RESILIENT Priority-Based Data Transmission Using NETWORK CODING

Jie Wu

Computer and Information Sciences Temple University

Center for Networked Computing http://www.cnc.temple.edu

Center for Networked Computing Dr. Jie Wu Computer and Information Sciences, Temple University

wireless and mobile networks

- Mesh networks (CRI and GENI grants)
- Sensor networks (NeTS and TF grants)
- · Content sharing networks (NeTS medium grane)
- Network coding (CCSS grant)
- Vehicle networks

Network security and p gh performance computing

- Wireless networks (ARO and CCSS NSF GPU/CPU supercomputer (MRI g grants)
- Economic development Urban Maps & Apps Studio (EDA grai • Cloud comp. (Microsoft and Amazon grants) Of Higher

MB/s

- Online social networks System Mobile Infostatio

mouting

Networkea

Network Coding Background

Priority-Based Network Coding

Symbol-level transmission

Layered video streaming

□ Conclusions

□ Other Recent Works

4

Network Coding Background

Network Coding in Wired Networks

5

Single multicast session

Bottleneck problem (Ahlswede'00)

Coding

Network Coding in Wireless Networks

□ No coding

- **4** transmissions
- delivery rate = $(1 \varepsilon)/4$
- □ COPE (coding, Katty'06)
 - 3 transmissions (broadcast channel)
 - delivery rate = $(1 \varepsilon)/3$

- □ COPE-dup (double transmission by relay, Rayanchu'08)
 - **4** transmissions
 - delivery rate = $(1 \varepsilon^2)/4$

Scheme	=0	=0.1	=0.3	=0.5	=0.7
No coding	0.25	0.225	0.175	0.125	0.075
COPE	0.333	0.3	0.233	0.167	0.1

Network Coding Classification

Local
Hop-by-hop decoding
XOR operation

□ Global

Decoding at the destination

Linear network coding

(on a finite field)

Network Coding Classification

□ Intra-flow

- **•** Within a flow
- Robustness enhancement
- □ Inter-flow
 - Between different flows
 - Throughput/capacity enhancement
- □ Joint inter- and intra-flow
 - Within flow and between flows

Network Coding in Wireless Networks

2

Intra-flow coding

Inter-flow coding

- •Reliability=2/3
- •3 transmissions

- •Reliable links
- •2 transmissions by the relay

Network Coding in Wireless Networks

10

- □ Reliability from *r* to d_1 and d_2 is 2/3
- □ Other links are reliable

6 transmissions by the relay

Joint inter- and intra-flow coding

3 transmissions by the relay

Opportunistic Routing (OP)

11

- \Box OP: no fixed path
 - Relays jointly having all packets
 - Coordination needed among relays
 - Which packets should be sent?

(coupon collection problem)

- □ OP with network coding
 - Linear coded transmissions at relays
 - No coordination needed among relays

Network Coding Applications

Robustness Enhancement

- Error correcting code
 - Physical layer: improving error performance on wireless link using intra-packet coding
- Erasure correction
 - Spatial redundancy: handle lost packets on the end-toend connection level using inter-packet coding
- Joint error and erasure correction
- Robust linear network coding for link failures (Koetter and Medard 2003)

Network Coding Applications

Throughput/Capacity Enhancement

- Overlay networks
 - Distributed storage systems
 - Content distribution
 - Layered multicast
- Wireless networks
 - Throughput enhancement
 - Broadcast storm problem
- Network Tomography: infer network characteristics
 - Link loss rate inference
 - Topology inference

Priority-Based Approaches

New twist on the classic unequal error protection

Video Streaming NC

15

Priority-Based Network Coding Symbol-Level Transmission

Priority-Based Transmission

- Numeric data
 - Sensed data by sensors
 - Different priorities (utility values) for symbols S_i

- Reliable transmissions
- Maximizing the expected utility with a given number of transmissions

17

- $w_{1} = 2 \quad w_{2} = 1$ u : utility $p_{1} : loss rate$ $w_{1} = 2 \quad w_{2} = 1$ $S_{1} \quad S_{2} \quad S \quad f = 0.6$ $w_{1} : loss rate$ $u = w_{1} \times (1 p^{x_{1}}) + w_{2} \times (1 p^{x_{2}})$
- $\square x_i$: number of transmissions of s_i

<i>x</i> ₁	<i>x</i> ₂	Utility	
2	0	1.28	
1	1	1.2	
0	2	0.64	

2 transmissions

<i>x</i> ₁	<i>x</i> ₂	Utility	
3	0 1.568		
2	1	1.68	
1	2	1.44	
0	3	0.78	

3 transmissions

Setting and Objective

18

One-hop wireless (WiFi) network
 One source with multiple destinations
 Lossy links (randomness in wireless)

p₁, p₂, ..., p_n
 Transmission window size
 X slots for a packet

Objective: maximizing the total expected utility of the received symbols

Single Packet (Homogenous Destinations)

