
Some Loose Ends
packages, more protection, this



packages



Packages

package - group of related classes, e.g., read from web, graphs

Why?

▶ easy to bundle, distribute

▶ name clash



How?

The first lines of code in your file:

/* some comments here are ok */

package packagename;

public class Whatever {

...

IDE
▶ package often created automatically
▶ to make a class part of a package, usually:

▶ right click on the package when creating new class
▶ drag and drop the class under the package



How?

The first lines of code in your file:

/* some comments here are ok */

package packagename;

public class Whatever {

...

IDE
▶ package often created automatically
▶ to make a class part of a package, usually:

▶ right click on the package when creating new class
▶ drag and drop the class under the package



Directory Structure

It matters. Suppose that we have:

package fiore.cis1068.lab1;

public class TestPkg {

public static void main(String args[]) {

System.out.println("Did this work?");

}

}

Must place resulting class file in:

fiore cis1068 lab1 TestPkg.class



Name Clash

▶ me in grade school

▶ you make a Math class

▶ convention. URL (globally unique) in reverse order, e.g.,

▶ you own the domain www.citizensagainstfiore.org
▶ all of your packages begin org.citizensagainstfiore.www



Name Clash

▶ me in grade school

▶ you make a Math class
▶ convention. URL (globally unique) in reverse order, e.g.,

▶ you own the domain www.citizensagainstfiore.org
▶ all of your packages begin org.citizensagainstfiore.www



Name Clash

▶ me in grade school

▶ you make a Math class
▶ convention. URL (globally unique) in reverse order, e.g.,

▶ you own the domain www.citizensagainstfiore.org
▶ all of your packages begin org.citizensagainstfiore.www



Using Classes in Packages

import particular class

import java.util.Scanner;

...

Scanner in = new Scanner(System.in);

import all classes within package

import java.util.*;

...

Scanner in = new Scanner(System.in);

import nothing

java.util.Scanner in = new java.util.Scanner(System.in);



Default Package

▶ What happens if we don’t use the package statement?
▶ Class becomes part of the default package

▶ all of the classes in the current directory



protection



Remaining Java Protection Levels

public accessible anywhere

private accessible only within the class

protected accessible within class, its descendents, package

no keyword package access



this



OK, but slightly cumbersome

public class Point {

protected int x;

protected int y;

public Point(int newX, int newY) {

x = newX;

y = newY;

}

public void move(int dx, int dx) {

x += dx;

y += dy;

}

...

...

Point p1 = new Point(10, 20);

Point p2 = new Point(10, 20);

...

p1.move(5,5);

p2.move(1,1);



Same thing, but with this

public class Point {

protected int x;

protected int y;

public Point(int x, int y) {

this.x = x;

this.y = y;

}

public void move(int dx, int dy) {

this.x += dx;

this.y += dy;

}

...

...

Point p1 = new Point(10, 20);

Point p2 = new Point(10, 20);

...

p1.move(5,5);

p2.move(1,1);



What If We Didn’t Use This? Mistake.

public class Point {

protected int x;

protected int y;

/* broken constructor */

public Point(int x, int y) {

x = x; // in here, we're referring

y = y; // to the local (i.e., the

// argument), not the

// field of the class

// --> does nothing useful

}

public void move(int dx, int dx) {

this.x += dx;

this.y += dy;

}

...

Two different x’s
▶ one local to the

constructor

▶ one the field of the class

▶ when we’re inside the
constructor, x refers to
the local



Calling One Constructor from Another

One Way

public class Point {

protected int x;

protected int y;

public Point() {

this.x = 0;

this.y = 0;

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...

Using this

public class Point {

protected int x;

protected int y;

public Point() {

this(0, 0);

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...


	packages
	protection
	this

