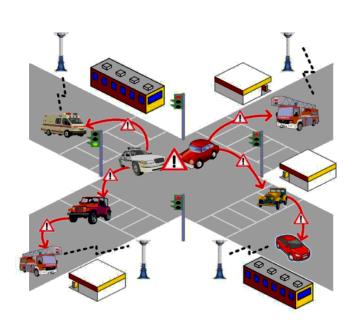
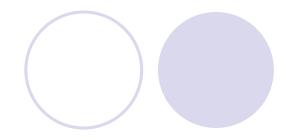
Social-Aware Routing in Delay Tolerant Networks

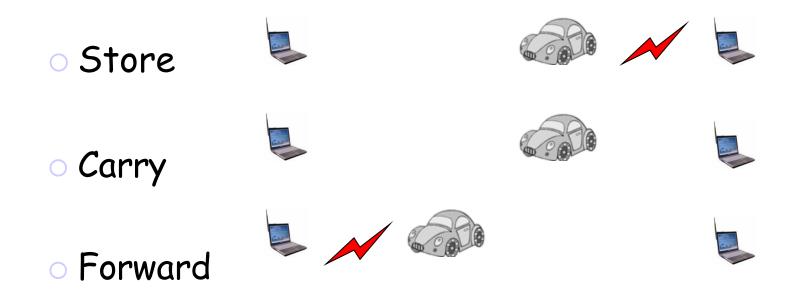
Jie Wu

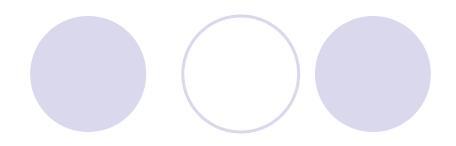

Dept. of Computer and Info. Sciences
Temple University

Challenged Networks

- Assumptions in the TCP/IP model are violated
 - DTNs
 - Delay-Tolerant Networks (also Disruption-Tolerant Networks)
 - Limited end-to-end connectivity
 - Due to mobility, power saving, or unreliable networks
 - Activities
 - IRTF's DTRNRG (Delay Tolerant Net. Research Group)
 - EU's Haggle project


Examples of DTNs




Store-Carry-Forward

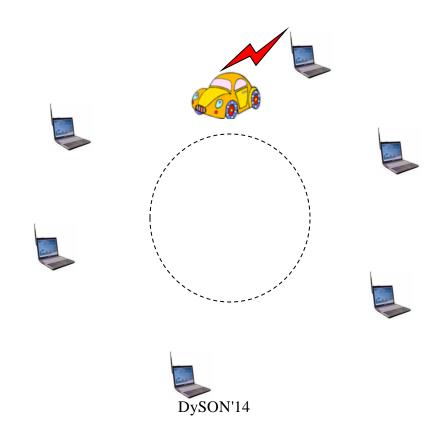
Movement-Assisted Routing
 Views node movement as a desirable feature

Two Paradigms

- Random Mobility
 - E.g., epidemic routing
 - Sightseeing cars (random movement)
- Controlled Mobility
 - E.g., message ferrying
 - Taxi (destination-oriented)
 - Public transportation (fixed route)

Epidemic Routing (Vahdat & Becker '00)

- Nodes store data and exchange it when they meet
- Data is replicated through a random talk



Message Ferrying (Zhao & Ammar '03)

 Special nodes (ferries) have completely predictable routes throughout the geographic area

Key Techniques

Knowledge

- Global vs. local information (Jain et al. '04)
- Zero information

Replication

- Single vs. multiple copy: spray-and-wait (-focus)
- Controlled copy: delegation forwarding
- Closeness (to destination)
 - Location information (of contacts and dest.)
 - Similarity (between intermediate nodes and dest.)