The case of a packet with 2 symbols $u = w_1 \times (1 - p^{x_1}) + w_2(1 - p^{x_2})$ st. $x_1 + x_2 = X$ 12 Saturati on point

Total transmissions

Single Packet (Homogeneous Destinations)

20

□ *m* symbols

- Assign the transmissions to x_1 while $p^{x_1} < \frac{w_2}{w_1}$
- Then, distribute the transmissions between x_1 and x_2 while $p^{x_1} < \frac{w_3}{w_1}$ and $p^{x_2} < \frac{w_3}{w_2}$
- Assign round-robin pattern among x_1 , x_2 , and x_3

Single Packet (Heterogeneous Destinations)

- 21
- □ The round-robin pattern does not exist
- □ Iterative algorithm
 - Δ_{x_i} : utility changes for increasing x_i to $x_i + 1$

$$\Delta_{x_i} = w_i \times \sum_{l=1}^n \left[p_l^{x_i} - p_l^{x_i+1} \right]$$

□ At each iteration, assign the current transmission to the symbol s_i with the maximum Δ_{x_i}

Single Packet (Heterogeneous Destinations)

 $x_1 \, 1$

 $\chi_2 O$

 $x_3 o$

 $x_1 2$

 $\chi_2 O$

 $x_3 O$

*x*₁ 2

 $x_2 \, 1$

 $x_3 O$

□ Iteration 1

 $\begin{array}{c} x_1 & o \\ x_2 & o \end{array}$

 $x_3 o$

 $\Delta_{x_1} = 140$ $\Delta_{x_2} = 14$ $\Delta_{x_3} = 1.4$

□ Iteration 2

 $\begin{array}{ccc} x_1 & 1 \\ x_2 & 0 \end{array}$

 Δ_{x_1} =40 Δ_{x_2} =14 Δ_{x_3} =1.4

□ Iteration 3

 $x_3 o$

Binary coded decimal

Multiple Packets (No Coding)

Our model

The size of the packets is equal

• Each packet has the same weight

□ *k* independent packets with no coding

Packet 1

$$S_{1,1}$$
 $S_{1,2}$
 ...
 $S_{1,m}$

 Packet 2
 $S_{2,1}$
 $S_{2,2}$
 ...
 $S_{2,m}$

 E
 E
 E
 E

 Packet k
 $S_{k,1}$
 $S_{k,2}$
 ...
 $S_{k,m}$

Multiple Packets (with Network Coding)

□ Heuristic

• First find the optimal x_i

- Code all s_i of the k packets together
- Send $x_i \times k$ coded symbols

Multiple Packets (with Network Coding)

- □ Network coding may or may not improve the utility
 - Since partial decoding is not possible
- Compute utility of coding/non-coding
 - Decision for coding/non-coding at each symbol

Simulations Setting

26

MATLAB environment
1,000 rounds
Different error rates for links
Weight of s_i: 2^{m-i}

Comparing with simple retransmission method
 Distribute transmissions equally to the different *s_i*

Simulations (Homogenous Destinations)

- Single packet: 10 symbols
- SR: simple retransmission
- WSR: weighted symbol retransmission

Simulations (Heterogeneous Destinations)

- Single packet- 10 symbols
- 10 transmissions
- Variable destinations and error rates

Simulations (Homogenous Destinations)

- Packet size: 5 symbols
- WMP: weighted multiple packets
- WMP-NC: weighted multiple packets with network coding

Simulations (Heterogeneous Destinations)

Simulations Summary

- □ WMP increases utility up to 22% compared to SR
- □ Utility of WMP-NC is up to 45% more than SR
- In 50% of the cases the utility of WMP-NC is 10-20% more than WMP
- As error rate increases, the performance of WMP-NC over the other methods increases

Current and Future Work

Current Work

- Optimal solution for network coding with multiple packets
- Multiple-hop network
 extensions with weighted
 destinations (based on the
 number of leaf nodes)

Future Work

- Extensions to DAG
- Real implementation

33

Priority-Based Network Coding Layered Video Streaming

Video Streaming

Delivering video stream using different resolutions to satisfy different client needs/constraints

Multi-Layer Coding

(Multi-resolution)

Base layer

Enhancement layers

(a) Original

(d) Layer 3

(e) Layers 1 & 2 (f) Layers 2 & 3

(c) Layer 2

Multiple Description Coding (MDC)

