
Exceptions

1

Your computer takes exception

n Exceptions are errors in the logic of a
program (run-time errors).

n Examples:
Exception in thread “main” java.io.FileNotFoundException:

student.txt (The system cannot find the file specified.)

Exception in thread “main” java.lang.NullPointerException:
at FileProcessor.main(FileProcessor.java:9)

n Question: do all run-time errors cause
Exceptions?

Causes of Exceptions

n Most exceptions happen because of “corner
cases”:
q your program does something at the boundaries

of what Java knows how to handle.
n For example:

q Java knows how to open files for reading, mostly.
q But if you tell it to open a file that doesn’t exist, it

doesn’t know how it should behave.
q It throws an exception, and gives the programmer an

opportunity to define how the program should react.

The Exception Class

n As with anything in Java, Exception is a class

The methods in the Exception class can be
useful for debugging, as we will see.

Method What it does
void printStackTrace() Prints the sequence of method calls

leading up to the statement that
caused the Exception.

String getLocalizedMessage() Returns a “detail” message.
String toString() Returns the Exception class name

and detail message.

The Exception class hierarchy (partial)
Throwable

Error Exception

IOException ClassNotFound
Exception

Runtime
Exception

EOFException FileNotFound
Exception

UnknownHost
Exception

Arithmetic
Exception

ClassCast
Exception

IndexOut
OfBounds
Exception

NullPointer
Exception

Pitch and catch

n When a Java statement causes an Exception (called
throwing the Exception), by default Java abruptly ends
the program.

n To stop this default behavior, you can write code that
catches the thrown Exception.

Catch: An example

import java.util.*; // For Scanner class
import java.io.*;

public class FileProcessor
{

public static void main(String [] args)
{

try {
File inputFile = new File("student.txt");
Scanner input = new Scanner(inputFile);

while(input.hasNextLine()) {
System.out.println("> " + input.nextLine());

}
}
catch(FileNotFoundException exception) {

System.out.println("Could not find the file 'student.txt'.");
}

}
}

try/catch syntax

try {
<statements that might cause an exception>;

}
catch(<ExceptionType1> e1) {
<statements>

}
…

catch(<ExceptionTypeN> eN) {
<statements>

}

try block indicates that the
enclosed statements have
exception handlers associated with
them.

catch block is an exception
handler for one type of
exception.

The type of exception that the
catch block handles is
indicated with a parameter.

You can have as many catch
blocks for one try block as
you like. They must each
handle a different type of
exception.

Control Flow with try/catch
try {

<statements that might cause an exception>;

}

catch(<ExceptionType1> e1) {

<statements>

}

…

catch(<ExceptionTypeN> eN) {

<statements>

}

<statements after try/catch>

§ If no exception occurs during the try block:
§ jump to statements after all the catch blocks.

§ If an exception occurs in the try block:
§ jump to the first handler for that type of exception.
§ After the catch finishes, jump to the statement after

all the catch blocks.

Catch: An example

import java.util.*; // For Scanner class
import java.io.*;

public class FileProcessor
{

public static void main(String [] args)
{

try {
File inputFile = new File("student.txt");
Scanner input = new Scanner(inputFile);

while(input.hasNextLine()) {
System.out.println("> " + input.nextLine());

}
}
catch(FileNotFoundException exception) {

System.out.println("Could not find the file 'student.txt'.");
}

}
}

finally
try {

<statements that might cause an exception>;

}

catch(<ExceptionType1> e1) {

<statements>

}

…

catch(<ExceptionTypeN> eN) {

<statements>

} finally {

<statements in here are done whether

an exception occurred or not>

}

Remember

n When an exception occurs
q you jump to the appropriate catch block
q you do not ever jump back to the try block

n If you absolutely must complete the try block
q you need to put it inside a loop

Example

String filename = null;

Scanner inFromFile = null;

try {

Scanner inFromKbd = new Scanner(System.in);

System.out.print("Enter file name> ");

filename = inFromKbd.nextLine();

inFromFile = new Scanner(new File(filename));

} catch (FileNotFoundException e) {

System.out.println("Error opening file " +

filename);

}

/* but the file might not be open */

Example
String filename = null;

Scanner inFromFile = null;

boolean successfulOpen=false;

do {

try {

Scanner inFromKbd = new Scanner(System.in);

System.out.print("Enter file name> ");

filename = inFromKbd.nextLine();

inFromFile = new Scanner(new File(filename));

successfulOpen=true;

} catch (FileNotFoundException e) {

System.out.println("Error opening file " + filename);

}

} while (!successfulOpen);

/* if we get this far, the file is open */

Stack Traces

n How do you know what went wrong?
n All exceptions have methods that return

information about the cause of the Exception:

Method Description
getLocalizedMessage() Returns a String containing

a description of the error
getStackTrace() Returns an array of

StackTraceElement objects,
each of which contains info
about where the error
occurred

printStackTrace() Displays the Stack Trace on
the console.