Two Fundamental Questions

 How to determine the appropriate number of copies

 How to efficiently distribute copies once determined

Delegation Forwarding (Erramilli et al. '08)

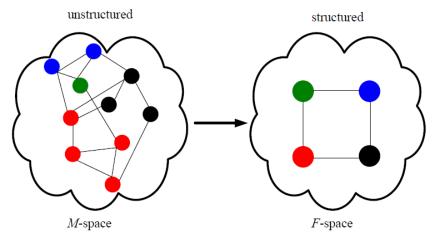
- The holder forwards the message to an encounter with a higher quality than those in all previous nodes seen so far
- The expected cost of the algorithms
 - Flooding: O(n)
 - Delegation forwarding: $O(\sqrt{n})$
- Extensions
 - Probabilistic delegation forwarding (Chen, Jian, Graves & Wu '09)
 - Delegation forwarding in multicasting (Wang & Wu '10)

Spray-and-Wait (-Focus) (Spyropoulous, Psounis & Raghavendra '05 & '07)

Two phases

- Sprays a number of copies into the network
- Each copy waits until meeting with the destination
 - Wait: forward only to its destination
 - Focus: forward to destination or a node "closer" to the destination
- Mobility model: random walk

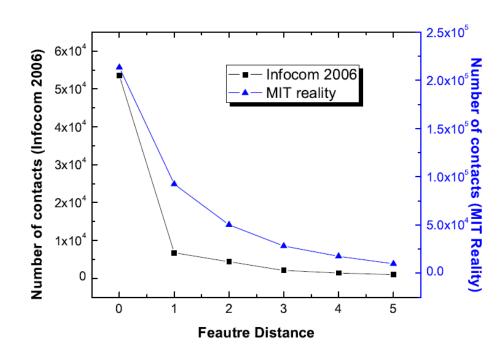
Key Challenges

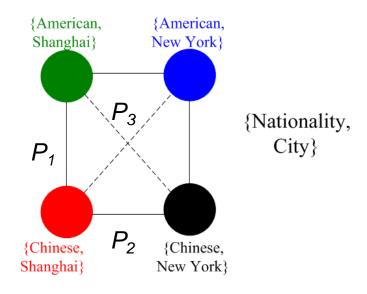

- Existing DTN routing relies on
 - Contact history
 - Mobility pattern
- Collecting such information is costly
- Both contact and mobility are
 - Highly dynamic
 - Unstructured

Social-Aware Routing

- Based on coarse-grain social-aware approaches
 - Social features-based: semi-structured contacts
 (Wu & Wang '12, INFOCOM 2012)
 - Social home-based: semi-structured mobility (Wu, Xiao & Huang '13, INFOCOM 2013)
- Differ from fine-grain social-aware approaches
 - Community, centrality, betweenness, and strong and weak ties, ...
 - O ...

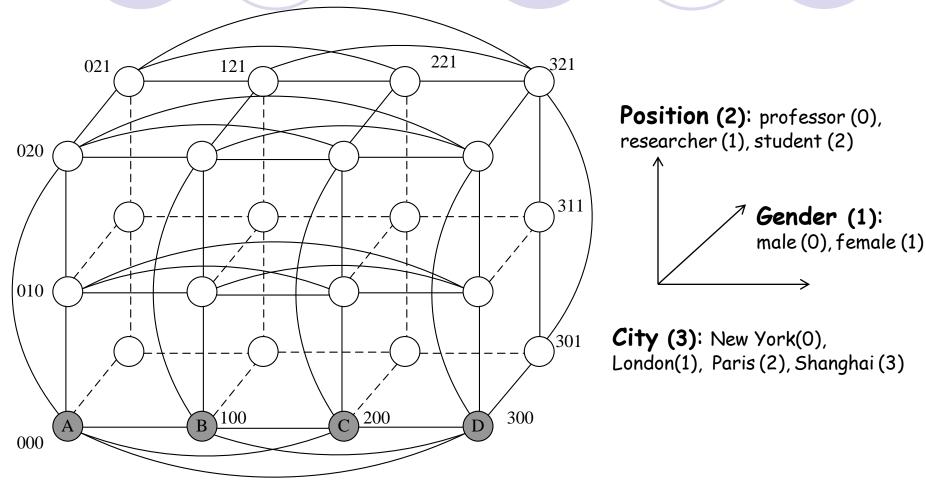
Social Feature-Based (Wu & Wang '12)


Mobile & unstructured contact space (M-space) —>
 Static & structured feature space (F-space)