> Multiple independent video substreams

> Receiving more substreams increases the video quality

Setting and Objective

- One-hop WiFi networks
- □ Video stream: sequence of packets
- Packet deadline: X transmissions
- \Box Layered streams : *L* layers
- Objective: maximizing throughput in terms of the total number of received layers by the users
- □ Intra-layer coding: linear coding
- □ Inter-layer coding: triangular coding

Lossy Bernoulli channel

Inter-Layer Coding Strategies

 Random linear network coding (RLNC)

36

Triangular coding Prefix coding

 $\alpha_1 L_1 + \beta_1 L_2 + \gamma_1 L_3$ $\alpha_2 L_1 + \beta_2 L_2 + \gamma_2 L_3$ $\alpha_3 L_1 + \beta_3 L_2 + \gamma_3 L_3$

 $\alpha_1 L_1$ $\alpha_2 L_1 + \beta_2 L_2$ $\alpha_3 L_1 + \beta_3 L_2 + \gamma_3 L_3$

Packets in lower layers are more important

Included in more coded packets More chance to be decoded

Advantage of Triangular Coding

- 37
- □ Coefficients are not shown for simplicity
- □ 6 transmissions in round-robin pattern
 - Blue cells are received

No coding
$$LI$$
 $L2$ $L3$ LI $L2$ $L3$ Unable to
decodeTriangula
r coding LI $LI + LI + LI + LI + LI + LI + LI + L2 + L3$ $LI + LI + LI + L2 + L3$ $LI + L2 + L3$ $LI + L2 + L3$ $L2 + L3$

Multi-Layer Video Streaming with Helpers

38

□ Links

- Cost: direct download from the server
- Reliable links
- □ Link capacity
 - High capacity links: server to helpers
 - Low capacity links: helpers to users
- □ Use of helpers
 - System scalability for more users
 - Helpers: limited capacity and bandwidth

Resource Management

□Optimal resource management

- □Questions:
 - Content placement: Which packets of each video should a helper node store?
 - **Bandwidth allocation**: Which packets, and to which users, should each helper serve?
- □NP-complete

Resource Management (Network Coding)

40

Network coding changes the problem to a linear programming Time

□ Storing *x* percent of each segment

No longer NP-complete Flow-based model using network coding

Multi-Layer Video

Benefits of multi-layer

Provides smooth playback for the users

Reduces the load on the server with a fixed number of users

More layers increases system scalability

(c) Layer 2

(e) Layers 1 & 2 (d) Layer 3 (f) Layers 2 & 3

42

Single video with 4 packets
No-layer approach (Hao et al. 2011)
4 packets in the same layer
Load on the server: 4

$$p_1 p_2 p_3 p_4 \longrightarrow P_i = \sum_{j=1}^{n} \alpha_{i,j} p_j$$

VoD with Inter- and Intra-Layer NC

$$\max \sum_{\substack{i,k:\\m_k=q_i}} \sum_{\substack{j,l:h_j \in N(u_i)\\l \le c_i}} x_{ji}^{kl}$$

Objective function (maximize upload rate from helpers to users)

 $x_{ji}^{kl} \le f_j^{kl} \times \frac{r_k}{L}, \quad \forall j, i, l : u_i \in N(h_j), l \le L$

The upload rate of a cache cannot exceed the rate of the stored videos

- $\square x_{ji}^{kl}$: Upload rate from helper h_j to user u_i over layer l of video m_k
- $\Box f_i^{kl}$: Fraction of the layer l of video m_k that is stored on helper h_j
- \square r_k : Rate of video m_k
- $\square L :$ Number of layers of a video
- \square $N(u_i)$: Adjacent helpers to user u_i
- $\Box u_i$'s request: (c_i , q_i) = (quality level, video)

VoD with Inter- and Intra-Layer NC

 $k:m_k \in M \ l:l \leq L$

$$\sum_{\substack{i,k:u_i \in N(h_j) \ k \le c_i \\ m_k = q_i}} \sum_{l \le c_i} x_{ji}^{kl} \le B_j, \quad \forall j: h_j \in H$$

Bandwidth constraints

Storage constraints

$$\sum_{l=1}^{l'} \sum_{j:h_j \in N(u_i)} x_{ji}^{kl} \le \frac{r_k}{L} \times l', \quad \forall i, l': 1 \le l' \le c_i$$

 $\sum \quad \sum f_j^{kl} \times \frac{v_k}{L} \le S_j, \quad \forall j : h_j \in H$

Limits the total download of a user to the rate of the video

 \square B_j : The bandwidth limit of helper h_j

 \square S_j : The capacity limit of helper h_j

VoD with Intra-Layer NC

47

The difference is in the last constraint

$$\sum_{j:h_j \in N(u_i)} x_{ji}^{kl} \le \frac{r_k}{L}, \quad \forall i, l: u_i \in U, l \le c_i$$