Displaying the stack trace info

import java.util.*; // For Scanner class
import java.io.*;

public class FileProcessor
{

public static void main(String [] args)
{

try {
File inputFile = new File("student.txt");
Scanner input = new Scanner(inputFile);

while(input.hasNextLine()) {
System.out.println("> " + input.nextLine());

}
}
catch(FileNotFoundException exception) {

System.out.println("Could not find the file 'student.txt'.");
System.out.println(exception.getLocalizedMessage());
exception.printStackTrace();

}
}

}

Multiple catch blocks

import java.util.*; // For Scanner class
import java.io.*;

public class FileProcessor
{

public static void main(String [] args)
{

try {
File inputFile = new File("student.txt");
Scanner input = new Scanner(inputFile);
PrintWriter pw = new PrintWriter(new File(“quoted.txt”));

while(input.hasNextLine()) {
pw.println("> " + input.nextLine());

}
}
catch(FileNotFoundException exception) {

System.out.println("Could not find the file 'student.txt'.");
}
catch(IOException exception) {

System.out.println(“Could not write to file ‘quoted.txt’.”);
}

}
}

Multiple catch blocks

import java.util.*; // For Scanner class
import java.io.*;

public class FileProcessor
{

public static void main(String [] args)
{

try {
File inputFile = new File("student.txt");
Scanner input = new Scanner(inputFile);
PrintWriter pw = new PrintWriter(new File(“quoted.txt”));

while(input.hasNextLine()) {
pw.println("> " + input.nextLine());

}
}
catch(FileNotFoundException exception) {

System.out.println("Could not find the input file.");
System.out.println(exception.getLocalizedMessage());
exception.printStackTrace();

}
catch(IOException exception) {

System.out.println(“Could not write to file ‘quoted.txt’.”);
}

}
}

Checked and Unchecked Exceptions

n Exceptions happen while the program is running
n For most kinds of Exceptions, the compiler is happy to let the

programmer make mistakes that could lead to an exception at run-
time.

n Unchecked (by the compiler) Exceptions
q They are caused by programmer error.
q The compiler lets the programmer screw up.
q e.g., NullPointerException,

IndexOutOfBoundsException

Checked and Unchecked Exceptions

n Exceptions happen while the program is running
n For most kinds of Exceptions, the compiler is happy to let the

programmer make mistakes that could lead to an exception at run-
time.

n But, for certain kinds of exceptions, the compiler will check to see if
your code might cause an exception at run-time.

n Checked (by the compiler) Exceptions:
q They are caused by things outside of the

programmer’s control (eg, a file doesn’t exist).
q The compiler requires that the programmer

declare what to do if the Exception occurs.

Checked and Unchecked Exceptions
Throwable

Error Exception

IOException ClassNotFound
Exception

Runtime
Exception

EOFException FileNotFound
Exception

UnknownHost
Exception

Arithmetic
Exception

ClassCast
Exception

IndexOut
OfBounds
Exception

NullPointer
Exception

Options for Checked Exceptions

If the compiler detects that a statement might
cause a Checked Exception, it requires the
programmer to do either of the following:

1. Catch the Exception

2. Declare that crashing is acceptable
q Use the throws clause in the method signature

Otherwise, the program will not compile.

Throws: An example

import java.util.*; // For Scanner class
import java.io.*;

public class FileProcessor
{

public static void main(String [] args)
throws FileNotFoundException

{
File inputFile = new File("student.txt");
Scanner input = new Scanner(inputFile);

while(input.hasNextLine()) {
System.out.println("> " + input.nextLine());

}
}

}

Catch or throw?

When should you catch an exception, and
when should you declare that it can be
thrown?

n Usually, if your catch block is not going to do anything
besides print an error message and quit the program, it’s
better to just throw the exception

n You should only catch an exception if you’re really going
to handle the error so that it won’t affect the rest of the
program.

Causing a ruckus

n Guess what … you can create your very own
Exceptions, any time you want!

n The throw keyword:
(note: NOT the same as the throws keyword!)

q Use it to make your code throw an exception
throw new Exception();

q Mainly useful for passing messages between
methods that aren’t easily done with returns