- Each individual with a social feature profile $\{F_1, F_2, ...\}$
- Individuals with the same features mapped to a group

Resolve Feature Difference

- Our approach
 - Feature-based (race, gender, language, ...)
 - Resolve feature difference one at a time!
- Increase delivery rate: multiple copy
 - Flooding: O(n)
 - Delegation forwarding:O(In)
 - Our approach: log n*
 - n* is feature space size



Feature-based Grouping Example

• People come in contact with each other more frequently if they have more social features in common $(P_1>P_3, P_2>P_3)$

A 3-dimensional (3-D) Hypercube

Example: "311": a female researcher lives in Shanghai DySON'14

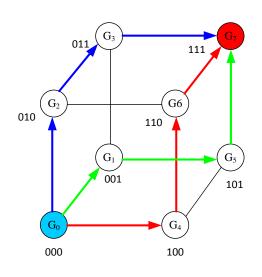
Feature Extraction

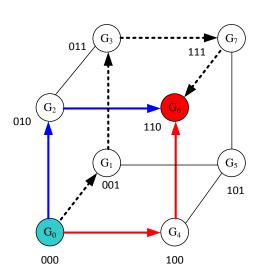
 Extract m most important features based on Shannon's entropy

$$E(F) = \sum_{i=1}^{l} p(x_i) \log p(x_i)$$

- $\circ E(F)$: entropy of feature F
- op: feature probability mass function
- $\{x_1, x_2, ..., x_l\}$: value set of feature F

Social Feature Entropy

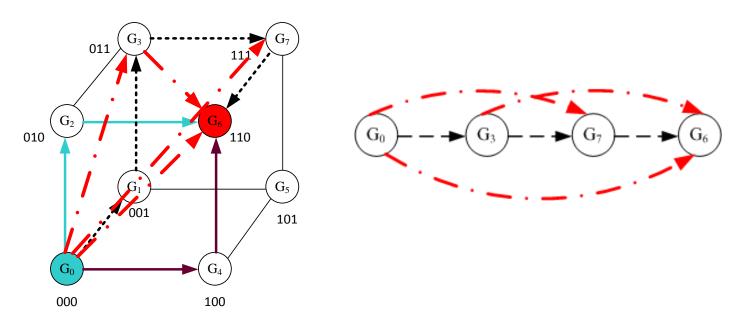

 The entropy of each social feature (Infocom 2006 trace)


Social Feature	Entropy
Affiliation	4.64
City	4.45
Nationality	4.11
Language	4.11
Country	3.59
Position	1.37

Property of Hypercubes

Efficient routing in an m-d binary cube (s and D differ in k features)

- $\circ k$ shortest paths of length k
- m-k non-shortest paths of length k+2



Hypercube Routing

- The relative address of the current group and destination group (a small string in the header)
 - calculated through XOR on S and D
 - sent, along with the packet, to the next node
- Any node in the group can forward to any node in the adjacent group
- Special treatment is needed at the destination group: spread-and-wait (-focus)

Shortcuts

 Feature matching shortcut can resolve the feature distance more than one at a time

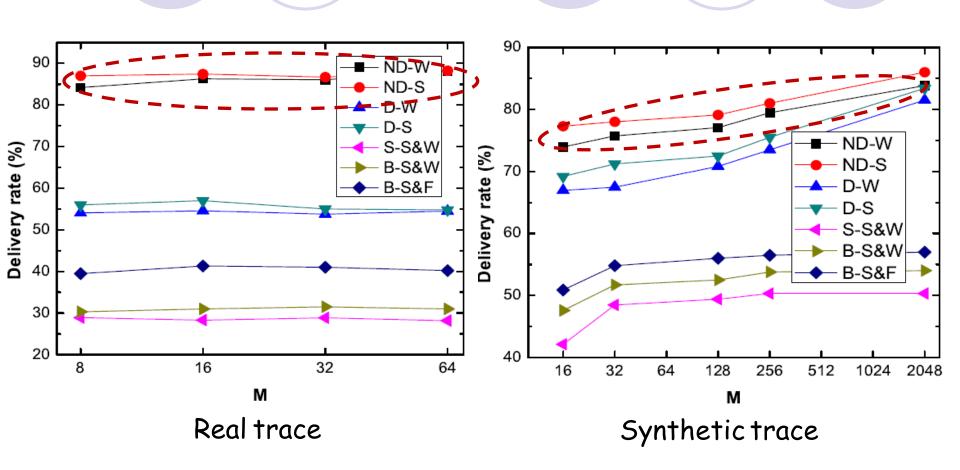
 Shortcut reduces the number of forwardings while ensuring the path disjointness property

