
Building Java Programs
Chapter 13

Searching and Sorting

Copyright (c) Pearson 2013.
All rights reserved.

2

Sequential search
• sequential search: Locates a target value in an array/list by

examining each element from start to finish.
– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

– Notice that the array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

3

Sequential search

search(A[], thingToFind)

start at the beginning

for each item in A:

if the item is what we're looking for:

return its location

if we got this far without returning already,

what we're looking for isn't found

return failure

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

4

Sequential search

public static int search(int A[], int thingToFind) {

for (int i=0; i<A.length; i++) {

if (A[i]==thingToFind) {

return i;

}

}

/* we didn’t find it. return failure */

return -1;

}

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

5

When Array Is Sorted

• This array is already sorted
• Do we really need to go through entire thing before quitting?

– Suppose we’re searching for 38:
• we know once we’ve reached A[10] that we didn’t find it

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

6

When Array Is Sorted

/* version 2. ONLY WORKS if A[] IS SORTED */
search(A[], thingToFind)

start at the beginning

for each item in A <= thingToFind:
if the item is what we're looking for:

return its location

if we got this far without returning already,

what we're looking for isn't found.

return failure

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

7

When Array Is Sorted

/* version 2. ONLY WORKS if A[] IS SORTED */
public static int search(int A[], int thingToFind) {

for (int i=0; i<A.length && A[i]<=thingToFind; i++) {
if (A[i]==thingToFind) {

return i;

}

}

return -1;

}

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

8

Searching a Sorted List
• What if we’re ordering a pizza (and it’s 1998)?
• Looking for phone number of Sammy’s Pizza
• Start with the A’s, then the B’s, etc.?

9

Binary search (13.1)
• binary search: Locates a target value in a sorted array/list by

successively eliminating half of the array from consideration.
– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

10

The Arrays class
• Class Arrays in java.util has many useful array methods:

• Syntax: Arrays.methodName(parameters)

Method name Description
binarySearch(array, value) returns the index of the given value in a sorted

array (or < 0 if not found)
binarySearch(array,
minIndex, maxIndex, value)

returns index of given value in a sorted array
between indexes min /max - 1 (< 0 if not found)

copyOf(array, length) returns a new resized copy of an array
equals(array1, array2) returns true if the two arrays contain same

elements in the same order
fill(array, value) sets every element to the given value
sort(array) arranges the elements into sorted order
toString(array) returns a string representing the array, such as

"[10, 30, -25, 17]"

11

Arrays.binarySearch
// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, value)

// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, minIndex, maxIndex, value)

• The binarySearch method in the Arrays class searches an
array very efficiently if the array is sorted.
– You can search the entire array, or just a range of indexes

(useful for "unfilled" arrays such as the one in ArrayIntList)
– If the array is not sorted, you may need to sort it first

12

Using binarySearch
// index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
int[] a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};

int index = Arrays.binarySearch(a, 0, 16, 42); // index1 is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7

•binarySearch returns the index where the value is found

• if the value is not found, binarySearch returns:
-(insertionPoint + 1)

• where insertionPoint is the index where the element would
have been, if it had been in the array in sorted order.

• To insert the value into the array, negate insertionPoint + 1

int indexToInsert21 = -(index2 + 1); // 6

13

Binary search code
// Returns the index of an occurrence of target in a,
// or a negative number if the target is not found.
// Precondition: elements of a are in sorted order
public static int binarySearch(int[] a, int target) {

int min = 0;
int max = a.length - 1;

while (min <= max) {
int mid = (min + max) / 2;
if (a[mid] < target) {

min = mid + 1;
} else if (a[mid] > target) {

max = mid - 1;
} else {

return mid; // target found
}

}

return -(min + 1); // target not found
}

14

Recursive binary search (13.3)

• Write a recursive binarySearch method.
– If the target value is not found, return its negative insertion point.

int index = binarySearch(data, 42); // 10
int index2 = binarySearch(data, 66); // -14

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

15

Exercise solution
// Returns the index of an occurrence of the given value in
// the given array, or a negative number if not found.
// Precondition: elements of a are in sorted order
public static int binarySearch(int[] a, int target) {

return binarySearch(a, target, 0, a.length - 1);
}

// Recursive helper to implement search behavior.
private static int binarySearch(int[] a, int target,

int min, int max) {
if (min > max) {

return -1; // target not found
} else {

int mid = (min + max) / 2;
if (a[mid] < target) { // too small; go right

return binarySearch(a, target, mid + 1, max);
} else if (a[mid] > target) { // too large; go left

return binarySearch(a, target, min, mid - 1);
} else {

return mid; // target found; a[mid] == target
}

}
}

16

Binary search and objects
• Can we binarySearch an array of Strings?

– Operators like < and > do not work with String objects.
– But we do think of strings as having an alphabetical ordering.

• natural ordering: Rules governing the relative placement of
all values of a given type.

• comparison function: Code that, when given two values A
and B of a given type, decides their relative ordering:

– A < B, A == B, A > B

17

The compareTo method (10.2)

• The standard way for a Java class to define a comparison
function for its objects is to define a compareTo method.

– Example: in the String class, there is a method:
public int compareTo(String other)

• A call of A.compareTo(B) will return:
a value < 0 if A comes "before" B in the ordering,
a value > 0 if A comes "after" B in the ordering,
or 0 if A and B are considered "equal" in the ordering.

18

Runtime Efficiency (13.2)
• efficiency: A measure of the use of computing resources by code.

– can be relative to speed (time), memory (space), etc.
– most commonly refers to run time

• Assume the following:
– Any single Java statement takes the same amount of time to run.
– A method call's runtime is measured by the total of the

statements inside the method's body.
– A loop's runtime, if the loop repeats N times, is N times the

runtime of the statements in its body.