Limits the total download of a user to the rate of the video

U: the set of users

The objective function and other constraints are the same

Live Streaming (TV)

- **48**
- □ Videos are broadcast to the users
- Synchronous playback
 - Helpers do not need to allocate separate bandwidths to adjacent users that watch the same video

Total bandwidth: $x_1 + x_2$

Total bandwidth: *x*

Distributed Algorithm

- Dual optimization
 - Solving Lagrangian dual using gradient method
- \square Helper h_j
 - Start from empty storage and dynamically adjust the amount of stored videos
 - Update and transmit Lagrange variables to adjacent users
- \Box User u_i
 - Update and transmit Lagrange variables to adjacent helpers
- □ Step control
 - Slope of changes: fast convergence vs. oscillation

Simulations Setting

- MATLAB environment
- □ 100 random topologies
 - Random connections of helpers and users
 - Helpers: random bandwidth and capacity limit
 - Users: random requests
- Comparing with optimal non-layer approach
- □ Measuring
 - Load on the server
 - Convergence to optimal solution in dynamic environments

Video's	Video's	Bandwidth	Storage	Num. of adjacent
rate	size	capacity	capacity	helpers to a user
[1,2] kbps	[0.5,2] MB	[2,4] kbps	[0.5,2] MB	[1,3]

Simulation Results (Load)

- □ VoD
- □ Number of videos: 5
- □ Number of layers: 5
- DIST: a non-layer approach with intra-layer coding (Hao et al. 2011)

Simulation Results (Load)

- □ VoD
- □ Number of users: 50
- □ Number of helpers: 20

Simulation Results (Load)

- □ VoD
- □ Number of layers: 4
- □ Single video

Simulation Results (Convergence)

Simulation Results (Dynamic Users)

Simulation Results (Dynamic Helpers)

Future Work and Challenges

- □ Other objectives
 - Fairness, layers with different weights, ...
- Extension of layered VoD with unreliable links
 - Using symbol-level transmission work in layered VoD
- Cost-efficient helper provisioning
 - Based on user demands and resource availability
- □ Real implementation

58

Conclusions

Conclusions

Priority-Based Network Coding

Data transmission

Transmitting the more important data with more redundancy

□Triangular coding in multi-layer video streaming

Increasing the number of received layers

■VoD and live streaming using helper nodes in multilayer video streaming

Minimizing the load on the server

References

- P. Ostovari, J. Wu, and A. Khreishah, "Efficient Symbol-Level Transmission in Error-Prone Wireless Networks With Network Coding," *Proc. of IEEE WoWMoM*, 2013.
- □ P. Ostovari, A. Khreishah, and J. Wu, "Multi-Layer Video Streaming with Helper Nodes using Network Coding," *Proc. of IEEE MASS*, 2013.
- H. Hao, M. Chen, A. Parekh, and K. Ramchandran, "A Distributed Multichannel Demand-Adaptive P2P VoD System with Optimized Caching and Neighbor-Selection," *Proc. of SPIE*, 2011.

61

Other Recent Works

- S. Yang, J. Wu, and M. Cardei, "Efficient Broadcast in MANETs Using Network Coding and Directional Antennas," *Proc. of IEEE INFOCOM*, 2008.
 - Network coding in multiple broadcast in a wireless network.
 - Using dominating set as relays and for inter-session coding. (combine routing and coding)
 - Using both dominating set and directional antennas to reduce contention.

- P. Ostovari, A. Khreishah, J.Wu, and W. –S. Yang, "Trade-off between Redundancy and Feedbacks in Wireless Network Communication," accepted to appear in *Ad-Hoc & Sensor Wireless Networks*, 2013.
 - One-hop broadcasting using XOR coding
 - Minimum-cost reliable broadcast considering the cost of feedback messages
 - Multiple retransmissions before receiving feedback
 - How many retransmissions are required?

- □ A. Khreishah, I. M. Khalil, and J. Wu, "Universal Opportunistic Routing Scheme using Network Coding," *Proc. of IEEE SECON*, 2012.
 - Distributed opportunistic routing algorithm
 - **D** The correlation of the links through network tomography
 - Coded feedback (for source to determine the type of link failure)
 - Unicast (and multicast in *ACM MobiHoc 2012*)

- P. Ostovari, J. Wu, and A. Khreishah, "Network Coding Techniques for Wireless and Sensor Networks," accepted to appear in *The Art of Wireless Sensor Networks*, H. M. Ammari (ed), Springer.
 - Unicast
 - Multicast
 - Broadcast

Acknowledgment

Shuhui YangPurdue University Calumet

Abdallah Khreishah
 New Jersey Institute of Technology

Pouya OstovariTemple University

CCSS: An Architecture for Joint Integration of Inter and Intrasession Network Coding in Lossy Multihop Wireless Networks