Simulation

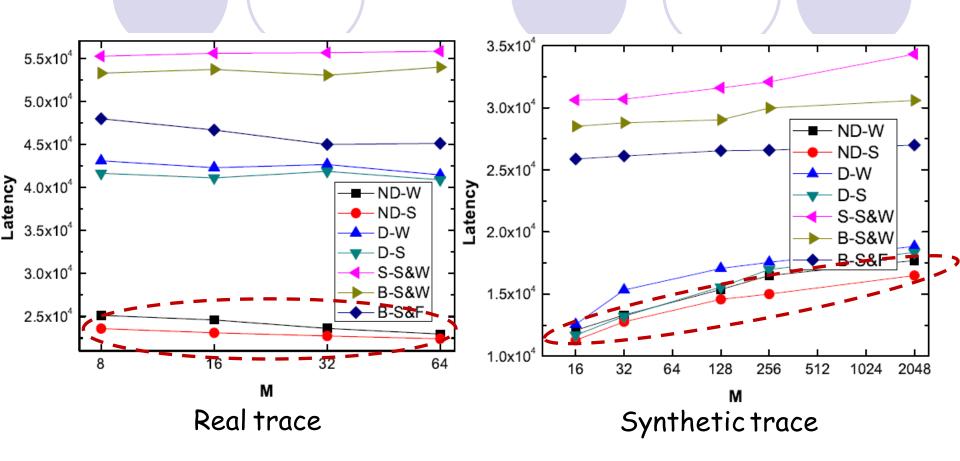
- A node A has m contact frequencies, p_1, p_2, \ldots, p_m , with its m neighbors in the m-D F-space.
- 128 individuals
- o *m* is 4, 5, 7, 8, and 11.

Real trace

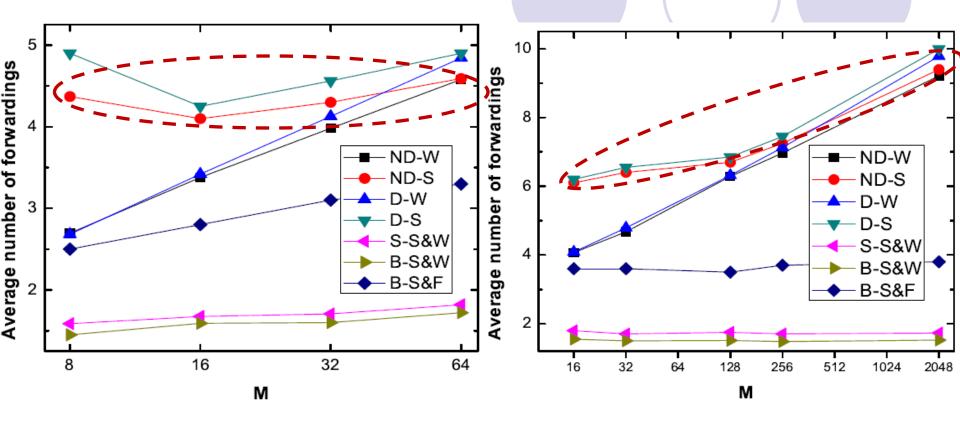
- Infocom 2006 trace.
- 61 participants
- \circ 6 social features, m is 3, 4, 5, and 6.