19

Efficiency examples
statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {
statement4;

}

for (int i = 1; i <= N; i++) {
statement5;
statement6;
statement7;

}

3

N

3N

4N + 3

20

Efficiency examples 2
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {
statement1;

}
}

for (int i = 1; i <= N; i++) {
statement2;
statement3;
statement4;
statement5;

}

• How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

21

Algorithm growth rates (13.2)

• We measure runtime in proportion to the input data size, N.
– growth rate: Change in runtime as N changes.

• Say an algorithm runs 0.4N3 + 25N2 + 8N + 17 statements.
– Consider the runtime when N is extremely large .

– We ignore constants like 25 because they are tiny next to N.
– The highest-order term (N3) dominates the overall runtime.

– We say that this algorithm runs "on the order of" N3.
– or O(N3) for short ("Big-Oh of N cubed")

22

Complexity classes
• complexity class: A category of algorithm efficiency based on

the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log2 N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log2

N)
slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
...
exponential O(2N) multiplies drastically 5 * 1061

years

23

Binary search (13.1, 13.3)
• binary search successively eliminates half of the elements.

– Algorithm: Examine the middle element of the array.
• If it is too big, eliminate the right half of the array and repeat.
• If it is too small, eliminate the left half of the array and repeat.
• Else it is the value we're searching for, so stop.

– Which indexes does the algorithm examine to find value 22?
– What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

value -4 -1 0 2 3 5 6 8 11 14 22 29 31 37 56

24

Binary search runtime
• For an array of size N, it eliminates ½ until 1 element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:
– How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N
– Call this number of multiplications "x".

2x = N
x = log2 N

• Binary search is in the logarithmic complexity class.

25

Sorting
• sorting: Rearranging the values in an array or collection into a

specific order (usually into their "natural ordering").

– one of the fundamental problems in computer science
– can be solved in many ways:

• there are many sorting algorithms
• some are faster/slower than others
• some use more/less memory than others
• some work better with specific kinds of data
• some can utilize multiple computers / processors, ...

– comparison-based sorting : determining order by
comparing pairs of elements:
•<, >, compareTo, …

26

Sorting methods in Java
• The Arrays class in java.util has a static method sort

that sorts the elements of an array

String[] words = {"foo", "bar", "baz", "ball"};
Arrays.sort(words);
System.out.println(Arrays.toString(words));
// [ball, bar, baz, foo]

27

Selection sort
• selection sort: Orders a list of values by repeatedly putting

the smallest or largest unplaced value into its final position.

The algorithm:
– Look through the list to find the smallest value.
– Swap it so that it is at index 0.

– Look through the list to find the second-smallest value.
– Swap it so that it is at index 1.

...

– Repeat until all values are in their proper places.

28

Selection sort example
• Initial array:

• After 1st, 2nd, and 3rd passes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 18 12 22 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 12 22 27 30 36 50 7 68 91 56 18 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 22 27 30 36 50 12 68 91 56 18 85 42 98 25

29

Selection sort code
// Rearranges the elements of a into sorted order using
// the selection sort algorithm.
public static void selectionSort(int[] a) {

for (int i = 0; i < a.length - 1; i++) {
// find index of smallest remaining value
int min = i;
for (int j = i + 1; j < a.length; j++) {

if (a[j] < a[min]) {
min = j;

}
}

// swap smallest value its proper place, a[i]
swap(a, i, min);

}
}

30

Selection sort runtime (Fig. 13.6)

• What is the complexity class (Big-Oh) of selection sort?

31

Merge sort
• merge sort: Repeatedly divides the data in half, sorts each

half, and combines the sorted halves into a sorted whole.

The algorithm:
– Divide the list into two roughly equal halves.
– Sort the left half.
– Sort the right half.
– Merge the two sorted halves into one sorted list.

– Often implemented recursively.
– An example of a "divide and conquer" algorithm.

• Invented by John von Neumann in 1945

32

Merge sort example
index 0 1 2 3 4 5 6 7
value 22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

18 22
merge

split
12 -4

12 -4

-4 12
merge

split

split

-4 12 18 22

58 7 31 42

58 7

58 7

7 58
merge

split
31 42

31 42

31 42
merge

split

split

7 31 42 58

-4 7 12 18 22 31 42 58

split

merge merge

merge

33

Merging sorted halves

34

Merge halves code
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted
public static void merge(int[] result, int[] left,

int[] right) {
int i1 = 0; // index into left array
int i2 = 0; // index into right array

for (int i = 0; i < result.length; i++) {
if (i2 >= right.length ||

(i1 < left.length && left[i1] <= right[i2])) {
result[i] = left[i1]; // take from left
i1++;

} else {
result[i] = right[i2]; // take from right
i2++;

}
}

}

35

Merge sort code
// Rearranges the elements of a into sorted order using
// the merge sort algorithm.
public static void mergeSort(int[] a) {

// split array into two halves
int[] left = Arrays.copyOfRange(a, 0, a.length/2);
int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

// sort the two halves
...

// merge the sorted halves into a sorted whole
merge(a, left, right);

}

36

Merge sort code 2
// Rearranges the elements of a into sorted order using
// the merge sort algorithm (recursive).
public static void mergeSort(int[] a) {

if (a.length >= 2) {
// split array into two halves
int[] left = Arrays.copyOfRange(a, 0, a.length/2);
int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

// sort the two halves
mergeSort(left);
mergeSort(right);

// merge the sorted halves into a sorted whole
merge(a, left, right);

}
}

37

Merge sort runtime
• What is the complexity class (Big-Oh) of merge sort?

