the density of the network increases, especially for
the EEMPR which has a constant size of local CDS.

VI. RELATED WORK

Essentially, our work is to find a CDS that covers a unit
disk graph with local information. The problem of finding
a minimum CDS (MCDS) for a general network is proved
to be NP-Complete [8]. Even for a unit disk graph, such a
problem is also NP-Complete [9]. Therefore, only heuristic
algorithms can be applied. Many algorithms that aim to
construct CDS’s are classified into four groups: global [6],
[10], quasi-global [11], quasi-local [12], [13], and local [1],
[2], [3], [4], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23].

Some earlier researchers proposed centralized greedy algo-
rithms that use global information to provide approximation
ratio O(ln ∆) to the MCDS [10] for general networks, where
∆ is the maximum node degree of the network. Quasi-global
CDS algorithms [11] build shortest-path-tree-based CDS struc-
tures which provide constant approximation ratio for unit disk
graphs. In contrast, quasi-local CDS algorithms construct a
CDS by first electing clusterheads [12] or cores [13] and then
using selected forward nodes to connect them.

Distributed broadcast algorithms that are based on lo-
cal neighbor set information can also provide CDS’s for a
given network. In [3], a generic localized broadcast scheme
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Fig. 7. The factor of the number of nodes in the CDS to that in the network when r is from 20 to 75: (a) n is 200 , and (b) n is 1000.

was proposed where source-independent and source-dependent
approaches are uniformed. Many algorithms belong to the
source-independent approach, such as MPR [2], EMPR [4],
marking process with rules 1&2 [15] and its extensions [16],
SPAN [17], and d-hop CDS [18]. Algorithms that belong to the
source-dependent approach are the original MPR [1], dominant
pruning [14] and its extensions [19], [20], LENWB [21],
SBA [22], and neighbor-elimination-based broadcasting [23].

In [3], the distributed broadcast algorithms are also classi-
fied into self-pruning, neighbor-designating, and hybrid broad-
casting approaches. In self-pruning approaches [15], [16], [17],
[18], [21], [22], [23], each node determines its own status
and is in the forward status by default. A node resigns its
role of forward status by “itself” if a path from the source
can be found for each of its neighbors. Nodes in such a path
can be either already forwarded nodes or nodes that deem to
forward. In the neighbor-designating broadcasting approaches
[1], [2], [4], [14], [19], [20], a node determines its neighbor’s
forward/non-forward status, that is, a node selected by its
neighbor updates its local view of neighbor set when it receives
a broadcast packet and determines its neighbors’ forward/non-
forward statuses consequently. The hybrid approaches [3]
combine both self-pruning and neighbor-designating methods.

The three algorithms (MPR [2], EMPR [4], and EEMPR)
discussed in this paper belong to the source-independent
approach; also they are all in the category of neighbor-
designating approach.

VII. CONCLUSIONS

In this paper, we have proposed an enhanced source-
independent MPR based on the recently proposed source-
independent MPR. The enhancement is done by using 3-
hop neighborhood information to cover each node’s 2-hop
neighbor set and by extending the notion of coverage in
the original MPR. The effectiveness of the enhancement is
confirmed through a simulation study on both sparse and dense
networks. In this paper, we did not consider energy-aware
multiple relays selection. One straightforward extension is to
use residue energy level as the selection criteria instead of
using node ID. That is, the smallest ID node is replaced by

the node with the highest residue energy level. In this case, a
node with the highest residue energy in its 1-hop neighborhood
has a better chance to become a forward node based on the
Enhanced Rule 1. In this way, we can conduct an energy-aware
broadcasting [23].
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