7 routing schemes comparison

- Node-disjoint-based with wait-at-destination (ND-W)
 - Waiting for the destination after the packet enters the destination group
- Node-disjoint-based with spray-at-destination (ND-5)
 - \circ Spraying N/(2M) copies into the destination group after the packet enters the group
- Delegation-based with wait (D-W)
- Delegation-based with spray (D-S)
 - Delegation-based: The copies of a packet is only forwarded to the individual with a smallest feature distance to the destination it has met so far
- Note: spray is needed at the destination group to increase the chances to meet the actual destination!


7 routing schemes comparison-cont'd

- Source spray-and-wait (S-S&W)
 - The source forwards copies to the first m distinct nodes it encounters. If the destination is not found, the copy carriers wait for the destination.
- Binary spray-and-wait (B-S&W)
 - Any node with copies will forward half of the copies to the encountered node with no copy.
- Binary spray-and-focus (B-S&F)
 - The copy carriers forward the copy to the encountered node with a smaller feature distance to the destination.


Varying node density - delivery rate

Varying node density - latency

Varying node density - # of forwardings

Real trace

Synthetic trace

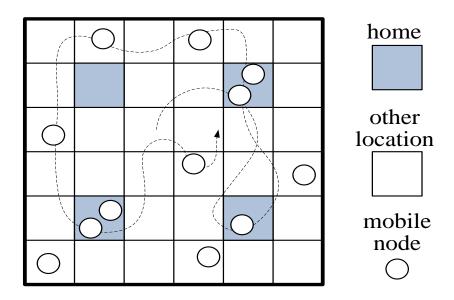
Recap and Extensions

- Multi-path routing in hypercubes
 - Feature-based, efficient copy management, and node-disjoint-based
- Extensions
 - General hypercubes(Wu & Wang 2014, IEEE TC)
 - Analytical results: delivery rate and latency

Social Home-based

(Wu, Xiao, & Huang '13)

Social characteristics


Nodes visit some locations (homes) frequently, while visiting other locations less frequently

Real or virtual "throwbox"

Each community home is equipped with a real or virtual "throwbox" so that it can store and forward messages

Problem

- Network Model
 - on mobile nodes in V
 - h homes: $H = \{1, 2, ..., h\}$ and other locations

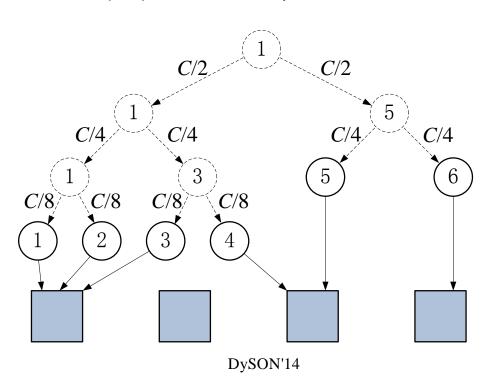
Italian student: {Italian town, school, dorm}

Female student: {shopping center, school, dorm}

Solution

- Homing phase
 - The source sends message copies to homes quickly
- Spreading phase
 - Homes with multiple copies spread them to other homes and mobile nodes
- Fetching phase
 - The destination fetches the message when it meets any message holder

(Homing: meet at a home site. Roaming: at a non-home site.)


Challenges

- Given a fixed number of message copies C
 - What is the optimal way for a message holder to spread copies during homing and roaming?
 - Once a home receives some message copies, how should it further spread these copies?
 - What is a general way for a mobile destination to obtain a copy?

Homing Phase

Binary Homing Scheme:

- Each message holder sends all of its copies to the first (visited) home.
- If the message holder meets another node before it visits a home, it binary splits the copies between them.

Homing Phase

Assume

• Inter-meeting time follows the exponential distribution: λ (between two mobile nodes) and Λ (a mobile node to a home)

o Lemma 1

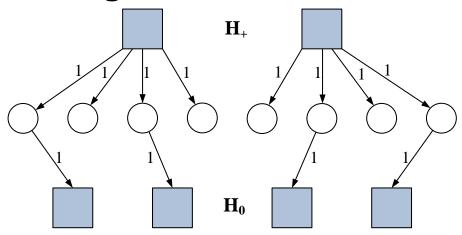
 The binary homing scheme can spread the C message copies to the maximum number of nodes before they reach the homes

Analysis

- The expected delay of each message copy is always $1/h\Lambda$ no matter which splitting scheme is adopted
- The maximum number of nodes (homes) received the message copies

Spreading Phase

1-Spreading Scheme

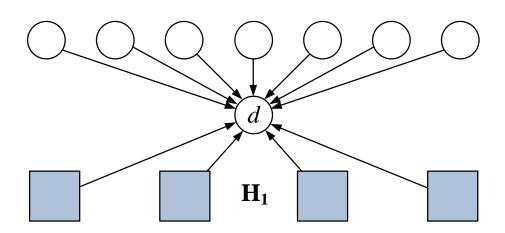

- Each home with more than one message copy spreads a copy to each visiting node until only one copy remains
- If a node with one copy later goes and visits a new home,
 the node sends the copy to that home

Analysis

- Each home has at most one copy
- If C>h, there are C-h nodes outside the homes that have a copy
- Home is always more important than a regular node as it can spread the message faster

Spreading Phase

o 1-Spreading Scheme



(H_{+} : multiple copies, H_{1} : one copy, H_{0} : no copy)

- o Lemma 2
 - The 1-spreading scheme can spread copies from a home to the maximum number of nodes with the fastest speed.

Fetching Phase

- Fetching Scheme
 - The destination fetches the message once it meets a message holder

Distributed HS Algorithm

Algorithm 1 The Homing Spread (HS) algorithm 1: **for** each mobile node i **do** if node i encounters another node j then if node j is the destination then 3: node i sends the message to j; 4: if nodes i and j have r_i and r_j message copies then 5: node i holds $\lceil r_i/2 \rceil + \lceil r_i/2 \rceil$ copies through ex-6: change with node j; if node i visits a home h then node i sends all its copies to h; 8: if $h \in H_+$ or i is the destination then 9: h sends a copy to node i. 10:

Continuous Markov Chain

- Expected delivery delay
- Number of copies needed for a given delay bound

Network State

State s is a vector with h+n components

$$\begin{split} \mathbf{S} &= \langle \mathbf{S}_1, \, \mathbf{S}_2, ..., \, \mathbf{S}_h, \, \mathbf{S}_{h+1}, ..., \, \mathbf{S}_{h+n} \rangle, \\ \text{where } \mathbf{s}_i \colon \text{copies held by i-th home (if i\leh$) or (i-h)-th node (if i$>h)} \\ \text{and} \quad \sum_{i=1}^{h+n} s_i = C \ (s_1 \geq s_2 \geq \Lambda \ \geq s_h; \, s_{h+1} \geq s_{h+2} \geq \Lambda \ \geq s_{h+n}) \end{split}$$

• For example: s = (3, 0, 1, 0, 0, 0)

3

0

 \bigcirc

0

 \bigcirc

0

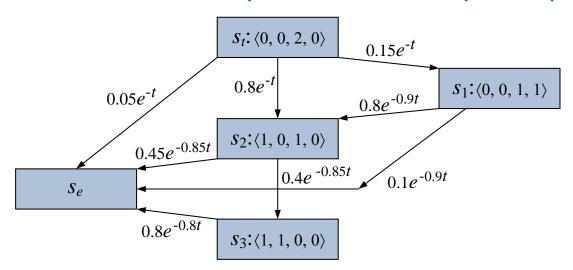
• Start state:
$$s_{t} = (0, 0, ..., 0, C, 0, ..., 0)$$

• Optimal state:
$$s_0 = (1, 1, ..., 1, 0, ..., 0)$$

Optimality of HS

- HS follows binary homing and 1-spreading schemes
- Lemmas 1 and 2 show that the HS is the fastest way to turn a network state into the optimal state
- Each state transition based on binary homing and 1spreading schemes can turn the current state into the best next state that has the minimum expected delivery delay

Expected Delivery Delay


Continuous Markov Chain

- State space $S = \langle S_1, S_2, ..., S_h, S_{h+1}, ..., S_{h+n} \rangle$
- State transition graph
 - Binary homing scheme and 1-spreading scheme
 - A directed acyclic graph
 - State transition function $\rho_{s,s'}(t)$

Probability density function about the time t that it takes for state transition from s to s'

Expected Delivery Delay

- Derive the cumulative probability density function for the state transition from start to end state
- Calculate the expected delivery delay

exponential density function

$$p(t) = \lambda e^{-\lambda t}$$

h=2, n=5, C=2, λ = 0.005, and Λ = 0.4

Three Phases

Homing phase: average delay for the first copy reaching a home

$$D^{(1)} = \frac{1}{h\Lambda}$$

Spreading phase: average delay for each home to receive a copy

$$D^{(2)} \leq \frac{2}{\Lambda}$$

Fetching phase: average delay after the first two phases in message fetching

$$D^{(3)} = \begin{cases} \frac{1}{C\Lambda} &, C \leq h \\ \frac{1}{h\Lambda + (C-h)\lambda} &, C > h \end{cases}$$

Upper Bound

Define

$$D' = \frac{1}{h\Lambda} + \frac{2}{\Lambda}$$

homing (first term) plus spreading (second term) delayThe expected delay D of HS satisfies:

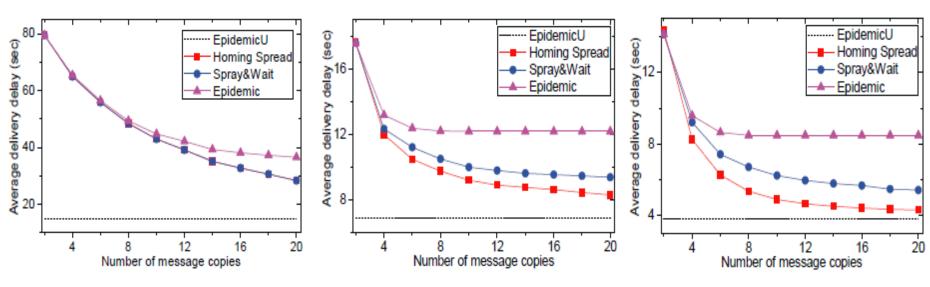
$$D \le \begin{cases} D' + \frac{1}{C\Lambda} &, C \le h \\ D' + \frac{1}{h\Lambda + (C - h)\lambda} &, C > h \end{cases}$$

 \circ C copies needed for a given delay bound $\Theta(\geq D')$

$$C = \begin{cases} \frac{1}{\Lambda(\Theta - D')} &, & \Theta \ge \frac{1}{h\Lambda} + D' \\ \frac{1}{\lambda} \cdot (\frac{1}{\Theta - D'} - h\Lambda) + h &, & D' < \Theta < \frac{1}{h\Lambda} + D' \end{cases}$$
DySON'14

Simulation

Trace

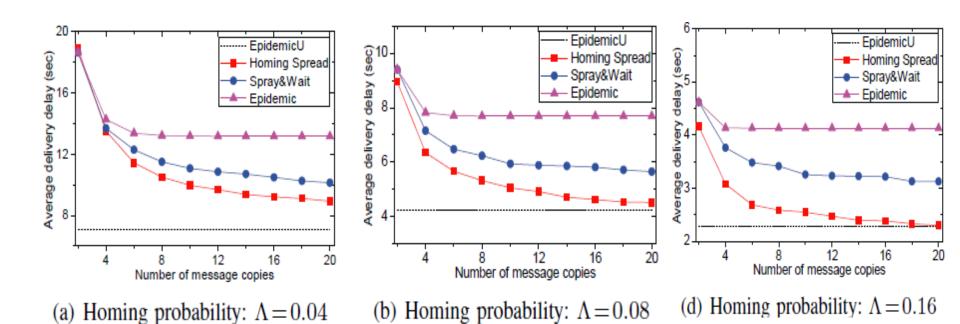

Synthetic trace: Time-Variant Community Model

Settings

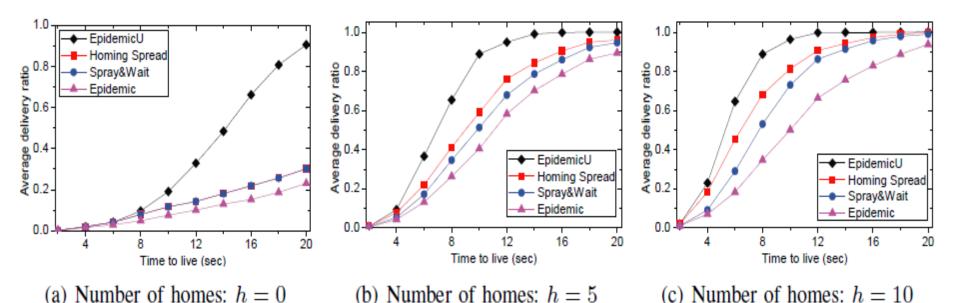
Parameter name	Default value	Range
Deployment area	20×20	-
Number of nodes n	200	100-400
Number of homes h	5	0-15
Homing probability per sec Λ	0.04	0.04-0.16
Number of messages	10,000	-
Allowed message copies C	10	2-20

Average Delay vs. Number of Homes

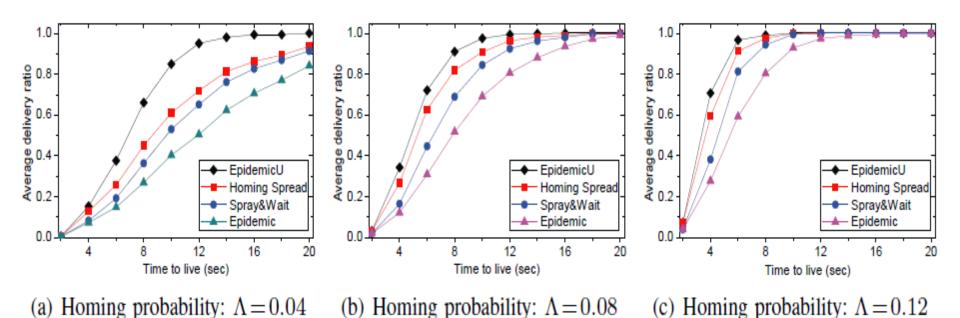
- Epidemic (C copies)
- EpidemicU (unlimited copies)



(a) Number of homes: h = 0


(b) Number of homes: h = 5

(d) Number of homes: h = 15


Average Delay vs. Homing Probability

Average Delivery Ratio vs. Number of Homes

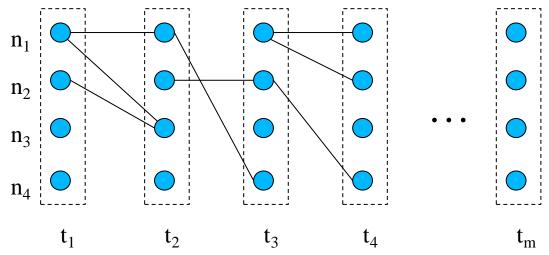
Average Delivery Ratio vs. Homing Probability

Recap and Extensions

Homing-spread

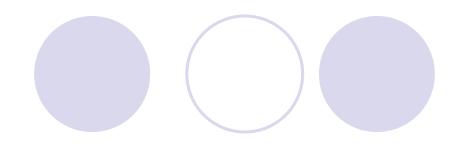
 Optimal multi-copy routing in three phases: homing, spreading, and fetching

Extensions


- Heterogeneous homes: different homes
 (Xiao, Wu & Huang '14, IEE TPDS)
- Heterogeneous visiting: different visit rates

Big Picture: Network Science

- How the Overall Network System will Behave
 - Static network structure
 - Dynamic networks structure (more challenging)
- Epidemic and Other Spreading Processes
 - Epidemic is well studied in static networks
 - Susceptible-Infected (SI), SIR (recovered), SIS, and SIRS
 - Epidemic, especially controlled one, in dynamic networks
 - More challenging and not well understood


Evolving Graphs

Time-space view

- Social-aware contacts
 - A special temporal-spatial link summary
- Activity level (AL)
 - AL of a node evolves based on ALs of neighbors

Collaborators

Yunsheng WangKettering Univ.

Mingjun XiaoUniv. of Sci. & Tech. of China